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The Advanced Very High Resolution Radiometer (AVHRR) has been 
aboard NOAA series of sun-synchronous polar orbiting satellites 
after NOAA-6. Since the sensor can observe the earth surface 
twice in a day with 3.000 km of the swath width and O.I'C of the 
temperature resolution, sea surface temperature (SST) images 
produced from their thermal infrared data have been conveniently 
used in the oceanography. The A VHRR has three thermal infrared 
channels which are at 3.5-3.9ttm (ch.3), 10.5-11.5ttm (ch.4) and 
11.5-12.5ttm (ch.5), although the last one is only available on 
the satellites with odd numbers. presently on NOAA-7 and NOAA-9. 
The field accuracy of the estimated SST is limited by systematic 
and random errors stemming from improper sensor calibrations, 
contaminations in optical systems, atmospheric effects, air-sea 
interacting effects, etc. 

A number of papers, e.g., Maul and Sidran (1970), 
Prabhakara et ai. (1974), McMillin (1975), Deshamps and 
Phulphin (1980), etc, have been concerned with theoretical 
investigations about the atmospheric effects, which are specific 
to each thermal infrared band. Owing to those approaches, an 
SST estimation algorithm called a multi-channel sea surface 
tempera ture method (MCSST) has been developed. The SST 
estimation functions by the MCSST have a fundamental structure 
as weigh ted sum of the brigh tness tempera tures of the AVHRR. The 
coefficien ts depend upon the a tmospheric contents. 

On the other hand, thermal radiations from the sea surface 
depend upon the skin temperature and the emissivity, which are 
affected by various air-sea interacting effects. Robinson et 
al. (1984) reviewed the present s ta tes of research. Relavant 
error correction algori thms, however, are not known for this 
kinds of disturbances. 

By assuming error occurrence processes to be in a black box, 
experimental approaches have been carried out to compare the 
brightness temperatures with in situ SST and to determine 
coefficients in the MCSST. The derived estimation function can 
be effective not only for errors of atmospheric effects but also 
of all kinds. The data processing procedure forproducing an SST 
estimation map from AVHRR data is very simple, once a reasonable 
estimation function is determined. 

By using 82 ship and buoy SST da ta mos tly in the tropical 
Pacific, Bernstein (1982) got an estimation function with the 
standard error(standard deviation of residues) was O.6'C. The in 
si tu SSTs were claimed to be accura te to ±O .2'C and coincident to 
AVHRR SST within 100km and several days. McClain et al. (1982) 
and Strong et ai. (1984) reported other valida tion tes ts by 
using another in situ SST data mostly in Southern Hemisphere. In 
the results of Strong, the standard error by using the drifting 
buoy data of coincidence within 24h and 50km was 0.68'C. For the 
case of the daytime data only. the standard error reduced to 



o .49~. 
Resulting estimation functions partially depend upon the 

characteristics of the test data set, which are affected by 
accuracy of measurements. regional and temporal factors, etc. 
More case studies are necessary to evaluate and improve the 
MCSST, but only a limited number of papers have appeared at 
present. The main reason comes from difficulties to collect 
matching-up in situ SST data of high accuracy. good coincidence, 
a rather wide and even data distribution to gual~antee the 
quali ty of analyses. 

This paper is concerned with another case study of the MeSST 
by using in situ SST provided by fixed buoys in Mutsu bay of 
northern Japan. The accuracy and the coincidence of the data 
set, however, is excellent as stated in the later. In what 
follows, outlines of the buoy system and the data set assembling 
procedures are described. Both the single variate and the double 
varia te regression analyses were applied to three grouped da ta 
sets, i.e., the total data, the daytime data, the nighttime 
data. Furthermore, estimation functions of IvlcClain et ai. 
(1982) and Strong et at. (1984) were applied to our daytime 
data set. Residues via those estimation functions have small 
biases, but theil" standard errors were just comparable to that 
of our regression function. 

2. Da ta used in the analyses 
( a ) . Ins i t u SST data 

As shown in Fig. 1, Mutsu bay is situated in the northern end 
of Honshuu, Japan and has a size of about 50km x 40km with a 
ra ther fla t floor. Its dee pes t part is a t the bay mou th and is 
about 50m bellow the sea surface. The bay has been utilized as 
cultivation fields of scallop, of which annual product is around 
80 million dollars. Composed of six independent fixed buoys, the 
Mutsu bay automatic monitoring buoy system has been operating 
for these 6 years. At each buoy. items listed in Tab. 1 are 
measured every hour on the houl" and the da ta have been stored 
in a data base. P t resistance detectors are implemented in the 
temperature measurement devices, which is claimed to be accurate 
to ±0.1 ~ in the manual. The tempera ture da ta a t 1m depth were 
used as in situ SST data. 

(b). AVHRR SST data 
The A VHRR da ta were supplied by Ins tilu te of Indus trial 

Science, Tokyo University. At the data receiving station thelAe, 
almos t AVHRR da ta of its overpa th have been stored for these 
five years. Unfortunately, ch. 3 data were suffel"ed from severe 
noises caused by electrical troubles in the sensors, and we were 
directed to use only ch. 4 and ch. 5 data in the subsequent 
analyses. 

The brightness temperatures in the match-up data set were 
required that pixels in the vicinity of each buoy position w.et"e 
cloud-fl"ee, noise-free and in smallet~ horizontal temperature 
gradients. The last one is to keep the sensitivity of the 
temperature fluctuation minimum due to slight misidentifications 
of the buoy positions. 

By roughly visual checks, 22 images in which clouds were free 
aound the bay (including partially free) were selected out of 
the accumulated AVHRH data of NOAA-7 and NOAA-9. The list is 
shown in Tab. 2. Each image was geometrical!:y corrected by the 
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oblique conformal secant conic projection. Then buoy positions 
were iden ti fied according to the ir la ti tude and longi tude 
coordinates. Since Mutsu bay has a strongly closed geographical 
structure, a num bel" of capes around were served as dis tincti ve 
ground control points in the projections. Errors in the 
identification were evaluated within one pixel resolution which 
is abou t 1.lkmx 1.lkm a t the nadir and 1.5kmx4.0km a t the swa th 
edge. 

Both a visual inspection and an uniformity check were applied 
to pixels in the vicinity of each identified buoy position. In 
the visual inspection, images of ch. 2 and ch. 4 were displayed 
on a co lor CRT de vice ( 512 x 512 pix e 1 s . 1 byte for 1 pix e I 0 f 
each channel) in an enlarged and high gain mode, and carefully 
observed around each buoy if pixels were contaminated by clouds 
or noises. In the uniformity check, the standard deviations of 
the brigh tness tempera tures in the 3x3 pixels centered a teach 
buoy posi tion were calcula ted bo th for ch. 4 and ch. 5 da tao 
When either of them were larger than 0 .2'C, the buoy da ta were 
rejected from the test data set. The level of 0.2 'C was 
determined intuitively as within two times of the AVHRR 
temperature resolution, but worked effectively 

Finally total number of 103 AVHRR SSTs at the buoys were 
screened out as the refined data. Among them, 85 cases were in 
the daytime and 18 cases in the nighttime. In the derivation of 
the brigh tness tempera turs, we followed the algorithms descri bed 
in Lauritson et al. (1979) for NOAA-7 data and in Brown et 
ale (1985) for NOAA-9 data. 

The in situ SST data matching-up with those AVHRR SSTs were 
specified to be of the nearest time SST at each corresponding 
buoy, Since the measurement interval of the buoy data is one 
hour, the temporal coincidence in each match-up was within 30 
minutes. The spatial coincidence is within one pixel resolution 
as stated previously. 

Tab. 3 shows the statistics of the final match-up data sets 
in the three grouped cases. F or all i terns of the mean, the 
standard devia tion, the maximal and the minimal tempera tures, in 
situ SST (y) has the largest values. Then the brightness 
temperature of ch. 4 (X4) has the next, and that of ch. 5 (xs) 
is the smallest. Those might mainly come from the atmospheric 
attenuations of the thermal radiations. 

Samples in the daytime data set diverge evenly in a wide 
range and form an appropl"iate data set for the test. The same 
situation is for the total data set, in which the daytime data 
are dominant in number. On the other hand, the nighttime data 
set has a specific data distribution in a nan"'ow range, and the 
results should be understood just for references because of the 
particular data distdbution. 

3. Regression analyses 
The regression analyses were 

sets both in the single variate 
app lied to the 

and the double 
match-up data 

variates modes. 

(a). Results of single variate regression analyses 
The results are shown in Tab. 4. The scatter diagram in the 

result of ch. 4 is shown in Fig. 2. Let us look into the results 
of the total data set first. For both ch. 4 and ch. 5 cases, 
correlation coefficients alAe sufficiently high, but their 
slopes, intercepts, and residues appeared slightly different 
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owing to the different sensitivities to atmospheric effects. The 
standard error (standard deviation of the residues) in ch. 5 
is abou t 0.25'C larger than tha t of ch. 4. 

Large res id ues appeared to samples in the A VHRR da ta at 15: 17 
on 1984. 8. 10. when the buoy SSTs were 26-28'C, but their 
brightness temperatures were 19"-'20'C. According to the record of 
the Aomori me teorological s ta tion, the air- tempera ture, the 
relative humidity, the visibility. the wind velocity at that 
time were 29 .9'C. 65%, 10km and 3.8m/s, respecti vely. Tha tis, 
the weather around the bay was with high-temperature. high
humidity and weak-wind. In Japan, this kind of weather is very 
typical in summer. The large differences between in situ SST and 
brigh tness tempera tures caused by a strong a tmospheric effects 
were too large to be compensa ted by the single varia te 
regression functions. 

The results for the daytime data set were almost similar to 
those of the total data set. On the other hand, results of the 
nighttime data set were different from these two cases. This 
might come from its narrow data distribution and more match-up 
samples were needed to assert its generality. 

(b). Results of double variates regression analyses. 
Results are shown in Tab. 5. The standard errors were 

improved in comparison with the cases of the single variate 
analyses. The scatter diagram for the total data set is shown in 
Fig. 3. The samples in summer having large residues in the 
single varia te analyses reduced remarkablY. The di fferent 
sensi ti vi ties of ch. 4 and ch. 5 to the a tmospheric effects 
contributed for the better SST estimations. This should be the 
major advantage of the MCSST. 

In the result of the total data set, however, other samples 
became prominent as having large residues. Those were in the 
AVHRR data at 3:09 on 1986.10.28. when the buoy SSTs and the 
brightness temperatures were 16.3"'18.3'C and 12.1-13.5'C, 
respectively. According to the meteorological record at Aomori, 
the air-temperature, the relative humidity, the visibility and 
the wind velocity were recorded to be 5.2'C, 79%, 20km and 
2 .7m/ s, respe cti ve ly. The sky was very clear and the sea surface 
was calm. That is, the bay area was under a strong radiative 
cooling condition. There might ex t large differences between 
the skin temperature and the 1m depth temperature of buoys. The 
large residues might be due to the air-sea interacting effects. 

Res id ues were kep t small in the resul ts of the nigh ttime da ta 
set because of its specific data distribution such that samples 
occupied lower ends of the distribution and the regression 
function pierced them. 

(c). Residues in other estimation functions 
The available brightness temperatures in our data sets were 

restricted to ch. 4 and ch. 5 data due to the noise problem. 
But as long as the daytime SST estimation, the situation is the 
same in the MCSST because ch. 3 data are disturbed by the solar 
radiation reflecting at sea surfaces. How are the residues when 
the SST estimation functions by other authors are applied to our 
daytime data set ? In McClain et ala (1982) and Strong et 
ale (1984), their SST estimation functions were described 
precisely. We calculated the statistics of residues due to the 
estimation functions. The results are shown in Tab. 6 including 



our result. 
There exist some negative biases (mean of residues) in the 

results by Strong's and McClain's, and their standard errors are 
just a little higher than that of ours. Our data set and their 
data sets (both McClain and Strong used in situ SST in the data 
base of the Na tional Meteorological Center) were collected in 
different regions and by different methods. But those three 
results were consistent although the MCSST is a macroscopic 
method using the remotely sensed data from space. This should be 
a very interesting fact to demonstrate the generality of the 
MCSST. 

4. Conclusion 
By regression analyses, the SST estimation functions by using 

ch. 4 and ch. 5 brigh tness tempera tures of the A VHRR da ta were 
derived. The fixed buoy in Mutsu bay were used as in situ SSTs 
in the match-up data set. The total number of 103 match-up data 
were carefully screened ou t as cloud - free, noise - free and 
spatially stable samples. Their temporal and spatial 
coincidences are within 30 minutes and one pixel resolution. In 
the results of the single variate regression, standard errors 
for the total data set and the daytime data set were 1.2""15'(, 
in which large residues appeared to samples in summer under 
high-humidity conditions. In the double variate regression, the 
standard errors reduced to 0.B-1.0t. In this case, large 
residues existed in samples under a strong radiative cooling 
condi tion. 

By us ing our day time da ta, errors were eval ua ted in the 
es tima tion functions of McClain and Strong. Then they were 
almos t comparable to ours even though the es tima tion function 
were derived from the independent data sets. 

The accumulation of the match-up data is still under way. 
Another extended results will be expected to appear in near 
future. 
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Figure 1 C~graphical location of tlutsu bay and 
positions of the fixed buoys. 
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Figure 2 Results of the single variate regression 
analysis for the three grouped data sets by 
using the ch. 4 brightness temperature. 

Figure 3 
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Results of the double variate regression 
analyses by using the brightness temperatures 
of ch. 4 (x 4) and ch. 5 (x 5 ) . 
The estimated SST function is derived as 

JT = 1. 11 7 x 4 + 2. 71 ( x 4 - X :; ) - 2. 248. 
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Table 1 : Measurement items and 
depths of the buoys. 

No. 
1 

2 

3 

4 

5 
6 

Water Temp. Salinity Others 
1m. 15m,3Om,45m Im,15m.30m,45m Flow=15m,45m 
Im,15m,30m,50m 
1m, 15m, 30m 
Im,15m.30m,44m Im,15m,30m,44m 00=44m 
1m,15m,36m 
1m, 15m, 3Om,46m 1m,15m,3Om,46m 00= 30m, 46m 

Wind 
A1r Temp. 

Table 2 : List of Used NOAA Data. 

NOAA-7 NOAA- 9 

Date Time Date Time 
1984. 1.29 14 : 52 1985. 4. 19 13 : 09 
1984. 4.24 14 : 02 1985. 4.29 13 : 03 
1984. 5.19 13 : 56 1985. 5.12 14 : 06 
1984. 5.25 14 : 22 1985.10.03 13 : 40 
1984. 7.20 14 : 35 1985.10.28 2 : 51 
1984. 8. 2 3 : 35 1986. 4.30 13 : 21 
1984. 8. 6 14 : 26 1986. 6.12 14 : 03 
1984. 8.10 15 : 17 1986. 6. 13 13 : 53 
1984.10.15 15 : 06 1986. 9.23 2 : 42 
1984.11. 9 14 : 58 1986.10.28 3 : 09 
1984.11.16 15 : 12 1986.11. Z 13 : 39 

Time is meant the starting time of data 
reception in JSI at Institute of 
Industrial Science. Univ. of Tokyo. 

VII-310 



Table 3 : Statistics of match-up data used in the regression analysis. 

Data Set # of y (OC) x 4 (·C) X 5 ('"C) 

Spec if ication data 11 (J max. min. 11 (J max. min. 11 (J max. min. 

Daytime Data Set 81 14.3 6.24 28.0 3. 7 12.6 5.09 21. 2 2. 1 11. 7 4.95 19.1 1.0 
Nighttime Data Set 73 20. 1 2.97 25.2 16.3 16.9 2.81 20.6 12. 7 16.1 2.63 19.2 12.2 
Iota 1 Data Set 154 15.4 6.20 28.0 3. 7 13.3 5.04 21. 2 2.1 12.4 4.91 19.2 1.0 

11: mean. (J: standard deviation. y: buoy SST, X 4: ch. 4 brightness temp .• 
x 5: ch. 5 brightness temp. All temperatures are described in ·C. 

Table 4 Results of the single variate regression analysis 
by using the ch. 4 and ch. 5 brightness temperatures. 

Data Set # of 
Regression Function 

Core. Residue (OC) 

data Coeff. (J max. min. 

Daytime y= 1.201 x 4 - 0.797 0.981 1.20 3.37 -1.86 
85 -------------------------

Data Set y = 1. 224 x 6 + O. 062 0.970 1.51 4.56 -2. 15 
Nighttime y = 1. 016 x 4 + 2. 922 0.959 0.82 1.51 -0.93 

18 -------------------------
Data Set y = 1. 080 x {; + 2. 790 0.953 0.87 1. 76 -1. 12 
Total y= 1. 206x 4 - 0.759 0.982 1.18 3.23 -1.97 

103 -------------------------
Data Set y= 1.228x6 + 0.082 0.973 1.43 4.45 -2.24 

(J: standard deviation, y: estimated SST f 
X 4: ch. 4 brightness temp., x 5: ch. 5 brightness temp. 
All temperatures are described in OCt 

Table 5 : Results of the double variate regression analysis by using the ch. 4 and 
ch. 5 brightness temperatures. 

Data Set # of 
Regression Function 

Core. Residue (etC) 

Specification data Coeff. (J 

Daytime Data Set 85 y= 1.117 x ,+2. 71( x ,- x ,;)-2.248 0.991 0.83 

Nighttime Data Set 18 y= 0.997 x 4+0. 27( x ,- X I) )+2.990 0.956 0.82 

Total Data Set 103 y= 1. 146 x .1+2. 10( X ,- x I) )-1. 892 0.987 0.98 

(]: standard deviation. y: estimated SST. x .I: ch. 4 brightness temp .• 
x 5: ch. 5 brightness temp. All temperatures are described in etC. 

max. 

3.51 

1. 73 

1. 52 

Table 6 : Statistics of residues provided by various SST estimation functions 
by using the dayti~ data set in Mutsu bay. 

SST Estimation Functions 

Yokoyama et. al. (this paper):y = 1. 117x4 + 2.71(x, - xs) ~ 2.248 

t1cClain et. a1. (1982) :y = 1. 035x, + 3.05(X4 - xs) - 1. 215 

Strong etc a1. (1984) :y = 1. 035x, + 2. 58(X4 - xs) - 0.604 

(]: standard deviation. y: estimated SST, x 4: ch. 4 brightness temp .• 
x 5: ch. 5 brightness temp. All temperatures are described in °e. 

1 1 

Bias 

0.000 
-0.319 
-0.491 

min. 

-1.67 

-1. 47 

-0.99 

(J 

0.827 
0.910 
0.937 


