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ABSTRACT 

Conventionally, space resection has been solved by iterative means, although for many years 
photogrammetrists have attempted to find a solution in a closed form. Recent work with the 
projective transformation approach as utilized in the Direct Linear Transformation (DLT) 
formulation has led to a closed solution for a plane object. Tests of this solution are reported 
together with a critical review of other closed solutions to the space resection procedure. 

INTRODUCTION 
What is Space Resection? 

According to Moffitt & Mikhail [1980]: 

The term space resection is the name given to the process in which the spatial 
position and orientation of photograph is determined based on photogrammetric 
measurements of the images of ground control points appearing on the photograph. 

Thus, space resection in photogrammetry is an analogy to the space resection in surveying 
[Masry, 1979]. 

In essence, the space resection mak~s use of image coordinates and heavily weighted or fixed 
object space coordinates to determine the positional and rotational elements of a photograph, or 
of a camera. Following this basic definition, space resection of a single photo can be extended 
to include the interior orientation parameters, or it can be reduced to include positional elements 
only. Therefore, the space resection may have 3 parameters (Xc' Y c, Zc), 6 parameters (Xc' 
Y c, Zc, 00, <p, lC), or more. 

What is a Closed Solution? 

The collinearity equation model provides the most conventional solution. Six parameters could 
be solved for rigorously, when using this model. An extension could be made easily to include 
interior orientation and other parameters. However, this approach requires linearization, 
therefore, the convergence relies on the closeness of the initial approximation to the 'true' 
values. 

Church, based on the image pyramid model, developed the well-known Church method 
[American Society of Photo gramme try, 1980] some 50 years ago. This model is an equivalent 
model to the collinearity equation model with a reduced parameter set. Here, only the 
positional elements are included. However, this model is also non-linear. 

A lot of research effort has been devoted to methods that avoid the requirement for initial 
values. Such approaches are termed closed solution. Rampal [1979] formulated an approach 
based on the image pyramid model and utilized the distance relations, which provide a closed 
form. However, one condition is assumed: the U object plane" is near parallel to the 
image plane. 
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Hadem [1981] generalized Rampal's approach, but with different constraints: either one 
distance between an object point and the perspective center is approximately known, or 
numerical analysis techniques are used. 

In contrast to the 3 parameter and 6 parameter space resections, an 11 parameter space resection 
was developed by Abde1-Aziz & Karara [1971]. This model is well-known as DLT (Direct 
Linear Transformation), including 11 algebraic parameters. Hadem [1981] and Okamoto 
[1981] indicated that these 11 DLT parameters are equivalent to 6 exterior orientation 
parameters, and 5 interior orientation parameters. Independent from these two studies, an 
equivalent physical model for the DLT model, in terms of conventional collinearity parameters 
was illustrated and tested by Shih & Faig [1987]. However, the DLT formulation represents a 
closed form solution for 11 parameters. The object has to have sufficient extension in all three 
dimensions in order to ensure a solution [Faig & Shih, 1986]. Although additional constraints 
can be added to reduce the number of unknown parameters, linearity of the model is lost along 
with these additions. 

THE TWO .. DIMENSIONAL DLT APPROACH 

Based on the relations derived in Shih & Faig [1987], the two-dimensional DLT approach is 
formulated. A 2-D to 2-D perspective transformation is utilized for space resection, then 
transformed from the algebraic space into the physical space. This approach requires a nearly 
plane object. When the three-dimensionality increases, biases from relief displacements will 
negatively influence the solution. Therefore, this approach is a good supplement to the DLT 
approach with respect to the initial value problem. When the object has sufficient depth 
differences, the full DLT aproach should be used. When the object is flat, then the 2-D DLT is 
sufficient. 

The 2-D to 2-D perspective transformation can be written in the following form: 

a1X +b1Y + cl 
x = -----.,----

a3X + b3Y + 1 

In order to make it work, the coordinate component in one dimension of the object space 
should be constant or zero. For simplicity's sake, Z was selected, i.e., all points have Z=O. 
This could be achieved for a flat object simply by applying a similarity transformation with 2 
rotations and 1 translation. An inverse transformation will have to be carried out after the space 
resection. 

In this study, the transformation from an arbitrary object plane to a horizontal plane is not 
included. Only the space resection itself is investigated. However, an APL version routine for 
this transformation is attached in the appendix. 

The Formulation 

From Shih & Faig [1987], the transformation from DLT to physical parameters are: 

1. Station parameters (Xc' Y c' Zc): 
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2. Interior orientation and comparator parameters (xp' yp' f, a, b) 

2 
xp = C (b l1 < b31 + b 12 • b32 + b 13 • b 33) 

2 2 2 2 2 2 
f = C (b 11 + b 12 + b 13 ) - xp 

2 2 2 2..2 2 2 2 2 2 
yp + f fa + b t fa = C (b21 + b22 + b23) 

2 2 
xp' Yp- bf 7a = C (b u < b 21 + b 12 - b22 + b 13 • b2i) 

The last two equations provide a solution for a and b, while C-2 = (b2
31 + b2

32 + b2
33) 

3. Rotational matrix (as a function of 00, <p, K) 

M31 = C .b31; Mll = (xp. M31 - C . bll )/f; 

M32 = C . b32; M12 = (xp .M32 - C. b1~/f; 

M33 = C. b33; M13 = (xp. M33 - C . bl~/f; 

M21 = (y tM31 + b(f/a)M 11 - Cb21) (f/a); 

M22 = (y tM32 + b(f/a)M 12 - Cb22) (f/a); 

M23 = (y tM33 + b(f/a)M 13 - Cb23) (f/a); 

This rotational matrix can be decomposed into the actual rotations, following standard 
procedures. 

Assuming that: a = 1, 
b = 0, and 
f is known, then: 
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Assuming that xp = Yp = 0 and C2 is always nonequal to zero, because of the nature of the 
rotational matrix ~see the formulation in Shih and Faig [1987]), we have: 

b11 - b 3I + b 12 - b32 + b 13 · b 33 =O 

b2I · b 3I + b22 · b32 + b 23 · b33 = 0 

C
2 

(bi! + bi2 + bi3) = r 
2 2 2 2 2 

C (b2! + b22 + b23) ;::: f 

b 11 . b 2I + b12 · b 22 + b 13 · b23 = 0 

From these equations we can solve for b23, b13, b33, and then, the collinearity parameters can 
be obtained by utilizing the DLT -to-Physical routine. 

where 

bI3 = (b u ·b I2 + bI2·b22)1b23 

b33 = (b21 ·b31 + b22·b32)lb23 

Because of the high order equations that were used, the algebraic sign of b13, b23, b33 is not 
defined. The result is that the camera station can be placed on either side of the image. This is 
understandable because a horizontal plane object cannot define a three-dimensional datum. If 
there is a slight deviation from the object plane, then the sign can be defined from the relief 
displacements. Although three points uniquely define a plane, this dual solution problem does 
not happen in an iterative space resection approach with collinearity equations, because the 
initial values have already specified the side. 

The Test 

Several numerical tests were carried out to illustrate this and successful results were achieved. 
APL versions of the test programs are included as Appendix. 

The object coordinates which were used in these tests are 

1 
2 
3 
4 
5 

X 
1 
1 
3 
3 
5 

y 
1 
2 
4 
5 
7 

z 
o 
o 
o 
o 
o 

while the image coordinates were generated with the given orientation parameters. 
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Test 1 

The given parameters are: 

The generated image coordinates are: 

x Y 

1 0.1047951028 -0.6677451877 
2 0.1981304989 -0.3763549021 
3 0.9711205896 0.01903496351 
4 1.056831476 0.306672862 
5 1.85609465 0.7205987849 

Performing the 2-D DLT, i.e., the analytical rectification, the 8 parameters were obtained as: 

(bll, b12, b14, b21,b22, b24,b31, b32) = 

(0.2822043472 0.09433758404 -0.2728083865 -0.08729603439 0.2847389063 
-0.858423905 -0.01996003638 0.009830192291) 

(b13, b23, b33) can be obtained with the proposed fonnulation and given (xo, Yo, Pd) values: 

(-0.0480275476 0.04635381611 -0.09797403118). 

Transforming the 11 DL T parameters into physical parameters, the following values were 
obtained: 

The Perspective Centre 

(XC, y c, Zc) = (2, 2, 10) 

(Xc, Yo, Pd) = (-6.052831834E-13, 1.66487247E-16, 3) 

AffInity: 

(a, b) = (1, -1.119688121E-29) 

The Rotational Elements: 

(00, </>, K) = (0.1, 0.2, 0.3) 

This represents an exact recovery. 

Test 2 

The given parameters are: 

(XC, y C, Zc, 00, </>, K, xo ' Yo, Pd) = (-1 -2 10, 1, 2, 3, 0, 0, 3) 
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The generated image coordinates are: 

1 
2 
3 
4 
5 

x 
1.369732908 
1.452328617 
2.268391639 
2.342757286 
3.186814278 

Y 
0.2229279666 
0.5114946584 
0.9341209602 
1.218577493 
1.66095499 

Perfonning the 2-D DLT, the 8 parameters were obtained as: 

(bll, b12, b14, b21,b22, b24,b31, b32) = 

(0.2881280702 0.09631781474 0.9711205896 -0.08912845663 0.290715832 
0.01903496351 -0.020379015490.01003653686) 

(b13, b23, b33) can be obtained with the proposed formulation and given (xo' Yo, Pd) values: 

(-0.049035690 0.04732682438 -0.1000305942). 

Transforming 11 DLT parameters into physical parameters, the following values were 
obtained: 

The Perspective Centre 

(XC, y c, Zc) = (-1, -2, 10) 

(xo' Yo, Pd) = (-2.56992288E-11, 1.236479095E-16, 3) 

Afftnity: 

(a, b) = (1, -3.530728797E-28) 

The Rotational Elements: 

(co, </>, K) = (0.1, 0.2, 0.3) 

Test 3 

The given parameters are: 

The generated image coordinates are: 

1 
2 
3 
4 
5 

x 
0.8836717793 
0.7944316451 
0.009587324038 

-0.08754975043 
-0.8460891729 

Y 
-0.2744352479 
-0.5739169782 
-0.9649809951 
-1.268240005 
-1.640984055 

Perfonning the 2-D DLT, the 8 parameters were obtained as: 
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(bI3, 

Transforming 11 
obtianed: 

Affinity: 

(a, = 

= 

The Rotational ..... IJI ...... A.lU.' ..... .Il .. ",,,. 

(00, </>, = (-0.1, 

The last test illustrates a problem 

This approach explains to 

= 

8 

physical 

a possible solution. 

collinearity equation's point of view. parameters are ..... .n.. .... AA"-"JI." .. J Intlerp1reted. 

816 

were 

with the physical interpretation through a rectifier, as conventionally textbooks, further 
appreciation of the algebraic fonn of the perspective transfonnation can be achieved. 

This discussion also explains why "calibration" is possible with a "plane" object. There are 8 
algebraic parameters, and there are 8 physical The limitation imposed 
on the physical model not on the model, is case. This 
also explains why an absolutely vertical photograph cannot calibrated for its focal length 
with a flat object. The "calibration" is still there, but has to correspond to a different physical 
meaning. 

The dual solution of this approach can be geometrically .... .n..IJ ........ ju ....... '..... It is caused by the fact that 
the positive direction of vector is not With 
displacement, the dual solution problem can to some extent height 
difference vector and the radial displacement vector. 

Practically, this approach provides a to calculate initial values for a planar object. A 
rigorous calibration could be done as order to using numerical 
analysis techniques, more familiar collinearity equation model may be better suited. 

Recalling that Rampal's approach [Rampal, a an 
object plane which is nearly parallel to the image DLT approach requires 
that the rotation matrix is not equal to identity. This limitation is caused by the current 
algorithm which is to recover When to identity, 
all associated terms zero. 



approach can be coupled for practical applications on flat objects, while the DLT takes care of 
the truly spacial objects. 

Finally, it should be noted that: 

1. the numerical condition and problems associated with critical configurations for the 
developed approach require further research, 

2. the general solution of a closed form space resection with 3 or 6 parameters is still lacking. 
However, keeping in mind that three points uniquely define a plane, 4 control points will 
be the minimum requirement for any general solution without initial values, provided that 
these 4 points are not lying on the same plane. 
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APPENDIX A 

THE 2 .. D DLT APPROACH 

VDLT~TO~PHYSICAL[O]V 
V J~DLT~TO~PHYSICAL BIJ;PC~XP;YP;PD;C;JliJ2;N;W~P~K;AB;A;B 

A 

A TRANSFORM THE 11 DLT PARAMETERS TO EQUIVALENT 
A PHYSICAL PARAMETERS 
A =============================================== 
J~ 3 4 pBIJ,1 
Jl~ 0 -1 lJ 
J2~ 3 -1 tJ 
PC~-J2mJl 
SKIP 1 
, THE PERSPECTIVE CENTER • 
PC 
XP~(+/Jl[1;]xJl[3;])+C~+/Jl[3;]*2 
YP~(+/Jl[2;]xJl[3;])+C 
PD~«(+/Jl[1;]*2)+C)-XP*2)*0.5 
SKIP 1 

f5l 

• XP, YP, PD' 
XP,YP,PD 

AB~-«(+/Jl[l~]xJl[2;)+C)-XPxYP)+PDxPD 
A~(PDxPD)+«(+/Jl[2;]*2)+C)-(YP*2)+(AB*2)x(PD*2» 
A~A*0.5 
B~ABxA 

SKIP 1 
'AFFINITY A, B' 
A,B 

161 
M~ 3 3 pO 
C~C*-0.5 

161 HEADACHE : HOW TO DEFINE THE SIGN ? 
M[3; ]~Jl[3; ]xC 
M[l;]~-«CxJl[l;])-XPxM[3;])+PD 
M[2;]~«YPxM[3;])+(ABxPDxM[l;])-CxJl[2;])+(PD+A) 
SKIP 1 

161 

, THE ROTATION MATRIX' 
M 
, (~M) +. xM' 
(~M)+.xM 

W~P~K~R~ELE M 
(W~P~K~R~ELE-M) IF(+/+/M-ROTATION~l W~PAK)~O.OOl 
SKIP 1 
, THE ROTATION ELEMENTS : W , P , K' 
WAPAK 
J~(,PC),WAPAK,XP,YP,PD,A,B 
V 

VREC~BZ[O]V 

V J~F RECABZ AiJBiJCiJDiJEiJF 161 
161 RECTIFICATION, FROM 8 B TO 11 B 
161=================================== 
J~ 1 1 0 1 1 1 0 1 1 1 0 \A 
JB~(J[I]xJ[9])+J[2]xJ[10] 
JC~(J[5]xJ[9])+J[6]xJ[10] 
JD~(J[1]*2)+J[2]*2 
JE~(J[5]*2)+J[6]*2 
JF~(J[1]xJ[5])+J[2]xJ[6] 
J[1]~('ROOT 1,(JE-JD),-JFxJF)*0.5 
J[ll]~-JC+J[1] 
J[3]~-JF+J[1] 
V 
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v J~P~G DLT~REC NTE;A;X;W;I;N;U;Q;R;P~G~O 
[1] fSl 
[2] fSl RECTIFICATION 
[3J fSl FORM THE DESIGN MATRIX 
[4] ~ ======================== 
[5] J~8pO 
(6] R~«2xlipP~G),1)pO 
[7] P~G~O~P~G 
(8] I~O 

[9] LOOP: 
[10] I~I+l 
[11] A~P~G DLT~A~REC J 
[12] fSl ==================================================== 
[13] W~(P~G DLT~W~R J) 
[14] fSl ================================================ 
[15] N~(~A)+.xA 
[16] U~(~A)+.xW 
[17] X~-(Q~ffiN)+.xU 
[18] R~-(A+.xX)+W 
[19] P~G[;1]~P~G~O[;1]+«2xlipP~G)p 1 O)/,R 
[20] P~G[;2]~P~G~O[;2]+«2xltpP~G)p 0 l)/,R 
[21] J~J+,X 
[22] O~I,J 
[23] ~O IF lE-13~r/IX 
[24] ~LOOP IF I<NTE 

V 

APPENDIXB 

TRANSFORMING A PLANE TO A HORIZONTAL ONE 

VPLANEAFIT[O]v 
v J~PLANEAFIT AiNiR 

[1] A 
(2] A FIT A(X,Y,Z) TO AX + BY + CZ = 1 
[3] fSl ===============-===================== 
[4] N~(pA)[l] 
[5] J~(Npl)mA 
[6] O~' FITTING ERROR' 
[7] O~R~(N,I)p(Npl)-A+.xJ 
[8] O~' R.M.S.E.' 
[9] «+/,RxR)+(N-3»*0.5 
[10] SKIP 1 

V 

VTOAHORIZON[O]V 
V J~TO~HORIZON AiR;C 

[1] A 
[2] A TRANSFORM ANY PLANE TO A HORIZONTAL PLANE 
[3] fSl (PARALLAL TO X-Y PLANE) 
[4] fSl A IS THE COEFFICIENT OF THE PLANE FUNCTION 
[5] fSl WHICH CAN BE OBTAINED FROM THE FUN. PLANEAFIT 
[6] fSl OUTPUT IS AN ORTHONORMAL TRANSFORMATION MATRIX 
[7] fSl FOLLOW THE ALGORITHM GIVEN BY DR. TINGLEY, 1988 
[8] fSl ===================================================== 
(9] J~R~IDENTITY 3 
(10] fSl 
[11] R[1;1]~R[3;3]~A[3]+(+/AxA)*0.5 
[12] R[I;3]~-R[3;1]~(1-R[1;1]*2)*0.5 
[13] A 
[14] J[1;1]~J[2;2]~A[1]+C~(+/A[1 2]*2)*0.5 
[15] J[2;1]~-J[1;2]~A[2]+C 
[16] fSl 
[17] J~(mJ)+.xR+.xJ 

V 
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