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A nonlinear algorithm is presented, which in general enables the spatial 
orientation of ray bundles without predefining special initial values for 
the chosen parameters. The major aspect of the algorithm is the parameteri­
zation of the rotation parameters. These parameters are proved to be free 
of any singularities. Thus no constraints concerning configuration of bun­
dles in space exist. The algorithm converges rapidly for the rotation para­
meters involved in the rotation matrix are only quadratically. The algorithm 
is well suited to obtain initial values for bundle adjustment in close range 
applications. Further applications are the relative orientation of two pho­
tographs, the absolute orientation of models, the resection of photographs 
or directly within the bundle adjustment for the exterior orientation para­
meters. The contents of the presentation is subdivided into two parts. The 
first part deals with the development of the theoretical fundamentals of the 
algorithm and in the second part examples are demonstrated. 

Introduction 

In 1970 Alan Pope introduced a new special estimation technique for rotation 
parameters (Pope, A.. 1970). For the derivation of the formulas he used quaternion 
algebra. In this paper an alternative derivation of the formulas is presented 
in which the quaternion algebra is omitted. Furtheron Popes' idea of parameter 
substitution to gain advantages in the estimation process, is transfered onto 
the shifting parameters. So it is possible to achieve estimation formulas for 
the resection of a photograph which need no special initial values for any 
configuration. 

The Mathematical Model 

The fundamental equation of analytical photogrammetry is the collinearity 
equation, which can be expressed in matrix terms as follows: 

X,i ,Yi 

C 

Si 

R 
Xi,Yi,Zi 
Xt,Yt,Zt 

= SiR [ ~~ = ~! ] 
Zi - Zt 

observed photo-coordinates 
given camera constant 
unknown scaling factor 
unknown 3x3 orthogonal rotation matrix 
unknown object-coordinates 
unknown coordinates of the perspective 
centre, given in object space 
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Any distortion and the coordinates of the principle point are neglected here, 
because they have no influence on items to be demonstrated. In equation (1) 
no special parameterization for the rotation matrix R is assumed. Any kind of 
orthogonal 3x3 matrix is allowed. But the lateron chosen parameterization will 
be of special interest in this paper. 
Equation (1) is a nonlinear function, which describes the transformation 
from points in object space into the image space. The usual way to find the 
unknown parameters of the functional model (1), is to use a least squares 
adjustment. Going that way, one has to linearize (1) with respect to the pa­
rameters of the model. To come to the derivatives the following substitutions 
are made. 

[n = R [ I = I~ ] 

[n=s[~] 

( 2) 

( 3) 

Dividing each side of equation (3) through the third vector element one ob­
tains the classical observation equation for the bundle adjustment. 

( 4) 

The division in (3) eliminates the point-dependent scaling factors. The li­
nearized observation equation can generally be obtained by the following 
parameter substition. 

with 

[ :: ] = A [ ~~ ] = A ! dB [ I = I ~ ] + R [ 

A : [ ox/op 
oy/op 

5x/5q 

5y/oq 
5x/5r ] [ 1 : c/r 
oy/or 0 

o 
1 

dX - dXt ] I dY - dYt 
dZ - dZt 

( 5) 

-p/r ] 
-q/r 

( 6) 

Up to this point there is no difference to any other consideration of the 
linearized equation (5). The difference here is characterized by a special 
parameterization of the rotation parameters. 

For orthogonal matrices the following equation holds true 

aRT: I ( 7) 

in which I denotes the identity matrix and RT the transpose of R. If equation 
(7) is linearized with respect to the rotation parameters, one obtains the 
following result. 
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dRRT + RdRT = 0 ( 8) 

( 9) 

Equation. (9) expresses that the matrix product dRRT gives a skew symmetric 
matrix. In the following this skew symmetric matrix will be denoted Sw. 

dBBT = Sw (10) 

Sw can be composed by the three independent parameters WI, W2, W3. 

[0 W3 -W2 ] Sw = -W3 0 WI (11) 
W2 -WI 0 

The three independent elements are involved in the vector w. 

w = [ WI, W2, W3 ]T (12) 

From equation (10) it follows that any differential rotation matrix dR can 
be expressed as the product of the skew symmetric matrix Sw and the ortho­
gonal rotation matrix R. 

dR = SwR (13) 

It is very important to mention here, that the relation in (13) is indepen­
dent from the parameters chosen to build the rotation matrix R. The relation­
ship of equation (13) is now used to compose the final form of the linearized 
equation. For this (13) is substituted into (5). 

[ dX] = ASw R [ ~ : ~! ] + AR [ ~~ : ~~! ] 
dy Z - Zt dZ - dZt 

(14) 

Using (2) in (14) leads to 

[ 
dx ] [ p ] [ dX - dXt ] = ASw q + AR dY - dYt 
dy r dZ - dZt 

(15) 

The vector v and the matrix Sv will be introduced 

v = [ p, q, r ]T (16) 

s. = [-~ _! -~] (17) 

The following relationship 

Swv = -SvW (18) 
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can easily be prooved by the use of the outer vector product. One obtains 
the final result in the form 

[ :: ] [ Wl ] AR[ 
dX - dXt ] :::: L W2 + dY dYt (19) 

W3 dZ - dZt 

with 

= c/r [ 
pq/r - (r2 +p2 ) /r -: ] (20) L :::: -ASv 

(r2+q2)/r -pq/r 

In the linearized observation equation (19) a formulation is found which is 
very well suited for numerical computations. Note that the parameters which 
describe the rotation matrix are yet not given. In the estimation process 
only the three parameters Wl, W2, W3 are estimated. Now it will be shown how 
they correspond to the rotation matrix. By the way it will also be prooved, 
that through using this kind of estimation in combination with a specific 
parameterization for R no singularities of the rotation parameters exist. 

Setting up the Rotation Matrix 

There exist several ways to parameterize a 3x3 orthogonal matrix (Schut, G.H. 
1958/59; Thompson, E.H. 1959). For the application outlined here a parame­
terization with four algebraic parameters d, a, band c is chosen. 

(21) 

An easy way to produce an orthogonal matrix is to introduce these four parameters 
into two special 4x4 matrices. 

[ 
d a. b 

-; 1 [ ~ 
-a. 

-b -c 1 p :::: -8 d c Q :::: d c -b (22) 
-b -c d -c d 8 
-c b -a. b -8 d 

It can be shown that the matrices P and Q are orthogonal matrices. 

pTp :::: QTQ :::: I (23) 

Building the product of the matrices P and Q one obtains another special 
orthogonal matrix T. 

T :::: PQ :::: (24) 

The submatrix R is also an orthogonal matrix which is of order three. 
The orthogonality can be prooved in the following way. 
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From this it follows 

RrR :: I 

in which R is given by 

R :: 2(ab-cd) 
[ 

d2+a2-b2-c2 

2 (ac+bd) 

2(ac-bd) ] 
2(bc+ad) 

d2-a2-b2+c2 

(25) 

(26) 

(27) 

This form of the rotation matrix (27) is not a new one, it was already given 
in (Schut, G.H. 1958/59; Pope, A. 1970). Both authors agree, that the form 
(27) is the simplest form of any 3x3 orthogonal rotation matrix. 

Fundamental Relationship between the Estimation Parameters w and the Rotation 
Parameters d, 8, b, c 

With equation (27) the rotation parameters d, a, b, e are introduced. The 
relationship between these parameters and the parameters WI, W2, W3 of (12) 
will be formulated. The starting-point of this consideration is equation (13) 

dR :: SwR 

in which now R is a function of the rotation parameters d, a, b, e. 

R :: R (d,a,b,c) (28) 

Next one has to form the partial derivatives of the rotation matrix with 
respect to the rotation parameters 

dR :: BR/Bd Ad + BR/Ba Aa + BR/Bb Ab + BR/Bc AC 

and because of relation (7) RTR :: I it follows 

With the use of (21) 

it follows 

Ad = -( aA8 + bAb + CAe )Id 

(29) 

(32) 

(33) 

A comparison of the coefficients between the elements of the skew symmetric 
matrix Sw of (11) with the related ones of (31) leads to the following 
relationship. 
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(34) 

If one denotes the coefficient matrix in (34) of fA a, fA b, fA c with C, this 
coefficient matrix must be inverted to achieve the final relationship. 

(35) 

with 

[ 
d -c b] C- 1 = 1/2 c d-8 

-b 8 d 
(36) 

A proof for the existence of the inverse of C can be found in (Hinsken, L. 1987). 

The simplicity of the transformation matrix C-l in (35) is the reason 
why this parameterization does not posess any singularities. This is because 
no element of the matrix C-l can become an undefined expression. The adjust­
ment procedure works in the way, that one needs initial values for d, a, band 
c to build up the matrix R. With this initial values a set of w elements is esti­
mated and afterwards the initial values are updated by the formulas (33) and (35). 
This procedure is repeated until the w vector becomes the zero vector. 

Another big advantage of this estimation technique with parameters w is the 
saving of numerical computations. If one would estimate the rotation parameters 
d, a, band c directly, one would have to substitute equation (35) into (19) 
with following result 

[ :; ] = LC-
1 

[ ~] + AR [ ~~ = ~~~ ] 
dZ - dZt 

(37) 

If one compares (19) with (37) it comes out very clearly, that the numerical 
computation of the coefficients in (37) requires more work than those of 
(19). One has to take into account, that equation (37) is point-dependent, 
which means it has to be computed for each point of a photograph, while trans­
formation (35) needs to be computed only once for each photograph within the 
iteration process. This item does not depent on the chosen rotation parameters. 

It is also possible to use this estimation technique in combination with 
classical rotation parameters w, <P , K. In the case of rotation order w, <P, K, 

the transformation matrix C-1 looks like as shown below 

(38) 

From this transformation it can easily be seen, that in case of cos <P = 0 the 
transformation will be undefined. 
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Examples 

Two examples shall demonstrate how the idea of A. Pope to estimate rotation 
parameters can be used in other photogrammetric applications. For this the 
relative orientation of two photographs and the resection of a single photo­
graph are chosen. 

Relative Orientation 

As it was outlined by (Schut, G.H. 1957/58) each mathematical formulation of 
the relative orientation can be reduced to the coplanarity constraint. For 
this the three vectors which build the epipolar plane are put together into 
a 3x3 determinant. 

~~ R [ ~: ] D [ ~:: ] = 0 (39) 

bx ,by, bz 
R 

D 

x',y't C ' 

x",y",c" 

three components of the base vector 
3x3 orthogonal rotation matrix, which transforms 
the three axes of the right photo-coordinatesystem 
parallel to the model system 
3x3 orthogonal rotation matrix, which transforms 
the three axes of the left photo-coordinate system 
parallel to the model system 
photo-coordinates and camera constant of right station 
photo-coordinates and camera constant of left station 

The model-coordinatesystem is defined through by=bz=O which means that the 
x-axes coincides with the baseline. The scale is chosen arbitrarily with bx=1. 

= 0 (40) 

In equation (40) the six rotation parameters of the two rotation matrices R 
and D are the unknown parameters. These parameters will be estimated in the 
way shown in the first part of the paper. The first step to do is to linearize 
equation (40) with respect to the rotation parameters, this leads to: 

1 g dR [ ~: ] dD [ ~:: ] 
= 0 (41) 

In (41) the differential rotation matrices are substituted by the relation (13). 

1 
o 
o 

Sw"D y" 
[

x" ] 
Clf 

= 0 (42) 
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1 
Sw' [ 

X' 
J Sw" [ 

X" 

J 
0 y' y" = 0 (43) 
0 z ' Z" 

with 

[ ~: ] [ x' ] [ X" ] [ x" ] = R y' y" = D y" 
c' Z" c" 

With the use of (17) the parameter exchange is done 

= 0 (44) 

In (44) both skew symmetric matrices have the form 

[ 

0 Z' -y' ] 
Sv' = -Z' 0 X' ; 

y' -X' 0 [ 

0 Z" -Y" ] 
Sv" = _ZIt 0 X" 

y" -X" 0 
(45) 

If now the determinant (44) is computed and the coefficients are ordered as 
usual one finally obtains the linearized coefficients of the parameters 
Wl', •••• ,W3", which are put together in the coefficient matrix L. 

L = [ Z"Z'+Y"y', -X"Y', -X"Z', -(Z"Z'+Y"Y'), Y"X', z"x' ](46) 

As can be seen easily there is a linear dependency between the first and 
fourth element of L, which was expected, because the problem of relative 
orientation has only five degrees of freedom. After the elimination of the 
linear dependency one reaches a coefficient matrix, which is well suited for 
numerical computation. 

L = [ Z"Z' +Y"Y', -X"Y', _X"Z', Y"X', Z"X' (47) 

If in this context the form (27) is chosen for the parameterization of the 
rotation matrices, one obtains an algorithm which is free of singularities, be­
caU'Se transformation (35) would then be used again. Due to the fact, that 
the rotation parameters d, a, b, and c are involved in (27) only quadratically 
the estimation process converges very rapidly, even with very poor initial 
values for d, a, b, c. In practice the identity matrix is usually good enough 
as starting point for the rotation matrix, even in close range applications 
with highly convergent exposure station configurations. 

Resection of a Single Photograph 

As the mathematical formulation of the resection of a photograph, the colli­
nearity equation (1) is usually used. Here a modified version of this equation 
will be introduced, which leads to some advantages in comparison with the 
form given in (1) 
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[
Xi ] Yi 
C [

Xi - Xt ] 
:: siR Yi - Yt 

Zi - Zt 

Equation (1) can be splitted up in the following way 

lis [ ~ ] = R [ I ] -R [ I: ] 

lis [ ~ ] = R [ i ] -[ ~: ] 

(48) 

(49) 

In equation (48) the vector [Xt,Yt,Zt]T represents the coordinates of the 
perspective centre given in object space. In equation (49) the vector [Xt,yt,Zt]T 
represents the related vector expressed in the image space. The unknown 
parameters in (49) are the three rotation parameters in R and the three 
shifting parameters Xt, yt, zt. The reason for the form (49) will become 
clear later, when talking about initial values for the six parameters. First 
one has to form the partial derivatives of the image-coordinates with respect 
to the unknown parameters. 

(50) 

With this substitution the observation equation can be rewritten 

with 

[ : J. = c [ :~: ] 

[ :: ] = A [ in = A I dR [n [i~:] I 
A :: [ 8x/8p 

8y/8p 

8x/8q 

8y/8q 
8x/8r ] [ 1 :: c/r 
8y/8r 0 

o 
1 

-p/r ] 
-q/r 

With the relationship (13), equation (52) becomes the form 

[ :: ] = ASw R [ i ] -A [ i~: ] 
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(52) 

(53) 

(54) 



Using equation (50), this leads to 

[ 
dx ] = ASw [ ~ ! ~! ] _ A [ ~~! ] 
dy r + Zt dzt 

Introducing the vector v, with 

v = [ P+Xt, q+yt, r+Zt ]T 

gives 

[ :; ] = -ASv [ :~ ] - A [ ~~! ] 
W3 dzt 

In (57) Sv has the following form 

Sv = -(r+zt) 0 P+Xt 
[ 

0 r+zt -(q+Yt)] 

q+yt -(P+Xt) 0 

(55) 

(56) 

(57) 

(58) 

The linearized observation equation for the resection of a single photograph 
is finally given by the following equation 

[ 
dX] = L [ :~ ] _ A [ ~~! ] 
dy W3 dzt 

with 

L = -ASv 

L = -c/r [ 
-(q+yt)p/r 

-(r+zt)-(q+yt)q/r 

r+zt+(p+Xt)p/r 

(p+xt)q/r 

-(q+yt) ] 

P+Xt 

(59) 

(60) 

If the form (27) is used for the parameterization of the rotation matrix. R, 
then transformation (35) must also be used during the estimation process, which 
leads to a singularity free algorithm here too. 

Last but not least it can be shown that the parameterization of the shif­
ting vector in (49) has some advantages. A temporarily shift of the origin 
of the object-coordinatsystem to point j brings equation (49) into the fol­
lowing form 

(61) 
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From equation (61) it becomes clear, that one can obtain very good initial 
values for the shifting vector, because the image coordinates and the 
camera constant are known. Also one needs to have a good approximation of 
the scaling factor Sj. This may be obtained by a mean value of all scaling 
factors, or a priori known from the distance between exposure station and object. 
With this initial values one can start the iteration process in which it is 
advisable to fix the shifting parameters during the first iterations. The 
identity matrix is usually a good approximation for the rotation matrix, from 
where the iteration process can be started. The algorithm behaves very robust 
in the case of very poor approximation values, because of the form of the co­
efficient matrices L and A in (59). The most important advantages of the 
algorithm are - it is free of singularities - it has a large ratio of convergence 
- it converges rapidly. The algorithm is also very fast, because the numerical 
effort is not very high. The computation of L and A requires only a few multi­
plications. 

Conclusions 

The algorithms presented here are realized in computer programs. The appli­
cation of the new developed software using this estimation technique ranges 
from relative orientation over absolute orientation and single photo orienta­
tion to the new Combined Adjustment Program named CAP. All programs run on 
Personal Computers effectivly. The implemented software is mainly used for 
close range applications. 
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