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In the last several years, it has been clarified that conven
tional land-use/cover classification method can not achieve 
expected classification accuracies for high ground resolution 
image data such as SPOT HRV and Landsat TM data. In this paper, 
a new landcover/use classification algorithm in order to solve 
the above problem for high resolution images is presented. 

This algorithm is based on a two stage recognition model of 
landcover/use. In this model, a landcover category of each 
pixel is identified by the component ratio of landcover ele
ments surrounding the corresponding pixel. The classification 
procedure can be divided into 3 steps, i.e. the first step is 
the recognition of landcover elements using a pixel-by-pixel 
classification method; second step is the calculation of the 
component ratio on local image region; third step is the final 
decision for landcover categories using minimum distance clas
sifier. 

The results of experiments showed that this algorithm achiev
ed 6-18% improvements of classification accuracies. 

Various point wise (pixel-by-pixel) classification algorithms 
have been applied to Landsat MSS data (80m resolution) or other 
remotely sensed data with similar ground resolutions to gene
rate thematic maps, according to an assumption that the land
cover classes such as urban, forest, agriculture, etc. can be 
recognized by spectral informations of each pixel. However this 
assumption may not hold for Landsat TM data with an improved 
resolution of 30m. The land-cover ground unit may be resolved 
into multiple spectrally different land cover components by the 
high resolVing power of TM sensor. Although TM data has sup
plied much more spatial and spectral informations than MSS, it 
has actually lowered the accuracy of land-cover classification 
[1], especially in areas such as urban which show a considerab
le spatial and spectral varieties. In other words, it became 
impossible to recognize land-cover classes directly on the 
basis of point wise analyses. In order to make full use of TM 
data, a spatial information based approach to the problem of 
identifying land-cover classes in TM data is proposed in this 
paper. The algorithm developed for this approach uses a classi
fied result by a conventional point wise classification as an 
input. This result can be considered to be a kind of a map made 
by depicting the spectrally dissimilar cover component types in 
the image. The classified result is then re-classified into 
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land-cover classes by an analysis of spatial information con
tained in this result, namely the local frequency distribution 
of cover component types in the neighborhood of each pixel. 

2.:erin.Qi21~ 

Many experiments have showed that TM data can distinguish 
only spectrally dissimilar cover component types. In order to 
identify land-cover classes, it can be assumed that a land
cover class is composed of two or more spectrally different 
cover component types and is characterized by a different 
proportion of cover components. For example, if we want to 
identify high density and low density urban areas, a point wise 
spectral classification can only recognize cover component 
types such as house roofs, concrete buildings, asphalt pave
ments, lawns ,etc. However these components are common to both 
the high density and low density urban areas, making it diffi
cult to recognize them on the basis of pOint wise classifica
tions. The major difference between the high density and low 
density urban areas lies in the proportions of their compo
nents. According to this model of land-cover classes, it may 
become possible to identify land-cover classes using a charac
teristic frequency distribution of cover component types 
around each pixel. 

Thus, this method divide the whole land-cover classification 
process into two steps, i.e. a point wise classification into 
spectrally distinct cover components and a final classification 
into land-cover classes using the classification result as its 
i npu t . 

In the first step, most of the existing supervised or unsupe
rvised point wise classification procedures will be qualified 
enough to make a classification map depicting the spatial 
distribution of cover components. 

If a supervised classification method is used, care must be 
taken to keep the training data as spectrally pure (narrowly 
peaked) as possible when choosing the training areas of each 
cover component type. Then spectrally dissimilar cover compo
nents can be recognized by their radiance values which are 
separable in the spectral feature space. 

In the second step of classification for land-cover class 
recognition, the frequency distribution of cover components 
within the neighborhood of each pixel is extracted. This dis
tribution is used as the classification feature for the second 
step processing. 

To do this, the number of occurrences of each cover compo-
nent within a window surrounding the pixel is counted to com-
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pute the frequency distribution. Then, each pixel located at 
the center of the window can be associated with a component
frequency vector (which in fact expresses a kind of histogram 
with regard to cover components). For example, if there are 7 
possible spectral cover components, the window in Fig. 1 will 
result in (7,2,4,3,5,0,4) which will be used as the classifica
tion feature in the second step. 

To implement the final land-cover classification, training 
data corresponding to land-cover classes should be taken again 
on the classification result of the first step, and supervised 
extraction of training data is recommended to obtain meaningful 
land-cover classes. Intuitively, training areas of the second 
step can be larger in area and be taken more roughly than that 
of the first step. 

Because the dimension of the feature vector is equal to the 
number of possible cover components involved in spectral clas
sification (i.e. the classification in the first step), the 
classification procedures such as maximum likelihood method 
will be difficult to adopt and take too much computing time to 
be practical. 

In this research, a minimum city-block distance classifica
tion procedure was used to carry out efficient classification. 
First, the mean component frequency vector of training data 
were calculated. Then, the cover component frequency vector 
derived from the window was compared with each mean vector 
corresponding to its land-cover class by calculating City-block 
distances between them using the following expression. 

N 
D = E 

where, D 
N 

j=1 

f .. 
1 J 
I 

f. 
J 

t 

f .. - f. ( 1 ) 
1 J J 

City-block distance 
number of possible spectral components 
jth spectral component of the mean vector of 
ith land-cover class 
jth spectral component of the vector derived 
from a window 

Then, the land-cover class with the minimum city-block dista
nce is assigned to the center pixel of the window. 

The test data was a 6-band TM image resampled at 25m pixel 
(Fig. 2) covering Hiratsuka City, taken on Nov. 4th, 1984. In 
the first step, the spectral data were classified into 78 
spectral cover component classes using supervised maximum like
lihood classification method [2]. The component classes are 
listed in Table 1, and the classified result is shown in Fig. 
3, where 78 component classes were merged into 14 categories 
according to Table 1 for an easy visual examination. 

In the second step, 14 land-cover classes were chosen and 
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typical areas of each land-cover class were selected again for 
generating training data. Then, using the extracted feature, 
re-classification was implemented for window sizes from 2x2 to 
9x9. Fig. 4 shows the classification result of this step at 
window size of 5x5. 

From the visual evaluation of classified result in the first 
step (Fig. 3), it is clear that in Hiratsuka City and its 
suburban areas, various spectral classes made it difficult to 
recognize the homogeneous urban area. On the contrary, the 
result of the second step showed blocks of homogeneous urban 
areas, which is similar to those made by human interpretation. 

In order to quantitatively evaluate the classification accu
racy in those two steps, accuracy assessments were performed, 
using a digital land use test site data made by Tokai Universi
ty Research and Information Center. In this research, five 
categories of forest, agriculture, urban, water and others were 
used, which were merged from 14 land-cover classes as shown in 
Table 1. 

The classification accuracies in percentage for the five 
categories are summarized in a confusion table (Table 2) toget
her with overall classification accuracies. 

From the confusion table, the accuracy of the classification 
proposed in this paper is better by about 6% at window size 
5x5 compared with that of the spectral classification. The 
accuracy increases proportionally with the window size, but it 
saturates at window size of 5x5. This result gives us a hint 
about how to select the window size in the case of TM data. Too 
small windows will be subject to more statistical unstableness 
and are unable to resolve differences between similar land
cover classes, while too large window sizes will take more 
computing time and arise a kind of averaging effect on the 
result. By this effect, linear features such as narrow rivers, 
pavements and railways will disappear. So the window size of 5 
pixels by 5 pixels (i.e. 25 pixels) may be the best size for TM 
data,corresponding to 125m by 125m on the ground. 

From the confusion table, one can recognize another fact that 
the spatial information based re-classification procedure 
presented here is especially effective to urban areas. In urban 
areas the accuracy has increased to 81% (~y 15%). The class 
"othert! shows a very low accuracy. This phenomenon was perhaps 
originated from the bad spectral classification results. As 
"water" and "forestt! are spectrally homogeneous classes, their 
accuracies remains unchanged. 

Results from applying the spatial information based procedure 
have showed that this procedure increased the classification 
accuracy by about 6% in identifying land-cover classes compared 

781 



to a point wise classification using the spectral data only. 
The procedure also make it possible for analysts to choose more 
natural and macroscopically meaningful land-cover categories. 
This procedure also resulted in a kind of classification simi
lar to a land-use classification. It provided a means for 
identifying meaningful land-cover classes which are composed of 
spectrally distinct cover components recognized by a point wise 
classification method. 

A disadvantage of this procedure is that it takes about 3 
times of computing time compared to a conventional spectral 
point wise classifiers. 
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Fig. 1 a window with 5 pixels on each side 
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Fig. 2 0 rig ina I image 0 f 
TM data 

Fig. 3 classification result of 
the 1st step 
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Fig. 4 classification result of 
the 2nd step (window size 5) 

Table 1 class list for each step 
and accuracy assessment 

No. land-cover classes number of spectral 
components 

classes merged 
for accuracy 

1 coniferous forest 
2 broad leaf forest,mixed forest 
3 shadow of mountains 

4 farm 
5 paddy 

6 factory 
7 high density urban 
8 low density urban 

9 sea 
10 river,lake,pool 

11 grass 
12 golf links 
13 sand 
14 cloud 

total 

784 

7 
12 

4 

2 
5 

5 
3 
5 

4 
9 

5 
2 

11 
1 

78 

forest 

agriculture 

urban 

water 

other 



forest 

Table 2 classification accuracy (%) 

spectral 
classification 

2x2 3x3 

spatial information based 
classification 

window size 
4x4 5x5 6x6 7x7 8x8 9x9 

-----------------------------------------
59 54 60 59 62 59 60 59 58 

agriculture 41 40 49 46 48 45 46 44 44 

urban 66 72 77 78 81 82 83 83 84 

water 70 70 70 71 70 71 70 71 70 

other 37 32 31 28 27 24 22 20 19 

overall 55.8 56.7 60.1 59.8 61.1 60.5 60.5 59.7 59.6 
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