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ABSTRACT

A method for matching curves and detecting differences under rigid motion transformations is described. After least
squares matching the result for a difference detection purpose can be far from satisfactory. A method presented in
this paper use basic rigid motion invariants, distance, angle and dot product in a difference detection search process
after least squares matching.

Shortly, main parts of the process are follows. First, a least squares match under rigid transformation is computed.
Second, for a one of the curves previously mentioned intra curve invariants are calculated and used later to extract
good local areas along the curve for final motion computation. Corresponding points from another curve are solved
using specified computations, the method does not extract any features there. The key idea is that when first curve
is deformed to another curve some parts of the first curve change less than ancther parts. Our process tries to detect
the less deformed parts and use those parts of a curve in a motion computation. A curve is represented as a B-spline
curve function and invariant features are computed from the coefficients of the that function not from the actual
curve points.

0. INTRODUCTION problems. Geometric invariant features remain
unchanged under considered geometric transformation.
Shape matching and difference detection are here  Usually features are extracted independently from each
considered as problems that arise frequently in digital  data set and then the correspondences between these
close range photogrammetry or geometric computer invariant features are searched. We also use basic rigid
vision tasks. Typical examples are difference detection motion invariants, distance, angle, and dot product, but
between CAD-model and measured model or between  a bit different way than usually.
measured models which acquired at different times from
the same object or differences are needed between
different objects which have some similar geometric 1. B-SPLINE CURVES
parts.
We use parametric B-spline curve representation. Given
Main assumption considered here is that difference  the knotsequence t;<t,<...<t,,, a parametric non-rational
detection have to be done without corresponding control ~ B-spline curve of order k (of degree k-1) with the end
information. So, the one side of the problem is matching  points a=t, and b=t_,, can be represented as
and another side is difference detection.

From the rigid motion transformation point of view 2
differences between models can considered as errors. Ck@) =E PiBi,k(t)
Papers by (Karras et al.,, 1993), (Pilgrim, 1991) and i=1

(Zhang, 1994) have for example treated differences as

(gross) errors in iterative least squares matching prob-

lem. In every iteration (gross) errors are localized and

rejected from the next iteration round. Usually errors of = where  tis the curve parameter.

(1)

different size change the weight of an observation. P, is vector of the coefficients or guiding
Problem leads to iterative weighting scheme, where not points (dimension is degree of the curve).
only the parameters of the motion transformation are B, (t) are B-splines of order k, that can be
iterated, but also the weights are iterated too. In this defined (and also computed efficiently) with
paper we have not used iterative weighting in the least the recursive Cox-de Boor algorithm (de
squares estimation problem but it can be also used with Boor,1978).

the presented method.
Here it can only bring to notice some important parts of
Differential features are commonly used in matching  general problems that spline fitting includes. Good and
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practical references to B-spline algorithms are (de Boor,
1978), (Schumaker, 1981) and (Piegl et al., 1995).

Following basic things need to be considered in least
squares B-spline curve fitting problems. Given noisy
data points (observations) solve the coefficients of a
approximating spline curve. Curve parameter, t, is
unknown for every observation, so usually this paramet-
rization problem is solved first and perhaps is improved
later if needed. Chord length parametrization is
invariant to rigid motions. To get more information on
parametrization see (Ma et al.,, 1995). Specially in
matching problems it usually helps a lot if chosen
parametrization is invariant to used geometric trans-
formation (for example if affine geometric transformation
is used then affine invariant parametrization is good
choice). Knots divides the chosen curve parametrization
to finite segments. The number of knots and placement
is needed. Usually knots are chosen using heuristic
rules, such as every n:th data point is a knot (value of a
knot is a curve parameter value of that point). Auto-
matic selection of number and positions of the knots see
(Cox et al. 1988) and references there. The number of
knots defines also the number of spline coefficients
(number is not the same, see definitions). Also suitable
degree of a curve should be selected. Curve parameters,
knots and degree of a curve defines the basis functions,
B-splines. Resulting linear least square system is sparse.

If a fitting problem is formulated selecting for example
chord length parametrization a result can be seen in
figure 1 (knots have been placed to curve parameter
value of every tenth observation, degree of the curve is
three). Small circles are observations and line between
a circle and the curve is a residual. As mentioned earlier
curve parametrization can be improved, see (Guéziec et
al.,1994), (Sarkar et al.,1991). We select optimization
algorithm that finds minimum length between an
observation and the curve by golden section search and
parabolic fitting. Optimization algorithm computes the
new curve parameter values. With the new curve
parameters the least square problem for spline coeffi-
cients is solved once again. This may be repeated if
needed or solution satisfies the specified criterion, see
figure 2.
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Figure 2

2. MATCHING

The first geometric invariant used here is angle between
three consecutive spline coefficient vectors, see figure 3
for a third degree spline curve and figure 4 for a first
degree spline curve. An angle can be defined for example
clockwise from a first segment to a second segment. This
feature is computed at every node but first and last of
the coefficient polygon. For a closed curve, the angle can
be computed at all nodes. In 3-D case three consecutive
coefficient vectors form a local plane and the angle is
defined in that plane. So the defined angles does not
change if a rigid motion applied to the coefficient
vectors.

The second invariant is product of two distances com-
puted between three consecutive coefficient vectors.

The third feature is combination of both previously
defined invariants, dot product of two vectors formed by
three consecutive spline coefficients. Also absolute value
of a vector product is rigid motion invariant but it is not
used here.

Three chosen invariants do not need any derivative
information as many differential rigid motion invariants
do. Invariant measures are computed for coefficients of
a curve and effective area of a coefficient depends on the
degree, n, of a curve. Effective area (or support area) of
one coefficient is n consecutive knot segments. See
figures 3 and 4, a curve is changing locally when one
coefficient has moved (notice the arrow).
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Figure 4

Matching procedure can descﬁbed as follows:

Compute the least square match under rigid motion
transformation between the curves. We use the
algorithm from (Pirhonen et al.,1994). The algorithm
there is for 2-D affine case but can be replaced by a
rigid transformation.

For the first curve compute the invariants. These can
be computed also before matching because they
remain unchanged under rigid motions.

Compute local least squares match between curves.
By local match we mean no predefined global trans-
formation is computed between curves. Just the
coefficients of the first curve are changed so that first
curve fits to the second curve. Local match needs
corresponding points. These are selected for example
by the closest point algorithm (Besl et al., 1992) or by
curve parameter transformation (Pirhonen et al. -
1994) which one we have selected. The curve para-
meter transformation assumes that curve parametri-
zation is computed using rigid invariant curve
parametrization. Curves are usually approximated
from data points and for this reason the curve
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parameter transformation can not be very accurate.
So also combination of these methods might be
useful, especially because closest point algorithm
needs an initial value.

For the first curve compute the invariants once
again.

Rank the differences between invariants computed
before and after local match. Select some absolute or
relative criterion that cluster the ranked coefficients
to two groups. First group includes the coefficients
where the change in invariant measures have been
below the criterion. I'or the final motion computation
curve points from the first curve can be chosen from
the support areas of the coefficients that belong to
the first group. Corresponding points from the second
curve are selected same way as in local matching
phase.

The algorithm does not handle curve identification
problem at all. If corresponding curves are not known
that problem must be solved first.

3. RESULTS

Sixteen test cases were generated. In the first basic
group of 8 cases we added random differences to random
places of the second curve. Four groups that have
different number of differences were included, 16%, 25%
,35% and 50% of the coefficients of the second curve
changed. First degree curve and third degree curve cases
was chosen. The reason for this was that coefficients of
the first degree curve have smaller support area than
coefficients of the third degree curve. The rest 8 cases
random differences were added to constant and consecu-
tive coefficients. Otherwise these cases was generated
same way as in the first basic group. Each of the 16
cases were generated 50 times. The rigid motion under
these test is 2-D transformation, so it includes two shifts
and one rotation.

Results can be seen in figure 5. Each bar graph has 48
bars. First 16 bars are for x-coordinate shift, second 16
bars are for y-coordinate shift and rest 16 bars are for
the rotation angle. Each bar defines how much the mean
value of the 50 computations deviates from zero. If there
is no deviation the original rigid transformation is
recovered exactly. The subgroups that includes four bars
are: First bar defines deviation just after least squares
matching. The rest three bars defines deviation after
final motion computation when features were dot
product, angle, and product of distances respectively. It
is noticed that this number of cases and computations
does not produce purely robust statistical information.

When 50% of coefficients have differences the method
does not have any positive effect. In all 16% and 25%
cases the method have positive effect. From the first
degree curves the method recovered the original motion
better than from the third degree curves. That was
expected because in the first degree curve the invariants
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Differences added to random locations. Degree of a curve is 3
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are more local. Same relative clustering criterion was
used in all 800 computations and it was 20% of the
number of a curve coefficients. Two examples are given
in figures 6 and 7. In figure 6 both curves are third
degree curves and 35% of the coefficients of the second
curve have differences in randomly chosen locations. In
figure 7 both curves are first degree curves and 35% of
the coefficients of the second curve have differences in
randomly chosen locations.

Basic matching result

Figure 6

Basic matching result

Figure 7
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