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Abstract: The effect of spatial transformations on the accuracy 
of superv;ised classification was investigated. The objective 
was to use the proposed spatial transformations, the residual 
analysis and the prInciple component analysis, to yield trans
formed training statistics and then to investigate whether the 
performance of supervised classification would be improved by 
these transformed training statistics. 

The nine-band airborne multispectral scanner data were classi
fied by the maximum likelihood classifier based on untransformed 
(biased) and transformed (unbiased) training statistics. The 
classification results indicated that the incorporation of spa
tial transformation for defining tra~ning statistics resulted in 
better classification accuracy than the conventional supervised 
approach which was based on biased training statistics. Improved 
classification resulted from the reduced spatial correlation and 
the change in the covariance matrix. 

1 INTRODUCTION 

Spatial correlation bet1veen pixels exists in remote sensed data 
(Basu and Odell, 1974; Craig & Labovitz, 1980; Tubbs, 1978-1980), 
particularly in high spatial resolution aircraft scanner data ( 
Mobasseri at aI, 1978). The spatial correlation functions ap
proximately foJ_101v a decaying exponential which means that the 
adjacent pixel correlation is high at a low distance lag and will 
decrease to zero at a high distance lag. 

The sources of spatial correlation are due to the physical pro
perties of the sensor (Kalayeh, 1982) and the target (Tubbs, 1979 
). Spatial correlation between training pixels affects the esti
mation of population mean vectors and covariance matrices and 
then affects the classification performance of likelihood ratio 
classifiers which require a mean vector and a covariance matrix( 
Campbell, 1981; Basu & Odell, 1974; Tubbs & Coberly, 1978). 
Therefore, classification results are suboptimal, not optimal. 

To remove or adjust for this effect, spatial transformations 
are proposed to elimina~e the errors caused by spatial correla
tion. The objectives were to investigate the effects of spatial 
transformations on likelihood ratio classifiers and to investi
gate whether the classification performance can be improved. 

2 MATERIAL AND STUDY AREA 

A high resolution nine-band airborne MSS data set, which was op
erated at an altitude approximately 4572 meters (15,000 feet) 
above sea level and collected on October 2, 1984, was chosen for 
this investigation. The study area is located in Chi-Tou Exper
imental forest of The National Taiwan University, Taiwan, 
Republic of China. The scanner has a 2.5 milliradian instan
taneous-field-of-view (IFOV). The chosen data represents the 
forested area. The ground cover types include forest species 
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such as Taiwania cryptomerioides, Phyllostachys THIda, Cunnighamia 
lanceolata, Chamaecyparis formosensis, and large areas of Crypto
meria japonica. 

The test area with size 
selected for this study-
include: 

150x150 each as shown in Figures 1 was 
Forest cover types in this test area 

C1) Bamboo (Phyllostachys nuda), 
(2) Peacock pine (Cryptollleria japonica). 

Where Cryptomeria japonica consists of two different classes with 
stand volume 330+20 cubic meter/ha and 200+70 cubic meter/haG 
In following discussions, these two stand volume classes are 
simply referred to Cryptomeria-l and Cryptomeria-2. 

Figure 1. Band 8 brightness map of the experimental 
data (150 rows x 150 columns) from Chi-Tou 
test area 1. 

3 RESEARCH METHODS 

Supervised approach is utilized much of the time for defining 
training statistics in remote sensing applications. However, 
from previous work this approach is the most ineffective tech
nique (Fleming & Hoffer, 1977) because spatial correlation 
between adjacent pixels may lead to biased estimates of para
meters and degrade the classification performance. This study 
was to investigate the effects of untransformed and proposed ( 
transformed) supervised approaches. Figure 2 is an analytic 
flowchart of these two approaches. 

3.1 Untransformed (Biased) Training Statistics 
in Supervised Classification 

Supervised classification consists of a training stage and a 
~lassification stage. In the training stage, a~out 1% of the 
entire image was selected as training classes based on a con
tiguous block selection. The selected training classes had 
biased estimates for the parameters because of spatial correla-
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tion an~ then allowed for examining the effect of biased training 
statistics on supervised classification. 

3.2 Transformed (Unbiased) Training Statistics 
in Supervised Classification 

Two proposed spatial transformations, the residual analysis and 
the principal component analysis, were used to yield transformed 
training statistics for supervised classification. The objective 
was to investigate whether these transformed training statistics 
could improve the classification peiformance and if so how much 
improvement could be obtained. 

The whole process of yielding transformed statistics consisted 
of three steps: the extraction of spatial correlation, the gener
ation of spatially uncorrelated training data, and the synthesis 
of spati~lly uncorrelated training data. 

3.2.1 Extraction of Spatial Correlation 

A two-dimensional causal model represented by partial differ
ential equations as shown in equation 1 and Figure 3 was uti
lized to extract horizontal and vertical spatial correlations 
for each training class under each band. The reason is that 
this model can fit the image, with a nonseparable, isotropic 
covariance model, better than other common covariance models 
such as the separable covariance model (Jain, 1977). 

where r
h 

and I~ denote horizontal and vertical correlations. 
V 

I Synthetic Images I 
I I Training stage: 

Training Class Selection I 
I 

Untransformed Transformed 

Training Classes Training Classes 

Biased Transformed 
Training Statistics Training Statistics 

Classif'ication Stage: 
Classification, 
Result Display, 
and EvaJuation. 

Figure 2. An analytic flo\"chart of using biased and 
transformed training statistics f'or supervised 
classification in forest applications. 
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F'igure 3. Rn.nc1orn field models by partial diff'ercntial 
equations: a causal model representation. 

3.2.2 Generation of Spatially Uncorrelated Training Data 

Trainin classes with spatial correlations were linearly trans
formed based on the following two proposed spatial transformations. 

3.2.2.1 Residual Analysis 

The training class used for defining training statistics is as
sumed to be homogeneous. It is commonly described by a spatially 
stationary mean and spatially stationary covariance, and modeled 
by 

F(i,j)=M+W(i,j) 

where M is the mean of a class, and W(i,j) is the white noise 
with 

E W(i,j) =0 

E W( i ,k) • W( j , 1) = [ : 
i=j 

(3) 

and V is the variance. Since the training data obtained from the 
supervised approach are spatially dependent, to yield the spatial
ly uncorrelated training data for a training class, the residual 
analysis as in equation (5) was implemented once the vertical and 
horizontal spatial correlations were extracted. 

W~(i,j)=G(i,j)-r .G(i-1,j)-rh oG(i,j-1) 
v 

where G(i,j)=F(i,j)-M. 
spatially uncorrelated, 
white noise W(i,j). 

+r".r .G(i-1,j-1) 
11 v 

The white noiseW'(i,j), assumed to be 
was then used to replace the original 

(5 ) 

'3.2.2.2 Principal Component Analysis Based on a WT) Dirnensional 
Markov Model 

The white noise W'(i,j) produced by the residual a ysis was 
assumed to be uncorrelated. However, statistical t was still 
somewhat spatially correlated (Jain, 1976). This kind of 
residual correlation can be eliminated by using the principal 
component transformation which will yield spatially uncorrelated 
l~hite noise W"(i,j). 
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If a training class is represented by a two-dimensional sepa
rable covariance model with zero mean, the covariance matrix can 
be expressed in direct product. 

S =Sh .0S x v 
(6 ) 

If the covariance function is separable, then the transform 
matrix T is also separable and can be written by (Pratt, 1978) 

'\-vhere rJ'hand Tvare the transform mFltrices of' the horizontal and 
vertical directions respectively. They satisfy the following 
relations given in equations (8) and (9). 

ThoSh=DhoTh 

T . S =D . T 
v v v v 

(8) 

(9 ) 

As a result, the principal component transform of a training 
claSS may be given by 

G=ThoF.Tv · 

It is known that the 2-D separable covariance model can be 
obtained using 1-D separate transformations in the horizontal 
and vertical directions. The elements of the transform matrix 
for each direction are defined by the sine transform. 

. ik7r 
slnN+T 

. j~ 7r 
sln~ 

( 1 1 ) 

The principal component transform of a 2-D separable covariance 
model is then given by the 2-D sine transform. 

G(i,j)=N
2

1 f 
+ k=1 

N (1 /J) . iklf . J' /J7r ). F <,~ .slnC---__ ).slnc ~ ) 
.e=1 N+1 N+1 

This 2-D sine transForm is also :r'elated to the FFT (Jain, 1976; 
Cheng, 1987). To enhance computationa.l efficiency, the two
dimensional sine transfo:rmation can. be irnplementecl via the two
dimensional F'FT'. 

3.2.3 Synthesis of Spatially Uncorrelated Training Data 

After the spatial transformations, the white noises W'(i,j) and 
W"(i,j), obt.ained from the residual analysis and tIle principal 
component analysis, respectively, can be used to replace the 
original training class because they are spatially uncorrelated. 
However, the means f'or both white noises are zero. Thus, trans
lation to the origin iEi needed. Herembeck (1979) showed that 
this t ran Ei 1 a t ion 11 a s n () (~rr e c ton the [l n a 1 y Ei is. 11 0 t 11 w 11 i ten 0 i Ei e 
are translated to the ot'iginal feRture space through the follow
ing relations. 

F I (j ,j ) =H+ WI ( i , j ) ( 14) 
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( 15) 

The steps of both spatial transformations were summarized as 
follows. 

The steps for the residual analysis 1vere: 
(1) Generate a zero mean training class by subtracting the 

class mean on a pixel-by-pixel basis. 
(2) Based on the spatial correlation, generate the white 

noise W'(i,j) by using a simple subtraction as in 
equation (5). 

(3) Translate W'(i,j) to the original feature space by using 
F'(i,j)=M+W'(i,j). The F'(i,j) training data are then 
used in the classification. 

The steps for the principal component analysis were: 
(1) Perform steps similar to the first two steps of the 

residual analysis and obtain the white noise W'(i,j). 
(2) Transform the W'(i,j) to yield the W"(i,j) by using the 

2-D sine transform or the 2-D discrete Fourier transform. 
(3) Translate W"(i,j) to the original feature space by using 

F"(i,j)=M+W"(i,j). The F"(i,j) training data sets was 
then used in the classification. 

3.3 Classification and Evaluation 

Based on these biased and transformed training statistics, the 
maximum likelihood classifier was then used to classify the test 
area under the use of nine bands or a subset of nine bands se
lected by the stepwise discriminant analysis (BMDP7M program) . 
Thematic maps of this test area were produced using the LMAP pro
gram of the ORSER (office for Remote Sensing of Earth Resources) 
package. Comparison of these thematic maps ',yere made by visual 
comparison, by the tabular summaries of the mapping results, and 
by pixel-by-pixel comparison of the mapping results. A program 
entitled PERFORM, which was written for this study, was used to 
compare the classification map with the forest type map. A 
summary of pixel comparisons was then produced. 

4o, RESULTS 

The residual analysis and the principal component analysis were 
used to transform biased training classes into transformed train
ing classes. However, according to the comparison of classifica
tion results between these two transformations described in Cheng~ 
research (1987), the residual analysis appears to be better. The 
reason is because the principal component analysis used more com
puter time, but the improved ef:fect on the classi:fication perfor
mance is small. 1'11or010re, the :follcnving description of classi
fication results is based on the residual analysis. 

4.1 Classification ResuJ ts Using Biased and Transformed 
Training Statistics with Nine-Band Data 

Figures 4 and 5 aro the LMAP maps produced by biased and trans
formed training stntistics. Visual comparison of these two maps 
reveals differences. When compared with the ground truth infor
mation, the map using the transformed training statistics gives 
better classification results. The major exception of these two 
maps using biased and transi'ol'med training statistics is the 
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Cryptomeria-l in the upper right hand portion and the middle 
bottom portion of the image. For the map using biased training 
statistics, this area is classified into bamboo. In addition, 
the map based on transformed training statistics is less noisy 
than that using biased training statistics. This is particuJ.arly 
noticeable in the right hand portion, the upper right portion, and 
the center bottom portion of the image. 

In the PERFORlv1 resul ts, sho"\vn in Tabl e 1 ~ a), the map using 
biased training statistics differed on 2565 of 22500 pixels (11.4 
%) while the map using transformed training statistics differed on 
5J~ pixels (2.4%). 

4.2 Classification Results Using Biased and Transformed Training 
Statistics with Four-Band Data 

Four bands lBands 1, J, 5, and ~) were selected from the original 
nine bands based on the stepwise discriminant analysis (BMDP7M 
program). The classification maps using biased and transformed 
training statistics are listed in Figures 6 and 7. Visual compari
son of these two maps reveals some differences. The differences 
are noticeable in upper center portion and the lower right hand 
portion of the image. Also, the map using transformed training 
statistics is less noisy than the use of biased training statistic~ 
When comparing this with the nine bands, the results show that 
when using biased training statistics, the use of four bands gives 
better results than the use of nine bands. The differences are 
particularly noticeab~e in upper right portion of the image. As 
for the use of transformed training statistics, the use of nine 
bands gives 1 ss noisy map than the use of four bands. 

Figure 4 Thematic map of Chi~Tou test area 
using biased training statistics 
with nine bands. 
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Figure 5 Thematic map of Chi-Tau test area 1 
using transformed training. 
statistics with nine bands. 

Figure 6 Thematic lllap of Chi-Tau test aroa 
using biased training statisitcs 
,-vi th four band s . 
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Figure 7 Thematic map of Chi-Tou test area 1 
using transformed training 
statistics with four bands. 

Table 1. Classification results of area 1 based on 
biased and transformed training; statistics 
with the use of (a) 9 bands and (b) 4 bands. 

Biased Transformed 
training stntistics training statistics 

Number of 
samples C1 C2 C3 C1 C2 C3 

C1 14471 1299 "I 645 83 /-+ 14225 170 43 

C2 5132 59 4086 987 93 4914 125 

C3 2897 2 37 2858 1 1 64 2822 

Note: C1 to CJ represent Cryptomeria-l, Crytomeria-2, 
and bamboo. 

(a) Use of nine bands 

Biased Transformed 
training statistics training statistics 

Number of 
samples Cl C2 CJ Cl C2 CJ 

C1 "I L~ l+ 7"1 . lJOJ3 "I J6=i 7S lJ Lf27 1 Ol-t 1 3 

C2 5132 60 Lt 662 ll10 125 ll967 L~ 0 

C3 2897 292 2 C; ott LI97 2399 

(b) Use of four bands 



Table 1 (b) s110,"'s the PERFOH.M resul ts using :four bands. The 
map using biased training statistics differs on 2165 of 22500 
pixels (9.6%) while the map using transformed training statistics 
differs on 1707 of 22500 pixels (7.6%). Comparing these results 
with Table l(a) indicates that, with the use of transformed 
training statistics, about 2% improvement (from 90.4% to 92.4%) 
is obtained when using four bands and about 9% improvement (from 
88.6% to 97.6%) for tIle use of nine bands. The comparison also 
shows that when using biased training statistics, the classifi
cation results using nine bands were worse than those using four 
bands. However, the use of nine bands resulted in better classi
fication performance when using transformed training statistics. 

5. CONCLUSIONS AND RECOMMENDATIONS 

The classification results may be concluded that low classifi
cation accuracy produced by conventional supervised approach was 
due to violation of the assumption of independence. However, in 
case of assumption violation, the proposed spatial transformations 
could eliminate certairl errors, make the data more consistent 
wi th the assumptions, and improve the f)erformance of classifi
cation. 

The incorporation of spatial transformations for defining 
training statistics resulted in better classification accuracy 
than the conventional supervised approach. Improved classifi
cation resulted from the reduced spatial correlation and the 
change of the covariance matrix. From these results, it may be 
concluded that the incorporation of spatial tra~sforwations into 
conventional supervised approach may be helpful in computer
assisted classification of remotely sensed data for forestry 
purposes. 

For practical applications in classifying forest aren.s from 
remotely sensed data, tl ... e incorporation of spatial processes into 
conventional supervised classification is recommended for further 
research~ Figure 8 illustrates an annlytic ~lowchart to be follow
ed in incorporatinF spatial processes into conventional supervised 
classification. 
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Figure 8. 

Training stage: 

Training Class Selection 

Test for 

Spatin.l Independence 

Calculation of 
Training Statistics 

Classification stage: 
Classification, 
Result Display, 
and Evaluation. 

Yes 

Incorporation of 
Spatial Pro~esses 

An analytic flo\Vchart to incorporate 
spatial processes into conventional 
supervised classification in forest 
applications. 
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