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Abstract : 

A conceptual solution for automated 3-D measurements of objects in 
motion is presented by the authors, based on the method of "Shape-from 
Motion", developed in the field of computer vision. For accurate mea­
surements camera calibration, effective image preprocess ,and even­
tually available knowledge of object and motion have to be introduced 
into the process. Some parts of the concept have been realized. 
Therefore, an on-line system for verifiable experiments has been 
developed. 

1. Introduction: 

In the perception of space, motion plays besides stereo and texture 
a very important role in the human visual system /1/. For instance, 
suppose the observer moves relative to a scene with objects at ,diffe­
rent distances, then each object appears as shifted by different 
amounts (motion parallax), depending on the distance observer-object. 

From a sequence of time-ordered images, taken by a single camera, 
velocity vectors of prominent feature points can be estimated and then 
related to the motLon and structure of objects in space. The motion is 
described, basically, in terms of "optical flow" which is a field of 
2-D displacement vectors per time on the image, these vectors being 
the projection of 3-D velocities of points moving in space. 

Applications for analysis of time-ordered images, also called 
"motion-analysis" or lIimage sequence analysis", cover a broad range of 
fields including computer graphics, industry, medicine, robotics, 
remote sensing etc. with tasks such as /4/: 

target tracking 
3-D shape from motion 
change detection 
behavior studies of objects 

Note that in motion analysis, only relative motion can be recorded. 
In our system, the camera is stationary and the object moves. We 
assume that the frames are close enough together in time and the dis­
placement vectors became small relative to object size. However, one 
of the basic assumption in motion analysis is the rigidity of objects 
and a continuous smooth motion. 

For accurate measurement we have to introduce camera calibration, 
image preprocessing, and knowledge of object and its motion into the 
process. We discuss here a solution, on a conceptual level, for auto­
mated 3-D measurement of objects in motion. Until now, only few 
studies in verifying the motion experiments with accuracy checks have 
been presented /20/, since many of the researchers in computer vision 
are more interested in quantitative scene description and understan­
ding (e.g. autonomous visual navigation of robots) than in qualitative 
3-D reconstruction of objects in motion. Therefore, an 'on-line' 
system for verifiable experiments has been developed. Some early 
results can be demonstrated on real images. 
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2. Processing Flow in Motion Analysis : 

The flow in motion analysis as it is proposed by the authors is 
shown in Fig.l. 
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Fig.l Basic process in motion analysis 

An elect~pnic camera takes a sequence of images of the scene which 
can be processed either directly in on-line frame by frame, or after 
the sequence is taken and stored in a special video memory. 

In the preprocessing step noise reduction, enhancement, segmen­
tation, and feature extraction are the main issues. In the 'Image 
Sequence Analysis' step, the features of consecutive images are 
matched and related to optical flow, form which the relative motion 
parameters and the 3-D shape can be estimated. Preliminary results 
from each consecutive image pair can be used to guide later steps in 
the form of constraints given into the process. 

Camera calibration is essential for accurate measurements. Geometric 
and radiometric calibration results as well have to be considered in 
the 'Motion Estimation' and 'Preprocessing' steps, respectively. 

Finally, motion and shape must be converted into an interpretable 
and understandable form for the user, for instance by techniques of 
artificial intelligence (AI). 

3. Conceptual Solution in Motion Analysis 

3.1 Camera and Preprocessing: 

In motion analysis, solid state video cameras seem to be most suit­
able (e.g. CCD-, MOS-camera). Although their resolution is rather low, 
they are capable of working in 'on-line' together with an image pro­
cessing system. Most of the CCD-sensor systems are designed for 
standard video signals (e.g. the American/Japanese NTSC-standard). The 
NTSC- frame rate is 30 frames/sec. Simple CCD-cameras are not equipped 
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with a shutter and their use in motion analysis is restricted only to 
slow moving objects. Recently, CCD-standard video cameras with high­
speed shutter (up to 1/5600 sec) and "slow-motion" ability are availa­
ble with a resolution of 754 * 488 sensors per chip, which are able to 
freeze objects in high speed motion. 

Row digitized CCD-video images are usually prone to noise due to 
A/D conversion, quantisation, and dark current in the sensor. The 
noise cleaning process, according to radiometric calibration results, 
depends on each CCD-camera type and cannot be given in general /14/. 

In our case, we first subtracted a fixed pattern noise from each 
image obtained by closed lens and stored in the image memory_ By this 
procedure almost all of the visible systematic noise could be removed. 
Then we applied a 3*3 smoothing filter to the image together with a 
gain of 2:1. In both steps hardware functions of the image processing 
system were used. Special averaging techniques by temporal image 
filtering may be used but they are very time consuming /3/. 

However, we are not able to remove all of the noise. Therefore, the 
algorithm in the further motion analysis process should be noise 
robust. 

3.2 Finding Optical Flow: 

The several methods proposed in computer vision to compute optical 
flow fall into two broad classes feature based methods and gradient 
based methods. 

In the feature based method, prominent features are extracted from 
each image and tracked by a matching method from frame to frame. The 
problem here, however, is that only a sparsely set of points can be 
obtained, which are not dense enough to be useful for tasks such as 3-
D interpretation and change detection. 

Gradient techniques rely on the fact that spatial and temporal 
intensity changes are not independent of each other and satisfy the 
:relation IJ, 4,6/: 

with 

- I 
t I V + I V x x y y 

= differentiable image function 
= components of spatial intensity gradient 
= gray value difference between consecutive 

frames at point (x,y) 
= components of velocity vector 

( 1 ) 

The disadvantage here is that the single equation does not allow one 
to determine both velocity components without additional constraints, 
and a linear model such as Eq.(l) is often too simplistic around edges 
or corners /5/. 

Therefore, we propose a two-step approach combining both methods 
16,7/. First, extracting and tracking prominent features and second, 
propagating their velocity estimates to a large number of image points 
along edges based on Eq.(l). 

For feature tracking, corner points are most appropriate since they 
are invariant to rotations. For a corner detector we used the interest­
operator of MORAVEC /8/ t applied independently to each image. 

Point patterns of consecutive images are then matched by relaxation 
method as described by BERNARD,THOMPSON /9/ and RANADE,ROSENFELD /10/. 
This method makes use of the consistency property of disparity which 
relies upon the fact that disparity varies continuously across 
unoccluded surfaces and discontinuously only at occluding edges. It is 
used as a measure of how well a particular match conforms to near-by 
matches. False matches, based on similarity alone, can be avoided, 
which is particularly true in motion analysis where objects can rotate 
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and simple correlation techniques would fail. 
The consistency constraint can even be extended to the optical flow, 

since the optical flow changes continuously from frame to frame due to 
smooth motion. 

3.3 Motion and Structure form Optical Flow: 

If only one object is present in each image, motion and shape esti­
mation from optical flow is trivial. If many objects are present and 
expected, the object candidates must be classified by segmentation 
techniques with the aid of optical flow /11/. Then, for each object 
candidate one can determine its motion parameters and 3-D structure 
from their optical flow region, respectively. 

-.----:::I-~------ X 

ex,y,Zl = Object space 
coordinates of Cl physical 
paint P on the object 
01 time tl 

(X',Y',Z') "Object-space 
cOOfdinoies of the some 

Z point P at time t2 

Fig.2: Basic geometry in 3-D motion estimation 

Any 3-D motion of a rigid body can be decomposed into a rotation and a 
translation /2/. 

R T = (2 ) 

Introducing image coordinates using perspective rotation 

x = F * X/Z y = F * Y/Z ( 3 ) 

and solving for Z yields 

Ft:;X x· !J.Z 
Z = 

(rll X + r12 Y + r13 F) 

( 4) 

Ft:;X y' !J.Z 
= 

y' (r31 X + r32Y + r33 F) - (r21 X + r22 Y + rZ3 F) 
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'" '" Eq.(4) is non-linear in 5 independent unknowns ~x/~y,w,~,K ,i.e the 
translation vector T can only be determined within a scale factor. 
Therefore, we want to find only the unit translation vector : 

T {lIX, ~Y, ~Z} ( 5 ) 

Five points are necessary to solve Eq.(4). Thus the motion estimation 
problem is equivalent to the 'relative-orientation' problem in photo­
grammetry, and in fact Eq.(4) expresses the coplanarity condition. 

The nonlinear motion equation (4) can be solved by any of the 
standard methods for relative orientation, known in analytical photo­
grammetry. All these methods, however, need a good initial guess which 
is very hard to obtain for the initial match in motion analysis. 
Therefore, LONGUET-HIGGINS /12/ and HUANG /2/ proposed a linear algo­
rithm and called it tl8-point solution" because of its 8 uriknowns. This 
algorithm was implemented in our system and successfully tested with 
simulated data. 

As in relative orientation, the solution is indeterminable if the 
moving object points and the origin lie on a 'critical surface' or 
close to it (e.g. cylinder, cone). Hence, tracking a concave object 
could become critical and should be avoided. The object coordinates 
are also indeterminable if T = 0 (pure rotation), but we can observe 
its rotation parameters /2/. 

Finally, the object coordinates can be determined from Eq.(4) and 
(3) within a scale factor. The models ,obtained from consecutive 
images, can then be grouped together and referred to one unique refe­
rence system, for instance by the 'independent model method' of photo­
triangulation. 

3.4 Camera Calibration: 

The calibration of a CCD-camera can be separated into two groups a 
testfield independent part and a testfield dependent part. 

The testfield independent part comprises: 

( i.) 
( ii. ) 

basic sensor check 
radiometric calibration 

This part can be carried out independently from applications and in 
our system, we assume an already radiometric calibrated camera, as 
mentioned in 3.1. 

The testfield dependent part contains determination of: 

( i.) interior orientation parameters 
principal distance F 
principal point xp.yp 
transformation parameter between comparator 
coordinates (u,v) and image coordinates (x~y) 

(ii.) lens distortion parameters 

Due to very good stability in the inner orientation of CCD-cameras 
and a fixed focus throughout our experiments, which was assumed, the 
interior orientation parameters can be regarded as constant and the 
calibration process will be done only at the beginning of each motion 
experiment. 

For the functional calibration model, we choose a modified DLT­
approach. Their basic equations are /13/ : 
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111 X + 112 Y + 113 Z + 114 Ll * X + 114 
U ---------------- = ---------

131 X + 132 Y + 133 Z + 134 L3 * X + 134 

( 6 ) 

121 X + 122 Y + 123 Z + 124 L2 * X + 124 
V --------------- ------

131 X + 132 Y + 133 Z + 134 L3 * X + 134 

In the DLT-approach, these equations have been solved for the 11 
unknowns lij by setting ~4= 1, but then the interior parameters will 
depend on the choice of the reference system. Therefore, FAUGERAS, 
TOSCANI /15/ suggested the constraint" L3/F == 1 which left the orien­
tation parameters invariant to rigid motion of the reference system. 
Under this assumption, we can find a set of observation equation from 
Eq. (6) : 

r = 
(7 ) 

with the condition 

1 (8) 

where Xg == [Li,114,L2,124,131tL X3 == [L3] , and r is the residual error 
vector. Using the method of Lagrange multipliers. differentiating to Xg 
and Xs , and setting the derivatives to zero, yield: 

= (9a) 

or D 

The solution is obtained by taking the eigenvector Xs of 0 correspond­
ing to the smallest eigenvalue, this yields X9 by Eq.(9a) /15/. 

This process has to be iterated until a stable solution is obtained. 
The external and internal orientation parameters can then be recovered 
uniquely from Xg and X3 solutions. 

Taking additional parameters for lens distortion into consideration 
seems to be questionable because of 

( i.) low resolution due to coarse CCD pixel structure 

(ii.) systematic errors in the interior orientation have little effect 
to the determination of small displacement vectors, particularly 
true when only a single camera is used /16/. 

3.5 Knowledge of Scene and Motion and Object Modeling: 

The algorithm in motion analysis are relatively sensitive to image 
noise. Good accuracy depends on considerable over-determination due to 
increasing object points and views. 

A stable solution may be obtained if we make use of some knowledge 
about the object and its expected motion. Therefore, several authors 
proposed stable and unique solutions for objects with planar faces 
/17,18/. Other authors suggest a kind of parallel algorithm, coupling 
computation of optical flow and motion parameters. However, an initial 
guess of object shape or depth is necessary /19/. 
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In our solution, we assume that no.a-priori information either of 
object shape nor motion is given. But while the motion analysis 
proceeds from frame to frame, preliminary results from earlier steps 
can be used to guide the later processing (e.g. the appearance of 
objects in the next frame can be predicted from former motion data), 
and later results can be used to update or correct results from 
earlier steps. Such processing methods are known as "Feedback-Control" 
or "Heterachical-Control" schemes in computer vision /21/. 

Although object or scene modeling is necessary to complete the 
entire process in motion analysis, it will be discussed only very 
briefly, since it is not the goal in our experimental system. 

Therefore, a hierarchical model of object description with increa­
sing level of representational completeness will be given next, as 
suggested by NAGEL /22/. 

( i . ) 

(ii.) 
(iii. ) 

4. Experiments : 

3-D geometric description of a single object 
rigid 3-D point model 
rigid 3-D wire frame model 
rigid 3-D surface model 
rigid 3-D volume model 

3-D configuration of independently movable objects 
3-D configuration of objects surrounded by environ­
ment (foreground, background) 

4.1 The System Configuration 

The basic structure of the system, as it is set up in the labora­
tory, is shown in Fig.3. 

AID 

IMAGE 
PROCESSING 
SYSTEM 
(NEXUS) 

HOST 
COMPUTER 
(NEC-PC) 

motion .. 
shape 

give motion 

COMPARATOR~~~e~t~t~r~u~e~m~o~t~i~o~n _____ ~ 
(software) 

Fig.3: Experimental system for verifiable experiments 
in motion analysis 
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As a CCD-camera, we used a simple low resolution camera, SONY XC-37 
with 384*491 pixel size, for checking the system and early 
experiments. For later experiments a camera with high-speed shutter 
and higher resolution will be used. The camera is connected via a 
real-time AID converter to an image processing system, NEXUS KASHIWAGI 
RESEARCH Corp. with a 4*512*480 8bit frame memory. Images can be 
stored on two optical discs ,NATIONAL DU-15 with 1 Gbyte per disc. The 
system is controlled by a 16bit micro computer,NEC PC 9801vm. 

For verifying 3-D motion a special test-table was designed. The 
test-table is driven by a high precision pulse motor for translation 
and equipped with a micrometer for rotation around one coordinate 
axis: 

maximal range for X- and Y translation = 
maximal angle for rotation = 

230 mm ± 10 pm 
5° 30'.±. 5" 

The test-table is controlled by the host computer. The 
motion parameter, obtained from the image sequence analysis, 
compared with the true motion, grabbed from the test-table, 
comparator. 

4.2 Results 

estimated 
will be 
in the 

The first step in motion analysis is to find an optical flow field 
from consecutive images. Some parts of the suggested concept of find­
ing optical flow have been implemented and tested. First, selecting 
prominent feature points by MORAVEC interest operator and second, 
matching these sets of points be relaxation method. 

The algorithm will be demonstrated on two different image pairs: 

( i.) a pure translation, 
(ii.) a pure rotation, 

shifted by 40 mm (Fig.4a,b) 
rotated by 2~75 (Fig.4c,d) 

As a simple r id body, we chose a 'Rubik's Cube' which was placed on 
the test-table and their images were taken by a CeD-Camera and 
digitized into a 512*480 8bit form. 

The interest operator was applied to a coarse 4 times reduced image 
in order to avoid false corner detection in busy textured regions 
(e.g. reflectance on the dark lines between the squares). The detected 
points were then used to guide the search for corner points in the 
finer steps - 2 times reduced image and original image. This approach 
worked quite well, except in low contrast regions where only few 
points could be detected (see Fig. 5a,b upper right corner of the 
cube) even if an contrast dependent threshold was chosen. Sometimes 
the interest operator responds to non-smooth edges which lead to fails 
corner points (Fig. 5c,d). 

In the second step the feature points of the consecutive images were 
then matched by relaxation method. An initial set of possible matches 
is constructed by pairing each candidate point from image 1 with every 
candidate point from image 2 within some range of maximum detectable 
disparity. Each pair is then labeled by a weight. As initial weight we 
used the normalized cross-correlation value multiplied by 100. These 
initial weights, depending only on similarity, are then iteratively 
updated by the consistency property (see 3.2). After some iteration 
pairs with weights greater then some threshold are then considered as 
matched. In our experiments only 4 iteration were necessary and a 
threshold of 0.001. 

In the pure translation case the matching was of no problem and good 
results were obtained. In the pure rotation case, however, one 
mismatch can be seen near the upper right corner of the cube 
(Fig.4c,d) since the corners are not corresponding points but very 
close to each other. Unreliable matches can be seen on points which 



are no corner points but edge points due to false corner detection. 

Fig.4: Two sequences with detected corner points and its displacement 
vectors; a) translation time tI, b) translation time t2, c) rotation 
time tI, d) rotation time t2. 

5. Summary and Remarks 

A conceptual solution for automated 3-D measurements of objects in 
motion from a sequence of images has been presented by the authors. It 
consists of four parts; (1) estimate a velocity flow field from con­
secutive images, (2) determine the motion parameter and 3-D shape of 
each object moving in space, (3) calibration of the camera, and (4) 
introducing knowledge of object and its motion into the process 
obtained in earlier steps. 

In the current investigation step (1) has been partly realized for 
detecting and matching of prominent feature points. The MORAVEC inte­
rest operator shows some weakness in detecting corner points in low 
contrast regions. A refined interest operator with a more sophisti­
cated gray value model, as proposed by FOERSTNER /23/, is recommended. 
Good results in point pattern matching were obtained by relaxation 
method. 

The motion analysis as proposed in this paper is, however, restric­
ted to rigid body motion only. Motion and 3-D shape analysis from non­
rigid bodies, like animals, human bodies and organs in medicine or 3-D 
deformation measurements in civil engineering require a combination of 
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stereo method (e.g. 
method. 

two cameras instead of one) and shape-from-motion 

One important problem, which is not considered in this paper is, how 
to handle the big amount of image data. Therefore, further studies and 
special technjques are required. 
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