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ABSTRACT

On-The-Fly integer ambiguity resolution for long-range dynamic or kinematic GPS positioning is difficult to achieve. As a
result, although quite a large number of originations have established their own versions of On-The-Fly software which has
been very promising for short-range positioning, none has been successfully developed for long range dynamic GPS
navigation and positioning. The paper documents a dynamic GPS processing prototype system that achieves decimetre-level
accuracy in real time and 1ppm accuracy off-line (by postprocessing) in threc dimensions over the range of a few hundred
kilometres without OTF ambiguity resolutions. The prototype system was based on two important strategies. Firstly, it detects
and removes any carrier phase cycle slips between two epochs in which there may be a data gap of a few seconds to a few
minutes, depending on the user’s receivers and user's environments. Secondly, phase delta-positions and DGPS code
positions are obtained without the needs of resolving ambiguities, which are then reprocessed in real time by Kalman
filtering approaches to achieving decimetre accuracy, and off line by Kalman smoothing techniques for achieving 1ppm
accuracy in three dimensions. This paper describes the theoretical basis of the developed long range dynamic GPS
positioning system and gives experimental results for aircraft and navigation positioning, which confirm the achievable cycle-
slip detectability and positioning capability. '

searching of ambiguity resolutions on the fly over lang
1. INTRODUCTION ranges more difficult and even impossible. Thus, centimetre

accuracy is difficult to achieve for long range applications.
Much research has been done into fast and efficient ways to
resolve carrier phase ambiguities, in order to enable GPS ~ However, for aircraft guidance, navigation and sensor
users to realise the maximum potential accuracy of GPS positioning for photogrammetry, real time decimetre
carrier phase measurements. As a result, many accuracy and 1ppm accuracy off line in three dimensions
organisations have developed their own versions of  over the range from a few tens to hundreds kilometres may
kinematic GPS positioning software (Deloach et al, 1995), be quite acceptable. This may be achieved in theory without
the majority of which is based on the so-called On-The-Fly On The Fly ambiguity resolutions (Feng, 1995; Cannon,
(OTF) ambiguity resolution technique. OTF techniques 1995). On the other hand, the use of dual frequency carrier
promise real - time centimetre positioning in three  phase observable also makes it possible to detect and repair
dimensions. However, almost all the existing systems were cycle slips depending on carrier phase’ measurements
designed for short-range kinematic (or dynamic) positioning (Hofmann 1992; Han, 1995) rather than On-The-Fly
environments, and none has so far been successfully =~ techniques, which allow integer ambiguities to be resolved
developed for long-range dynamic applications. There are  again for kinematic process over short-ranges when a cycle
two major reasons for this. The first reason is that for long- slip occurs. Our strategy for long-range kinematic or
range dynamic or kinematic positioning, the integer  dynamic positioning is therefore to remove cycle slips and
ambiguity resolution is difficult to achieve from both  realise decimetre accuracy in real time not depending on
ionosphere-free and ionosphere biased carrier phase OTF ambiguity resolutions.
measurements. The ionosphere-free combination of L1 and
L2 carrier phase measurements has the wavelength of afew ~ The development of a long range dynamic (LRD) GPS
millimetres; any other combinations of L1 and L2 suffer  positioning system aims to provide a prototype system
from the ionospheric effects. Thus integer ambiguities can ~ capable of decimetre positioning in real time and Ippm
generally not be estimated in real time by the state-of the-art = accuracy by postprocessing. This paper addresses the
OTF techniques. The second reason is that the orbital errors ~ theoretical basis for the LRD system and experimental
and un-modelled troposphere effects on double difference  results. Firstly, a method for cycle-slip detection and cycle-
carrier phase measurements increase as the distance slip repair after data gaps are proposed, based on L1/L2 and
between base and rover receivers increases (Chen, 1994). P-code measurements. This is followed by a method which
These errors make integer removal of cycle-slips or integer jointly uses the code and phase measurements to create

delta-positions and position sequences. These results are
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then further processed on line (real time) for achieving
decimetre accuracy positioning and lppm accuracy by
postprocessing. Finally experimental results for aircraft
positioning are given, which confirm the achievable
decimetre-level positioning capability

2. DETECTION AND REPAIR OF CARRIER PHASE
CYCLE SLIPS

We assume the use of dual frequency GPS receivers with
C/A code and/or P code pseudorange measurements. Thus,
there are four possible observation equations (Dong & Bock,
1989):

Ri=p+Ifi? +en 6))
PiM=p -VH%+0 Niteg @
Ry=p+Up* +ep 3
PM=p -UH*+1, N, +ep C))

where R, is C/A code or P1 code pseudorange, and R, is P2
code pseudorange; ¢; and ¢, are the L1 and L2 carrier
phase measurements in units of cycles whose frequencies
are f; and f; and wavelengths A, and A, , N; and N, denote
integer cycle ambiguities, p is the geometric range of the
receiver to a satellite; I is defined by Total Electron Content
(TEC) and € denotes the noise in the various measurements.

The linear combination of ¢, and ¢, creates a new
observable (Han & Rizos, 1995)
¢ =ig1+jp ®
where 1,j denote arbitrary integers. Its integer ambiguity and
wavelength are

N; =iN;+jN,
A =¢/ (fi +j6)

©
™

where c is the speed of the light. According to the equations
1-4, the real-valued ambiguity N;; for the combined phase
@;j can be written as:

Nij = ¢jj-ou Ry + o Ry (82)
where

o = [ 9240(i+) + 289 ]/2329%, 8b)
an= [ 9240(i+)) + 289 ]/ 2329, (80)

Formula (8) is designed for those cases where C/A code or
Plcode and P2 —<ode psecudorange measurcments are
available. Studies have shown its good suitability for
widelane ambiguity estimation (i=1j=-1), but it is
inaccurate for other phase combinations (Han & Rizos,
1995). Therefore, the following ionosphere-biased formula
is considered as an alternative:
Ny =@y- R+ (U%) ©)
where

= (o + B Ay (10a)

oy = (46201 + 5929)/(46201 +3600j)  (10b)
1.00 for R=R,

B=11647 for R=R, (10c)

1323 for R=(R; +Ry)2

R stands for R, or R; or the average of R, and R,, depending
on the measurements available.

Now, we wish to select some linear combinations of ¢, and
¢, for cycle slip detection and repair. In principle, the
combinations which have 10 and 100 times of the L1 or L2
wavelengths would be considered as the most appropriate
ones. The second factor is the noise of a combined phase
ambiguity N;; to be computed by Eq (8) or (9). The smaller
the noise of the combined ambiguity and the larger its
wavelength, the better the capacity of identifying the
combined cycle slips. The third factor is the effect of the
time-varying ionosphere biases on the determination of the
combined ambiguity Nj; Table 1 gives the standard
deviation ( STD or 1o error ) estimates of several typical
combined ambiguities N;; and their coefficient v;; , of the
time-varying ionospheric biases, where ¢, « is the
ionosphere-free phase observable. It is noted that the
maximum wavelength for possible L1 and L2 combinations
is 14.653 metres, achieved by ¢ ¢ . Considering all the
three factors, the best possible choice for cycle slip detection
is to use the combinations N; ;, defined by Eq (8) or Eq (9)
and N, 9 defined by Eq (9)

Table 1 STDs for determining combined ambiguities

Phase AMm) o(cy)- o(cy) 1-Eq (10)
Eq(8) Eq(9) R=Ry)
o 190 8.085 1.579 10.510
. 244 8.024 1.220 10.839
17 60 006 14202 | 47679 | 158.948
' 862 0.248 0.348 -0.329
() 341 7971 0862 | -11.167
P34 1.682 7.886 0.191 11.825
P9 14653 15740 | 0.116 23.979

Note: Assumptions for STD computations:
Op1= O, = 0.01 cycles, or; = or= 0.3 metres
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The detectability of the cycle slips then depends on the
temporal and spatial predictability of the ionosphere biases
in Eq (9). Over a period of up to a few minutes, the regular
variation of ionosphere biases can be represented as a linear
function of time. This implies that a lincar model of N;;,
estimated from the observations within a moving time
window in the past, can be used to predict the N;; values at
the next epoch. Using the predicted value N;j; (k, k-1) and
observation value Nj(k) at the epoch k, the differences
DN;;(k) are obtained to detect and repair the cycle slips at
this epoch:
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13)
(14)

DN;1(K) =Nia(K) - Nk k-1)
DN 5(k) = No(k) - Njo(kk-1)

This principle can also be used to estimate cycle slips which
may have occurred during data gaps, that is during periods
where no navigation solution was possible (due to shielding
a.0.). It is difficult to determine the maximum allowable
length of these data gaps as the noisc and ionosphere
irregularity and scintillation as well the multipath effects
accumulate with prediction time. In practice, the valid
predictable time may be identified through data analysis of
observation sequences.

After determining the integer cycle slips of DN;_; and
DN, 5, denoted by CS; ; and CS.;5, the cycle slips CS; and
CS, of @, and ¢, are finally determined by the following
relations;

as)

16)

CS, = (CSss + 9CS,1)/2
CS:= (CS16 +7CS11)/2

This procedure does not necessarily produce unique integer
solutions but integer candidates for cycle slips of each
combination because of the error accumulation with the
growth of data gaps and existence of code biases and
multipath. In order to determine unique integer candidates
without on the fly ambiguity resolution, it is referred to the
test procedure proposed by Han (1995), which consists of a
normality and two Fisher tests and has been proven very
efficient for different dynamic environments.

3. DYNAMIC FILTERING AND SMOOTHING FOR CODE
AND PHASE SOLUTIONS

The main feature of this method is to use delté-position
solutions of first-order phase differences between epochs to
filter and smooth the position solutions of psucdorange
measurements. The process includes three steps: first, the
double differenced ionosphere-free phase and pseudorange
measurements are used to create the delta position and
positions in three dimensions in real time (on-line); second,
a on-line Kalman filter is designed to improve the positions
with delta-position solution from metre-level accuracy to
decimetre in real time, and third, optimal smoothing is
performed off-line for achieving better position accuracy.

3.1 Phase delta-position and code position solutions
Precise delta coordinates of the rover receiver can be

computed from the double differenced ionosphere-free
phase measurements as follows:

AV, k) =AV p(K) + A7,.50 AV Ny g0 +AVE,  (17)

where k denotes the time epoch. Differencing the equations
for epochs k+1, and k, we have

SAVG, sok+1)= AV pk+1)- AV pk)+5AVe,(k+1)

18)
where 3AV@ so(k+1)= AV solktl)- AV@yr 60(K). The
equation for double differenced ionosphere-free code
measurements is
AVR(k+1) = AV p(k+1) + AVeg(k+1) (19)
where R, stands for  ionosphere-free pseudorange
measurements. Linearising the equations (18) and (19)
leads to

3AVPy, sk +1)=[HAVPK)/OXK)ISX (k+1.k)
+[OAVp(k+1)/0X(k+1)-H(AVpEK))/OX(K)] X (k+1)
HAVP'(k+1) - AVp(K)H3AVe,(k+1) (20)
AVR (k+1D)=[H(AVp(k+1))/OX (k+1)|5X(k+1)+AV pO(k+1)
+ AVeg(k+1) @1

where - 8X(k+1,k)= 8X(k+1) - 8X(k) denotes the delia
position vector between the epoch k+1 and k. The value
p’(k) is computed from approximate coordinate vector
X°(k). A minimum of four visible satellites is required to
form three equations for both types of code and phase
measurements. Thus, the least square solutions of both
8X(k+1,k) and 8X(k+1) can be obtained by the joint use of
those two equations. It is noticed that this is a quite loose
combination as the coefficient of §X(k+1) are and there is a
significant difference between carrier phase noise and code
ranging noise. The former is normally in the level of
millimetre to centimetres and the latter is in the order of
metres to tens of metres, depending on the user receivers
and environments.

3.2 Optimal Filtering Of Phase Delta-Position And Code
Position Solutions

The following filter algorithm is applied in order to achieve
decimetre accuracy of the position solution. The filter
equations consist of a set of state equation and vector
observations

@2
23)

z (K)= Dk k-1)z(k-1) + wk-1)
yK)=AK) z(k) +e(k)

where z(k) is the 6x1 state vector consisting of the 3x1
position vector x and the 3x1 velocity vector v, y(k) is a 6x1
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observation vector , containing the code position solution
X&) = 8X(K)+X’(k) and delta position solution X(kk-1)
=8X(k k-1)+X(k k-1).The matrix & is a 6x6 state transition
matrix and A is the 6x6 observation matrix; w(k) is the 6x1
dynamic noise vector and e(k) is the noise vectors of X(k)
and X(kk-1). The Kalman filtering solutions to this system
can be written as

2R=0(ck-1) 3H-DHK[yK)-AK) Dlck-1) 2k-1)]

V)
where
K(k)=D(K) A'(k) P (k) 25)
D®)=[D"(kk-1) + ATKP' k) AK) I (26)

D(kk-1)= O k-1)Dk-1)D (k k-1) + Qk-1) (27)

P(k) and Q(k) are the variance matrices for observation
noise and dynamic noise. If the dynamic noise and phase
delia position noise are negligible, comparing to the code
position noise, the Kalman filtering solution of the 3
dimensional position state vector x can be simplified to

8)=D, 0D, (k-1)[ R-D+ X(ck-1)]+ P, () X()}
28

D®)=[D," (k-1) + P ®)] 29

where P, stands for the variance matrix of code position

solution X(k). and D, denotes the filtering variance matrix

of the position state vector; D, "(0) =0 is assumed for k=1.

If the errors of different position components are assumed to
be mutually independent and identical in accuracy, the
-equations (28) and (29) partition into the three estimates of
the individual coordinate components:

X ={ (-] Ru-1) + Xrck-1)] +X ROV (30
where the subscript m denotes three position components
latitude, longitude and height or x, y and z when m=1,2, 3.

3.3 Optimal Smoothing of Phase Delta-Position and Code
Position Solutions

Optimal Kalman filtering uses all the to-date measurements
to create the position state vector solutions in real time
mode. Kalman smoothing, however allows us to utilise all
the measurements for achieving uniformly accurate
solutions in postprocessing mode. As the optimal smoothing
equations for the system equations (22) and (23) can be
found in related textbooks, only a simplified formula is
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given here, based on the assumption that the dynamic noise
and delta-position noise can be ignored with respect to code
position noise. Therefore, the smoothing position vector is
written as

2G) =D, Be® [X(K)+ XGK)] P () )
where
D, =[5 P ®)]" (32)

XK= XL+ XE+2k+H) + .. XGj-1)  (33)

where X(k,k)=0 and X(kjy= -X(;k) are assumed.

Similarly, if the errors of different position components are

assumed to be mutually independent and identical in

accuracy, the equations (31) and (32) partition into the three

estimates of the individual coordinate components:

2= Tt [Xa® +XaGR] /0 (34)

where n is the cumulative tracking time in epochs, and j=1,

2,..,n '

34 Asymptbtical Performance of Dynamic Filtering and
Smoothing Solutions

Because the linear system of (22) and (23) is uniformly,
completely ~observable and uniformly, completely
controllable, its Kalman filtering solutions are uniformly,
asymptotically stable' (Feng & Kubik, 1994). In other
words, the position solution converges to an asymptotic
level of accuracy with increasing tracking time: The longer
the continuous tracking time, the more accurate the state
filtering solution will be. According to the equations (30)
and (34), and assuming random noise, the variance of the
filtering solution %(k) and the smoothing solution %(j) can
be approximately estimated as

G K) = 6% /k
czgm(])= o /n

(33)
(36)

where o® denotes the variance of code position solution X,
and o’ (k) and o’y (j) denote the variances of filtering
solution %,,(k). and smoothing solution %.(j). It can be seen
that the smoothing solutions are uniformly accurate while
the filtering solutions are asymptotically stable. This
asymptotical nature allows for the direct comparison
between known baseline vector and the smoothing
positions. Once the smoothing solutions are corrected to the
known baseline, centimetre accuracy may be achievable,
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Figure 1 shows the convergence of the filtering variance
with filtering time and the effects of different noise levels of
the code solutions onto this resulting accuracy. However,
this theoretical accuracy model ‘has only limited validity
because both code position vector X(k) and delta- position
vector X(k k-1) are affected by systematic error sources such
as un-modelled troposphere errors, GPS orbital errors and
multipath. The magnitude of these effects depends on the
user’s receiver and the measurement environment.
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Figure 1 The Convergence of Filtering Accuracy with
Time, where the standard deviations of the code position
are assumed as 10 m ( dot line ), 5 m (solid line) and 2 m
(broken line).

From this figure we learn that this method allows under
good conditions for real-time positioning with decimetre
accuracy or better. Also, the method is suitable for any
ranges and dynamic environments as no assumptions where
necessary relating to the baseline length and receiver’s

dynamics.

4. ARBORNE TEST RESULTS AND ANALYSIS

4.1 Description Of The Long-Range Dynamic (LRD) GPS
Processing System

The LRD system processes the measurements from both
base and mobile receivers epoch by epoch. First, cycle slip
detection and removal for one-way phase measurements is
performed on the basis of combined phase measurements
N1 and N_;o. Next, the accepted integer candidates are
used to compute the residuals of ionosphere-free double
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difference measurements and then form a Fisher test
statistic for selecting correct integer cycle slips (Han, 1995).
After this, ionosphere-frec double differenced phase and
code ranges are jointly used to create delta-position vectors
and position vectors, followed by the described on-line
filtering and off-line smoothing processes, which require
only 4 satellites for initialisation and maintenance and are
therefore suitable for the environments with large mask
angles; of course the use of more satellites are advantageous.

4.2 Testing Results For Cycle Slip Detection And Repair

Airborne DGPS kinematic data were collected on June 4
1992 from two Trimble Geodesist IIP GPS receivers. L1
and L2 carrier phase and C/A code and P2 code data were
available for use. The base station was located some 57
meters from the take-off and touch-down site of the
acroplane. The data were logged every second for 2.5 hours,
including static tracking periods of 4-5 minutes before take-
off and after landing. Figure 1 shows the 2D trajectory of
the acroplane, whose height was 4500 metres during the en
route phase of the flightt To demonstrate our method's
efficiency for cycle slip detection and repair, the real-valued
cycle estimates of DN;; and DNs of PRN 23 for the
airborne receiver are plotted in Figure 3a and b, where a
moving time window of ten seconds of data was used to fit
the ionosphere variation while the prediction time is set to
one second. It can be seen that the noise of DN, is
normally bounded within the range of +0.20cycles (1 cycle
14.653m), thus the integer CS;o can be uniquely
determined. The DN, ; noise sometimes exceeds 0.5 cycle
(1 cycle= .864m). The CS,; variable may therefore have
two integer solutions, and the test procedure proposed in
Han (1995) is applied to select an unique integer candidate.
In order to test the method's ability for data gap removal,
the prediction time was set to 60 seconds and the moving
time window was set to 1 minute. Figure 4a,b show the
real-valued cycle estimates of DN, ,(k+60) and DN.
19(k+60) for the same satellite. The figure shows the
significant increase in the noise level of the DN(k+60)
estimates. Also in this example, correct integer cycles have
been determined by the same test procedure.

4.3 Experimental Results for the Filtering Solutions

Four types of positioning solutions were obtained: the phase
delta-position solution, the code position solution, the
filtered solution and smoothing solution. In addition, as the
initial baseline vector has been determined by an external
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method, accurate to a couple of centimetres. This baseline
can therefore be used together with the phase delta position
solution to create a precise trajectory for validation of
different LRD positioning solutions. Figure 5 show the
differences between the precise trajectory and code DGPS
position solutions of two horizontal components. It is noted
that the noisc of DGPS positioning solutions based on
ionosphere-free pseudoranges is as high as tens of metres
and the standard deviations for latitude and longitude
components are 9.384m and 7.348m respectively.
Comparing to the nominal figures of 2-5 metres for DGPS
standard deviations, these STD values are considered quite
high. Nevertheless, as shown in Figures 6 and 7, the
accuracy of 20~30 centimetres in horizontal components
can be achieved by the proposed filtering approach after
about 10 minutes of the continuous tracking time. These
figures clearly show the asymptotical stability of the filtering
solutions. Not surprisingly, the figures also show the biases
for the smoothing solution are -14 cm and 16 cm in latitude
and longitude respectively, which may have been caused by
the range-dependent systematic errors such as un-modelled
troposphere biases and GPS broadcasting orbital errors as
addressed previously.

5. CONCLUSIONS

Integer ambiguity resolution for long-range dynamic or
kinematic positioning is difficult to achieve by using
ionosphere-free carrier phase measurements. However, if
the cycle slips and data gaps can be detected and removed
successfully, the decimetre dynamic positioning may also be
achieved without ambiguity resolutions. This is achieved by
the long range dynamic GPS  positioning method
described in the paper. The method includes two strategies.
First, it uses the phase combinations of ¢; ; and ¢, to
detect and remove the cycle slips and short data gaps very
efficiently. Secondly, it introduces Kalman filtering
approach to the linear dynamic system to reprocess the
phase-delta-position solutions and code position solution for
achieving decimetre accuracy in real time. This requires on
ambiguity resolution. The real time solutions are uniformly,
asymptotically stable. The established particular LRD
system is robust and reliable to use. The tests results have
shown that the method for the detection and repair of cycle
slips is efficient for the data gaps of up to 60 seconds for
aircraft dynamic environment. Although the noise level of
DGPS positioning solutions based on ionosphere-free
high

as tens of metres in this test

s WA AL DRI 221 ULS N,

pcendnranoec reaches as
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20~30 centimetre accuracy in each component has been
achieved by the proposed filtering approach. The smoothing
solutions show the errors of -14 cm and 16 cm in latitude
and longitude respectively, possibly due to range-dependent
systematic errors such as un-modelled troposphere biases
and GPS broadcasting orbital errors. In conclusion, the
experimental results have confirmed the achievable
decimetre accuracy on line (real-time) and off-line Ippm
accuracy of the proposed long range dynamic processing
system,
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