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ABSTRACT:

Outlier detection in relative orientation has been studied using three different strategies, (i), removing bad
observations, outliers, using data snooping, (i), adding good observations using Least Median of Squares estimates
and (iii), finding an optimum between good and bad observations in a cost function using minimum description
length criteria, MDL. To be able to compare the strategies, relative orientation algorithms based on linear or closed
formulae were used. Two algorithms for calculating relative orientation without any provisional values were applied.
For a LS solution a linear solution based on eight unknowns was used. For a direct solution with minimal point
configurations the same algorithm was used but estimated without any redundancy, i.e., with eight observations. In
addition to this, two other algorithms were applied to some of the data in order to get the results verified and
compared. In total, four algorithms tested on a large number of simulated data configurations. The results show that
large fractions of outliers can be detected for the strategies (ii) and (iii) even with arbitrary image orientations, while
strategy (i) shows very good stability for normal aerial geometry with few outliers.

1. INTRODUCTION

Procedures that do not need provisional values for the
calculation of relative orientation parameters of a stereo
pair of images are of great need in general applications
where approximate locations and attitudes of the cameras
are unknown. When automating point selection and point
identification, these procedures must also be more robust
against large fractions of outliers than in the case of
manual measurements.

The traditional way of handling outliers in
photogrammetry is by investigating diagonal elements in
the least squares, LS, estimate of the covariance matrix of
the observations and their residuals. The observations are
then kept or removed depending on some statistical test,
e.g., data snooping [Baarda,1967]. In such a procedure,
all observations are part of the initial LS estimate and
outliers are removed one at a time. A different strategy is
to start with a minimum configuration of observations,
adding points as long as they fulfil some criterion. The
solution of the minimum point configuration is often
repeated with different random sets of points and the
“best” solution chosen, e.g., least median squares, LMedS
[Rousseeuw,1987] or RANSAC [Fichler and Bolles,
1981]. Both strategies regard outliers as observations not
belonging to the model, i.e., not having the same
statistical properties as good observations. A third
strategy is to extend the mathematical model to include
also outliers and by a cost function Jocate a minimum
where the optimal number of outliers is found, Such a
cost function has been formulated within the minimum
description length, MDL, principle [Rissanen, 1983] and
used as an estimator with robust properties [Axelsson,
1992].
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2. AIM OF THE INVESTIGATION

A comparison of the three strategies was made regarding
the robustness against outliers when calculating the
relative orientation of a stereo pair of images. The three
strategies are:

i Removing bad observations, outliers, using LS
estimates and data snooping

Adding good observations using LMedS

Finding an optimum between good and bad
observations in a cost function using MDL

il
it

To be able to compare the strategies, only relative
orientation algorithms based on linear or closed formulae
were considered. For the LS solution a linear solution
based on eight unknowns were used [Tsai and Huang,
1984], [Philip, 1989]. For the direct solution with
minimal point configurations the same algorithm as for
the LS solution was used, but estimated without any
redundancy, i.e., with cight observations.

In addition to this, two other algorithms were applied to
some of the data in order to get the results verified and
compared. In total, four algorithms were used in the
investigation:

1. Linear overdetermined LS estimate [Philip, 1991]

2. Linear LS estimate with minimal point
configuration.

3. Closed six-point formula [Hoffman-Wellenhof,
1979].

4, Tterative LS solution with five unknowns
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3. METHODS

3.1 Estimating the orientation parameters

The relative orientation of two images is described as a
rigid movement of the bundles of rays by a translation and
a rotation

v=Ru+T

u and v being the projective coordinates [u,, u, /] and
[Vy vy, 1] of an model point, R a 3x3 rotation matrix and
[t t, t] a translation vector with known direction but
unknown length.

In photogrammetric notation the equation is usually
written as

x" x' b,
Y'[=R|Y [+]b,
- -c| |b

Z

Five parameters have to be estimated in order to solve the
equation system with a minimum of five corresponding
point pairs, e.g., ®, ¢, K, by and b, in the photogrammetric
notation. This involves a linearisation of the non-linear
equations and an iterative estimation technique that
requires approximate values of the unknowns, making it
unsuitable for general cases with arbitrary orientations.

A linear solution has been formulated in the photo-
grammetric society by, e.g., [Stefanovic, 1973],
[Thompson, 1968] and later in the computer vision
society by, e.g., [Tsai & Huang, 1984]. The linear
solution is based on the coplanarity condition stating that
the vectors v, Ru and T are in the same plane.

v.x Rux YjV
vy Ru, T)|= VRuxT)=0
v, Ru, T,

This can be written as [Stefanovic]

VICRu=0
or
VEu=0

where C is the skew-symmetric matrix

C=|-t; 0
L - 0

and E=CR is called the essential matrix. The essential
matrix can be characterised in different ways, but using
singular values is the most common in literature [Tsai &
Huang, 1984]. Let E=USV’, be the singular value
decomposition, SVD, of E, where S is a diagonal matrix
S=diag(s;, s; s3). A matrix is an essential matrix if and
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only if 5;=5, and 53=0 ! This also implies that the matrix
is of rank (2) and that

EE'E = —ltrace(EE’E)E .
2

The decomposition of E into R and C is a non-trivial task,
but has been solved by, e.g., [Brandstitter, 1991] and in a
more general form using SVD by [Tsai&Huang, 1984].

Since there are eight unknowns in the essential matrix but
only five parameters needed for the relative orientation,
linear dependencies might exist in the linear solution that
will give a biased or singular solution. This can be secen
when writing the explicit equation of the projective
coordinates (x’, y’, 1) and (x”, y”, 1).

Xx"eq+x'Y'en, +x'ey+yx"en+yyeyt+yest

.x"e31 +y”e32 +1=0

For image pairs with almost parallel optical axes and
small rotations, as in the case of aerial images, the
coordinates of y’=y” and e;; and e;; will be dependent. In
some extreme, but not trivial, cases the number of
unknowns will reduce to five. These dependencies give
rise both to numerical problems in the estimation process
and to a bias in the estimated parameters.

The fact that the solution is sensitive to noise is well
known and has been addressed by, e.g., [Hartley, 1995]
and for the fundamental matrix in the uncalibrated camera
case and by [Hahn, 1995] and [Philip, 1996] for the
essential matrix and calibrated cameras. To ensure that
the estimated E matrix is of rank (2) and that the singular
values s;=5, and 5;3=0 is not sufficient to remove the bias
in the estimate.

In the used implementations, the numerical problems with
singularities are handled using the SVD algorithm when
solving the equation system. The algorithm is numerically
more stable than, e.g., the Cholesky algorithm and
singularities can be treated and eliminated during the
estimation. The bias is removed by minimising the Z(pz),
where p is the distance to the epipolar line, i.e., the y-
parallax for aerial images, using the conjugate-gradient
algorithm.

The difference between the results from the original linear
solution and the improved solution can be seen in table 1.
The residual’s from the linear solution show a clear bias.
In the improved solution the bias is removed and the
standard error reduced. It is only the improved linear
solution that has been used in the experiments.

"These requirements hold for a calibrated camera, i.e., with
known principal point and principal distance. For the un-
calibrated case, the matrix is called the fundamental matrix and
the requirements on the singular values are that s; >s, and s;=0.
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Point number | Residuals|  Residuals
| linear solution | improved solution
1 0.0009 -0.0001

2 0.0032 -0.0034

3 0.0027 -0.0011

4 0.0042 0.0009

5 0.0070 0.0018

6 0.0020 -0.0030

7 0.0051 0.0009

8 0.0079 0.0026

9 0.0028 -0.0005

10 0.0027 -0.0014

11 0.0072 0.0024

12 0.0023 0.0006

std error: 0.006 std error: 0.002

Table 1 The bias in the linear solution

3.2 Criteria for Outlier Classification

Once the parameters are estimated, erroneous
observations should be classified as outliers by some
criterium. For the LS estimates using all observations,
statistical methods based on standardised residuals, v/0,;,
are well established. Other estimation methods, based on
different minimising functions, uses other test statistics or
criteria.

The method of data snooping
residuals, v/o,;, for outlier

3.2.1 Data Snooping:
uses the standardised
detection, where the

G, = 60\/ Qv,»v,v

is computed from the LS estimated covariance matrix of
the residuals,

0, = 0, Aa'PA) " A"

The matrix A(A’PA)’A’ is the estimated covariance matrix
of the observations, called the A’-matrix in
photogrammetry and geodesy and the hat-matrix in
statistics. When op is not known a priori but estimated
from the observations the following test statistics is used
[Forstner, 1985]

_ Vi D

o

— =V;
W ==
Ooi Jbvivi

The estimated oy is calculated as

_(Zv'e)-vims
o=

r—1

The test statistics Iw;l is compared to a critical value,
which depends on the significance level of the test. The
experiments in this study are tested on a level of 99%.

3.2.2 Least Median Squares, LMedS: The method of
LMedS [Rousseeouw, 1987] minimises the squared sum

of the medians of the residuals, minmed(r*). The

estimate is found by a repeated search algorithm using a
subset or minimum configuration of the observations. The
method has a high theoretical breakdown point but the
search algorithm is, in practice, only useful for low
number of unknowns as in the case of relative orientation.
The way the estimated Gy is calculated is partly based on
empirical investigations. An observation is accepted if the

test statistics w; = r/ O, < 2.5, where

Go = 14826(1+5/ (n— p))ymed

When the number of unknowns grow, the number of
possible combinations of observations grow dramatically.
For a given maximum fraction of outliers, it is however
possible to estimate the number of combinations required
to reach a given certainty level. In the case of linear
relative orientation with eight unknowns and 18
observations, there are 43758 combinations but at a
maximum fraction of 40%, the number of combinations
needed to get an error-free sample at a certainty level of
95% is only 177.

3.2.3 Minimum Description Length, MDL: The
basic idea in MDL states that if the observed data are
dependent or non-random, i.e., is possible to model, then
the expected description length of the modelled data will
be less than the description length, DL, of the un-
modelled data itself. Enough but no redundant
information should be provided for decoding and
restoring the data.

When using the MDL criterion as an estimator with robust
properties, the parametric model is fixed. The different
models which are compared are instead the different
combinations of data belonging/not belonging to . the
parametric model. The data is modelled to the parametric
model in such a way that the MDL is found.

When the parametric model is fixed and not compared
with other models, several parts of the DL are constant,
like e.g. the description length of the parameters. The
remaining parts which have to be computed are:

D Ltotal =
R , .
n,4lb—+ DL for the n, outliers
€
R .
n,3lb—+ DL for the n,, model points
€
DL(deviations)  py for the gaussian noise
where
ne the number of outliers
Ny the number of model points
Ne + Ny the total number of observations

2 Here Ib is the logarithmic function to basis 2, i.e., b x = *log x.
The resulting unit for measuring information is called bits.
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R the range of the data
(approx. the image area)
€ the resolution of the observations

Random combinations of points were selected and the
relative orientation computed with the eight and six points
algorithms. For each combination, residuals were
computed for all points. Points with high residuals were
removed until the DL had reached its minimum. The
combination giving the lowest DL was selected.

1500 7
1250 F —S——

I L0 Sigma

E — — — Model

3 %+~ T - Qutliers

§ Total MDL
500 1 —>¢— Minimum

o]
w
<

1 23 45 6 7 8 91011121314 1516 17 18

Number of outliers

0

fig. 1 Illustration of the different parts of the MDL
calculations

4. EXPERIMENT

For the comparison of the strategies, four data sets were
generated. Two sets having random translations and
orientations and two sets having typical aerial image
translations with 60% overlap, table 2. A Gaussian noise
was added to the initial simulated measurements and a
random gross error was added during the estimation
process, in one point at a time, until a false solution was
encountered, i.e., to the breakdown point.

Data Set | Type of Noise level | Type of
translation errors
I Random 0.5 %o Large
n Random 2.5 %o Large
1114 Aerial 0.05 %o Large
v Aerial 0.05 %o Small
Table 2 Description of the four data sets

Each data set consisted of 100 point configurations, i.e.,
sets of relative orientation points, and each point
configuration consisted of 18 point pairs. The gross errors
were of two kinds, large and small. The large errors were
at a random position within the image area and the small
errors within the neighbourhood of the observation.

The noise level of set I was approximately equivalent to a
op of 10um and for set II of approximately 50um for a
small format camera. The noise level of set Il and IV was
equivalent to a 6 of 5 um for a 23x23 cm aerial image.

The relative orientations of the point configurations were
calculated with the four different algorithms. The forth

algorithm, the 5-point iterative LS algorithm, were only
applied to set III and IV since the approximate
translations and rotations were assumed to be small and
known d priori.

5. RESULTS

The results from the calculations are presented in figures,
showing the number of successful relative orientations for
the different data sets. A relative orientation was
classified as successful if the correct number of outliers
was discovered and did not depend on how close the
estimated parameters were to a true value. Both errors of
type I, removing correct observations, and type I,
omitting to remove erroneous observations, are indicated
as failures in the histograms.

5.1  Strategy l: Removing bad observations

The linear LS algorithm was used together with data
snooping to remove erroneous observations (fig 2).

Linear LS solution, Data Snooping

|1

[ )i
am
amv

Number of data sets

4 5 6 7 8

Number of introduced errors

fig. 2 Removing bad observations, strategy (i), LS linear
estimate, algoritm 1

As a comparison, an iterative 5 point LS algorithm was
applied to the data set of aerial configurations, set III and
IV (fig 3).The iterative LS solution could not be used on
set I and II since arbitrary orientations could not be
handled and approximate values were un-known.

Iterative LS solution, Data Snooping
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fig. 3 Removing bad observations, strategy (i), LS
iterative estimate, algoritm 4
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The linear solution showed a rather unstable behaviour
and very few of the outliers were detected, especially in
the general cases. The iterative algorithm shows a much
more stable behaviour for the aerial image data, but also
here very few of the outliers are detected. For “small”
errors, set III, one error is detectable but not more.

5.2  Strategy ll: Adding good observations

The linear solution using eight points with repeated
solutions were used together with the LMedS criteria for
including correct obsetvations (fig 4).

Direct solution, 8 points, LMedS
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Number of introduced errors
fig. 4 Adding good observations,strategy (ii), linear

solutior with 8 points, LMedS, algorithm 2

The LMedS algorithm finds the solutions and the correct
observations even for large number of outliers, but shows
an unstable behaviour when the numbers of outliers are
small. This is mainly due to errors of type I, i.e., correct
observations have been removed. The reason for this lies
partly in the behaviour of the relative orientation. If eight
points are picked randomly some correct observations
might very well have large residuals even if the median is
low. The presence of noise influences the result in a
similar way as for small gross errors. The number of
errors of type I increases very quickly.

5.3  Strategy lli: Including the outliers in the model

The linear solution using eight points with repeated
solutions were used together with the MDL criteria for
modelling correct observations and outliers in a cost
function (fig 5). The results of the MDL cost function
shows a similar behaviour as the LMedS algorithm, but
the unfavourable behaviour for few outliers of the LMedS
algorithm is not present.

When applying the six-point algorithm formula
[Hoffman-Wellenhof, 1979].instead of the eight-point
algorithm to the data some interesting observations can be
made. The algorithm has a higher percentage of recovered
orientations when data contains large fractions of outliers.
For few outliers the algorithm makes more errors of type
1, especially for “small” error in data set IV and a high
noise level in data set II.
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Direct solution, 8 points, MDL
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5 Modelling correct observations and outliers using

MDL in a cost function, strategy (iii), eight points
linear solution, algorithm 2
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Direct solution, 6 points, MDL
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fig. 6 Modelling correct observations and outliers using
MDL in a cost function, six points algorithm,
algorithm 3

6. DISCUSSION

The calculation of relative orientation parameters in the
general case is a difficult task, in which the geometry of
the observations interact with dependencies and
correlations of the estimated parameters in a very
complex manner. Large fractions, and indeed also small
fractions, of erroneous observations or outliers can
severely disturb the solution.

The chosen algorithms in this study are not claimed to be
the optimal ones, but the conclusions and comments are
believed to be general.

Several methods for detecting outliers and making the
estimates more robust than the LS estimate have been
presented in the photogrammetric society over the years,
most of the methods having in common that they look at
the residuals originating from some type of LS estimate
using all data. Observations meeting some criteria are
then kept while others are removed or given new weights
and the process is iterated until no more points are
removed. The types of weight functions and test statistics
range from looking at the residuals [Krarup et al 1980] to
more statistically elaborate methods like data snooping
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and the Balanced LI-norm suggested by [Kampmann &
Wolf, 1989]. The major drawback with these methods is
that they will fail if the first estimate is too far away from
the true solution. In the relative orientation problem a few
number of outliers may be enough to make the solution
degenerate completely. In the tests carried out in this
study it can be seen very clearly that one, or possibly two,
errors can be found. When the number exceeds two or
three points, or the fraction of outliers goes beyond 10-
15% these methods are very likely to fail. In these cases
other strategies must be applied.

Algorithms based on repeated calculations using a small
sample of data, sometimes referred to as RANSAC or
bootstrap methods, are in many cases able to find a
solution close to the optimal one and to identify large
fractions of outliers. Since only a smali sample of data is
used for the solution, expectancy values and standard
errors are not possible to calculate as in a LS estimate.
Depending on the purpose of the calculation, the
estimates can of course be improved by a LS adjustment
on the remaining data after removal of the outliers. If the
sample is chosen by random, as in all cases in these tests,
it is very likely that the selected solution contains
observations close to each other. Residuals of
observations far from these tend to be high since the
model coordinates are extrapolated. Due to this, errors of
type I are more common than for methods using all
available data. If enough precautions are taken to ensure
that observations are not removed by mistake and one has
an awareness of the limitations of the solution, these
methods are well suited for limited tasks like the relative
orientation.

The third strategy, to include the errors in the model and
calculate a cost function, shows a very nice behaviour
both for few numbers of outliers as well as for many.
Some additional information must be provided in order to
compute the DL’s that is not needed for the other
methods. This information defines the range or bounds of
the observations and its resolution. The calculations of the
DL’s are not very complicated and could be considered as
an alternative in some implementations.

For autonomous systems with arbitrary orientations,
estimates based on linear algorithms using repeated
calculations on small samples of data seem to be a fruitful
way of getting robust results. For standard aerial images,
these methods can be used as well, but standard methods,
like data snooping and iterative five points algorithms,
are more stable as long as the number of outliers are low.
The answer to the question put forward with this study,
whether to remove or add outliers, is, not very surprising,
thus depending of the application and the expected types
of errors and error fractions that might occur.
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