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Abstract

Robust estimation techniques are essentially downweighting methods and, among them, redescending estimators are the

most promising ones, because their breakdown point is often very high. A method, recently proposed by Rousseeuw and

Leroy, is here presented and applications to outlier identification in photogrammetry are discussed.

1. The problem

Outlier identification and solution methods insensitive to
outliers are a main topic in the photogrammetric and gen-
erally survey and mapping community and many significant
results have been established. The fundamental concepts
of internal and external reliability introduced by Baarda
(Baarda 67 et 68) received a widespread acknowledgment
and provide guidelines in network design as well as in out-
lier identification. Many testing strategies have been sug-
gested to improve the efficiency of data snooping and reduce
masking effects: some are based on still unidimensional test
statistics and look for a satisfactory backward and/or for-
ward elimination procedure. In the last decade also ro-
bust estimation procedures became part of the mathemat-
ical background of photogrammetric and generally survey
and mapping community; further achievements are com-
ing out in robust testing. This might lead in the future
to a decline of the fortune of the least squares principle;
at present, nevertheless, robust estimation methods heavy
rely on least squares since, as outlined above, their compu-
tational scheme is based on iterative least squares adjust-
ments.

“Robustness is insensitivity against small deviations from
assumptions” (Huber ’81): it is looked for an estimator
being perhaps less efficient when all model hypothesis are
satisfied, but which is still capable, to the contrary, of

identifying the kernel of consistent observation. Among
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model assumption violations, the more understood is per-
haps the shape of the true underlying distribution deviating
slightly from the assumed (usually the gaussian distribu-
tion). According to (Hampel et al. ’86), “robust statis-
tics are the statistics of the approximate parametric mod-
els”; this means robust estimators are derived under a dis-
tributional model more flexible than the maximum likeli-
hood estimators: more precisely they provide an infinite di-
mensional neighbourhood of a specified parametric model.
Contaminations of the basic distribution are explicitly ac-
counted for. The estimation procedure is designed to pro-
vide a screening among the observations, taking a priori
into account that not all of them should be given the same
role in determining the solution. This does not happen
to least squares estimates, where all observations equally
contribute, on the basis of their a priori variance, to the

solution.

Most robust estimation techniques are basically down-
weighting methods where in an iterative least squares
scheme suspicious observations undergo to a decrease of
their role in determining the solution, through the modifi-
cation of their weights according to some specified criterion.
The amount of the weight change is generally determined on
the basis of the (standardized) residual of the observation
and may involve from a theoretical point of view all obser-
vations. Following a more pratical approach (Bucciarelli et

al. ’92), changes to the weights will be'assumed to be signif-
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icant, only for the observations directly affected by outliers
and for a small other group around (roughly speaking, all
the observations closely connected by the functional model
to erroneous ones). This means that, apart from patholog-
ical situations, only a small percentage of the weights will
change from two successive iterations. In this frame, se-
quential updating becomes again an attractive proposal for
outlier removal. A weight change will be obtained by remov-
ing from the equation system the same (normal) equation,

with weight equal to the given weight change.

Sequentially building an equation system is a widespread
technique in many areas of scientific computing: this is for
instance the case in all dynamic measurement processes,
where on-line data acquisition is often requires to control
in real (or near real time) the process evolution. In re-
gression analysis (Draper, Smith ’61), when testing for the
significance of the parameters involved in determining the
observed quantity, the obvious way of modifying the func-

tional model is by using sequential algorithms.

In photogrammetry this approach became interesting with
the advent of on—line triangulation, where the possibility of
direct data acquisition on the computer and the opportu-
nity of having a quick check and repair of measurement and
identification errors strongly suggested the use of such tool.
Many algorithms have been presented and investigated to
this aim in the last decade, among which Givens transfor-
mations (Golub, van Loan ’86) are perhaps the most pop-
ular, in order to meet the specific requirements of on-line

triangulation.

Robust procedures and sequential strategies are very use-
ful when data collection was sequential (even in a kinemat-
ics way) too; moreover, the same procedures and strategies
may be profitable for adjustment (that means, for densifica-
tion of an already existent network or in optimization meth-
ods) and for interpolation and approximation (that may be,

for progréssive or selective sampling).

Digital photogrammetry and image processing offer more
interesting occasions to this approach; in fact many steps
(e.g. image quality control and assessment, features ex-
traction and parsing, image/map/object matching, surface
reconstruction, form descriptors) foresee robust procedures
and sequential strategies as important tools, useful in the
whole process from data acquisition to data representa-
tion, taking into account data processing (including pre—
processing and post—processing), testing and archiving too.
There are many reasons which confirm the actual trend;
the power of electronics and computer sciences improves
the use of soft images (remotely sensed or acquired by dig-
ital scanners, as well as obtained by hardcopy scanning),

emphasizing the mathematical treatments instead of some

analog methodologies.

Finally a more refined and conservative procedure has
been recently presented by statisticians (Rousseeuw, Leroy
’87); it goes over the capacity of classical robust estimators,
because it has a very high breakdown point. This means
that outliers of bigger size and in a large number may be
considered: therefore because, as already said, blunders,
leverages and small outliers occur ‘often in the observations
and they must be identified and eliminated, in order to get
the expected results, the applications of robust estimators
with a very high breakdownpoint to photogrammetry and,
in generally, survey and mapping in its many fields are wel-

come.

2. The method

The most promising robust estimators are, among the
downweighting methods, the redescending estimators, spe-
In fact

outliers of bigger size and/or in a large number may be

cially when their breakdown point is very high.

considered; moreover different explanation can be set up,
when the anomalous data, after rejection, show a homoge-
neous behaviour.

The basic idea follows some suggestions of Hampel for in-
troducing a rejection point in the loss function, so that the
data outside the interval get, automatically, weights equal
to zero. On the contrary, the data inside get weights equal
to one, if they belong to the inner core of data, or rang-
ing from one to zero, if they stay in intermediate region of
doubt.

There are many ways to concretize Hampel suggestions.
The easiest is represented by the Generalized M~estimators,
where some suitable weight functions correct the behaviour
of the M-estimators, as defined by Huber. Unfortunately
this strategy (called by some authoritative authors: mini-
max), although it increases the breakdown point, is unable
to raise it substantially.

The best modality is represented by the least median of
squares, where the median of the squares of the residuals is

minimized in order to obtain the expected results:

é = min med (v})
k=1,m
being M the number of observations. Unfortunately this
strategy is, at present time, computationally too expensive,
because no efficient algorithm is known to solve (7::) sys-
tems, selecting 1 observation among the M ones, forming
the sample, when 7 is the number of unknown parameters.
An advantageous alternative is represented by the least

trimmed squares, where the average of the squares of the
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residuals, belonging to the inner core of data, is minimized

in order to obtain the expected results:

h
b =min Z v,
k=1

In other words, only a part of the observations are pro-
cessed in each step of linear adjustment.

The use of a sequential updating of a preliminary com-
puted solution is a possible alternative to repeating many
times the whole adjustment (Lawson, Hanson °74). The
formulae for updating, in terms of parameters as well as in
term of observations, of the Cholesky factor and the inverse

matrix are shown in Tables 1 and 2.

Sequential updating of the Cholesky factor!

observation:
t; = V2 £y
wyﬂ) = 0
ti; = (tuty+ wf)w}”)/t; (G >1)
wj(lJr]) = (w](.’)tii - wz(z)tij)/t;i (7 >1)
1 .
w]( ) = aj- V]
parameter:

“n” only

=1
tin = (cih— Y tentri)/ti = 1y
k=1
(i< h)
h—1 ,
the = |can— D13, = iy
k=1
h—1 ’
thi = (chj— D tentki)/thn = 1
k=1
(7> h)
! '__h .
i = VHhE W) (i > h)
w(z—h+1) —

7

In the following formulae, the symbol a; indicates a
generic element of the row of the design matrix A, to be
added to or dropped by the system, the symbols c;;, Cij
indicate, respectively, a generic main-diagonal element and
a generic off-diagonal element of the normal matrix C, the
symbols t;;, t,;; indicate the same elements of the Cholesky’s
factor T'.

t;j = (tiitij:l:wz(i_h)wy_h))/t;i
(i>h,j>1)

wg.i‘h“) = (wj(-i_h)tii — w5t
(7 >7)
wil) =t (7 >h)

Table 1

Sequential updating of inverse matrix?

observation:
(Cxa'pa)™t = C7 1y
F C Ul (p7t £ aC )T aC !
parameter:
“n?
v o= Cly o lrs~IptC! &
+ C7 (s + rtC™ir)" ot
p = —3'1'y7°
o = sH1-1p)
“out”
C™l = y—ClpsIptCc-1 4
+ C’_lr(s + rtC_lr)_lrtC’1
Table 2

The weighted least trimmed squares could be minimized,
avoiding a rough partition between inliers and outliers,
where the weighted average of the squares of the residuals
takes into account the inner core of the data with weights
equal to one, an intermediate doubt region with weights
ranging from one to zero, whilst the data in the tails get

weights equal to zero:

h
d) = Z wkv,f.
k=1

Least median of squares and least trimmed squares (or
weighted least trimmed squares) have the same breakdown
point near to (.5, when the number A is around Tﬁ/Q, ie.
only the best half part of the observations are processed in

each step of linear adjustment.

’In the following formulae, the symbol a indicates a
generic row of the design matrix A, to be added to or
dropped by the system, the symbol p indicates the weight
of the corresponding observation; furthermore the normal
matrix is split in four parts, being their sub~blocks C, r, r!
and s, and their inverse matrix is split again in four parts,
being their sub-blocks v, p, p' and o.
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The number A could be increased until 2m/3, preserv-
ing the reliability of the observations, globally and locally,
according to geodesists community suggestions (Benciolini
et al. ’82), if the amount of suspected outliers isn’t too
large. The breakdown point decreases, obviously, but not

too much, so that the procedure continues to be effective.

These methods are grouped together and generalized by

means of the definition of the S—estimators.

3. Examples

The presented methods are already tested and discussed
in the scientific literature by statisticians. Unfortunately
whilst downweighting methods have been broadly studied
by photogrammetrists too, since the last fifteen years (Ku-
bik ’80, Forstner ’86), the redescending estimators seems to

be not popular, but for the simple Hampel estimator.

On the other hand, redescending estimators with a very
high breakdown point have been recently introduced in
the survey and mapping disciplines (see Carosio’s research
team: Wicki 92 a et b). Therefore some examples of pho-
togrammetry and cartography are welcome, with the aim

to spread out information.

The most interesting examples in photogrammetry and
cartography involve S—transformation, fitting and match-
ing. The first two classes of examples are common between
photogrammetry and cartography, whilst the last class of
examples is central for photogrammetry and it constitutes

the experimental conclusion of this paper.

Image matching can be done in image space, as well as in
object space, by using complanarity condition or collinear-
ity equations, respectively, adding a grey level model and,
eventually, an object model. As well known, the compla-
narity conditions is one of the most critical examples, con-
cerning well-conditioning, reliability and robustness.

For these reasoms, the relative orientation of a couple of
images is adjusted, by using redescending estimators with a
high breakdown point, where the amount of outliers ranges
until m/3, being m the number of observations. The data
collect three series of observations, according to Ackermann
suggestions (Ackermann ’79), in the canonical points, with
different combinations of outliers.

The outlier location shows 2, 4 and 6 outliers in a series
of observations in the canonical points (see Figure 1), pre-
serving the global and local reliability. Least squares and
downweighting methods fail the adjustment, because their
breakdown point is zero or too low. On the contrary, re-
descending estimators with a very high breakdown point

catch all outliers, in all combinations of them.
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Fig. 1

The strategy of application of the presented procedure (the
same of Barbarella, Mussio ’85) is an adjustment of the best
observations, after a preliminar least squares adjustment.
Successively the suspected outliers, which don’t show blun-
ders, leverages or small outliers, are forward accepted by

using the Hawkins test:

Ho: P(H ) (a/2) < H. < HP(1+a/2)) = 1-a

being v = | — n the degrees of freedom, where [ < m the
number of observations actually processed at the present
step of adjustment (remember, ™M is the number of obser-
vations), and 7 the number of unknowns parameters.

The expected value ﬁe is computed, as follows:

He = maa(7?/(v67)) = maz (8 /(v6y,))
being ¥; the residuals, 7; the recursive residuals, 5’& the
variances of the residuals, 5’8 the squares sigma zero and V
the degrees of freedom.

The critical values, for a parametric test on two sides, are
derived from the Hawkins probability distribution (Hawkins
’80), defined as follows:

H, = maz((x, )X

)
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being ¥ = | — n the degrees of freedom.

Figure 2 shows the flow chart of the above explained strat-
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robust procedure
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Fig. 2

4. Fields of application

Least squares methods and some other related procedures
(e.g. cluster analysis, multiple regression, variance analysis,
robust estimators) are usually appropriate for two types of

problems:

® network adjustment;
® interpolation and approximation.

In the first one, the observables are functions of point po-
sition differences, whilst in the second are functions of point
positions. These point positions (or the point position dif-
ferences) could depend on time.

Moreover the observables, depending from point positions
and time, are influenced by physical fields, according to the
data collection procedure.

Morphological factors and/or eventual kinematics param-
eters are functions of the point positions, since they are
supposed to have a similar behaviour in the neighbouring
points.

In the case of network adjustment, the geometrical. model
1s quite familiar. On the contrary, in the second one two

main sub-cases may occur:

® a deterministic law for the behaviour of the phe-
nomenon under study has been previously checked, by
a variety of causes, that may be physical, geometrical,

or others;

® no deterministic law is previously known for the phe-

nomenon behaviour.

The theory of models has a proper classification for both
sub-cases as a “grey box” model and a “black box” model,
respectively.

In the “grey box” model, the aim is the estimation of
model coefficients, followed by proper significance tests for
estimated parameters.

In the “black box” model, the main deterministic and

stochastic approaches are preferred:

® in the first case, aside from further details, one has a
number of steps, as in the choice of an interpolation
strategy (finite elements, Fourier analysis, wavelet in-
terpolation, ...), the estimation of coefficients for the

chosen models, the variance analysis (in order to esti-

mate altogether significance of parameters and quality

of model);

® the second one employs covariance estimation, covari-
ance function modelling and collocation (linear filter-

ing and prediction).
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Least squares methods and some other related procedures
may give solution to an important group of problems of
photogrammetry and, generally, of survey and mapping, as

for example:

e network/block/joint adjustment;
® surface reconstruction, form descriptors;
® feature extraction and parsing;

e image/map/object matching.

Going further with the above said division of adjustment
and interpolation/approximation problems of photogram-
metry and, generally, of survey and mapping, first area col-

lects:

® on-line triangulation of images: spaceborne, airborne

and terrestrial;

® GPS data processing, automatic surveying (robotics).
Prior to processing, it should be pointed out pre-
processing of data collected by space photogrammetry tech-
niques (SPOT, MOMS, SAR, ...), with due care, as well as
in geodesy (e.g. GPS) and related sciences.

As far as interpolation and approximation are concerned,
one should remind a class of problems of photogrammetry

and cartography, related to:

measurement devices (camera calibration and other

systems and sensors) and secondary effects;

morphological features extraction, image/map/object

matching;

DEM generation, orthoimage production and super-

imposition;

image processing, analysis (classification) and under-

standing (semantic interpretation).

Note that these problems usually involve a large number
of observations and parameters and, conseqﬁently, require
the solution of large systems, i.e. systems with a large num-
ber of equations and unknowns. For these reasons, because
blunders, leverages and small outliers occur often in large
sets of data, robust procedures (robust estimators, reliabil-
ity analysis, ...) suitably provide for data preprocessing,

testing and archiving.
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