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ABSTRACT

Most image interpretation methods suffer from a lack of knowledge about the scene contents. In the case of updating road
databases by interpretation of aerial images, the outdated database is a valuable source of knowledge. Both the old database
and the generic, often heuristic, models of the scene objects contain uncertain data. This paper deals with different ways
of representing this uncertainty and combining data from different uncertain knowledge sources. It is shown how uncertainty
affects the quality of the road extraction and how modeling uncertainty can contribute to a better result.

1 INTRODUCTION

After one or two decades of digital mapping many countries
are completing or already have completed extensive digital
topographic databases, both in small and large scales. The
updating of these databases will therefore be one of the major
topics for many national mapping organisations. Although
the efforts for updating are expected to be significantly lower
compared to those of the initial database creation, there is a
widespread interest in developing tools for (semi-)automatic
mapping in digital images to further reduce the costs.

Contrary to initial expectations, the interpretation of aerial
images for the purpose of mapping roads or houses has shown
to be an extremely difficult task to automate. Simple schemes
of thresholding, edge detection and grouping are clearly in-
sufficient. One has come to realize that a human operator
exploits an enormous amount of knowledge to interpret im-
ages and that an extensive knowledge base will be necessary
to even partially solve tasks like understanding the complex
aerial images.

Several ways are being explored to incorporate more knowi-
edge into the image interpretation. A first one is to use the
knowledge base of a human operator. By using the com-
puter’s speed for low level image processing and recognition
of simple patterns and leaving the more difficult interpreta-
tion tasks to the operator, interactive algorithms are a very
attractive way to speed up the mapping process. Further im-
provement should be possible if one can provide computer
algorithms with detailed specific and generic models of the
objects and their interrelationships that are encountered in
aerial images. How to represent this knowledge is one of the
major research issues. A third important source of knowledge
is, of course, the database with the objects that have been
mapped at a previous occasion and now need to be updated.
The outdated databases not only outline many objects that
only need to be verified instead of detected and measured,
but also supply the context within which new objects may be
found.

Since the modeling of the scene contents is an extremely dif-
ficult task, it is clear that a considerable degree of automa-
tion in mapping can only be achieved by combining most
of the knowledge available. As most of the future map-
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ping projects will be concerned with updating, the outdated
databases should be considered a very important source of
knowledge.

All sources of knowledge will, however, contain errors. These
errors will influence the interpretation process. In order to
assess the quality of the image interpretation results we will
therefore need to describe the quality of the information for
each individual source. Furthermore it is necessary to describe
all steps in the interpretation process such that the quality of
the different sources can be propagated to the final result.

This paper is about all kinds of uncertainties that are en-
countered during the updating of a topographical database
by interpreting digital aerial images. [In particular, we will
focus on the extraction of roads using the context of an out-
dated road database.

Representation of uncertainty in data and processing of un-
certain data are relevant to a wide range of disciplines. Espe-
cially in the field of artificial intelligence, many research efforts
have been devoted to these topics [Kanal et al., 1986]. More
recently, user requirements and standardisation efforts have
also lead to better descriptions for uncertainty in (or quality
of) geographical information [Guptill and Morrison, 1995].

After briefly describing the data and processing steps needed
for the updating of road maps (section 2), we therefore first
give an overview of representations of uncertainty as they
have been developed in different disciplines (section 3). In
section 4 some examples are given of how these uncertainty
descriptions relate to the data used for road map updating.

The problem of image interpretation is a reasoning problem
in which many sources of evidence need to be combined with
rules and heuristics in order to generate the most likely ex-
planation of the image. In section 5 methods for processing
these uncertain data are reviewed. This also includes the
propagation of uncertainty towards the final interpretation
result. Section 6 then describes how these methods are being
applied or could have been applied to the extraction of roads
from aerial imagery. The last section summarizes the findings
and outlines the work that remains to be done to assess the
uncertainty in updated road databases.
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2 ROAD MAP UPDATING

Updating (road) maps is usually considered a two step proce-
dure: first it is verified whether the roads in the old database
are still present in the imagery and, second, the new roads are
mapped and roads that no longer exist are removed from the
database. Looking closer at each of these two steps, many
aspects can be discerned.

Verification involves the comparison of the representation of
a road in a database (GIS) with the road appearance in the
image. The common GIS is vector oriented and also may be
generalised. In order to make the two object representations
comparable, features are usually extracted from the image.
The hypothesis that the features of the image and the GIS
originate from the same road is subjected to a test. This
test will require information about the uncertainty of the two
object descriptions that may be obtained through error prop-
agation in the feature extraction (and generalisation) process.
Already this first updating step includes many aspects of un-
certainty. A further analysis will be given in section 4.

Mapping new roads is even more complex than the verifica-
tion step. If the hypothesis of the verification step is rejected,
we only conclude that something has changed. The kind of
change, e.g. a new road exit, a new fly-over, an extra lane,
a new pavement, or a removed road part, is yet unknown.
Using the features in the image, the context of the old GIS,
knowledge related to all processing steps of both the image
and GIS features, and generic knowledge about road net-
works, hypotheses have to be generated about the type of
change. Some of these hypotheses (new exit, new fly-over)
may, if accepted, lead to the detection of new parts of the
road network. After this detection the road sides will need to
be outlined and the consistency with the already known part
of the road network needs to be verified [Gunst and Hartog,
1994]. As with the initial verification, all data used in the
second step of the updating process can be erroneous and
affect the quality of the final interpretation result.

Although very complex, updating of road databases may still
be considered a little easier than updating maps with e.g.
houses. It seems fair to assume that new roads are always
connected to the roads in the old database. Therefore, junc-
tions of the new roads with the old network should be de-
tectable in the verification step. This gives a strong indication
about where to look for new roads.

3 UNCERTAINTY IN DATA

When photogrammetrists talk about uncertainties they usu-
ally do so in terms of standard deviations of Gaussian dis-
tributed variables. Yet, when dealing with image interpreta-
tion tasks it soon becomes clear that many aspects of uncer-
tainty cannot be described in those terms.

In this section we will first review the most popular ways of
representing uncertainty in data. Many of the newer concepts
have been developed in the Al literature and are related to
reasoning problems.

In the last part of this section quality descriptions of (GIS)
data are discussed. It shows that there is a variety of as-
pects of data quality that all affect the uncertainty about the
correctness of the data.

3.1 Representations of uncertainty

e Probabilities
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The best known representations of uncertainty are, of
course, probabilities (and probability densities). In the
Bayesian formalism, there are three basic axioms of
probability theory regarding the belief measure that is
attached to propositions [Pearl, 1988, Fine, 1973]:

0<PA)<1
P(Sure proposition) = 1
P(Av B) =P(A)+P(B) if Aand B
are mutually exclusive.
From these axioms it also follows that:
P(A)+ P(=A) P(AV —A)
= P(Sure proposition) = 1

1l

l.e., a proposition and its negation must be assigned a
total belief of 1.
Bayes introduced the concept of conditionalisation of
the belief in a proposition A by the knowledge or con-
text B
P(A, B)
P(A|B) = —~—~
(18) = S

These conditional probabilities play a very important
role in all kinds of reasoning processes.

Probabilistic networks

Probabilistic networks [Pearl, 1988] also use the above
defined probabilities and are therefore not a different
way of expressing uncertainty. Instead they are use-
ful graphical representations of the dependencies be-
tween propositions. The nodes of these graphs are the
propositions and. the links between the nodes show the
dependencies. Two basic network types are often en-
countered:

+ Markov networks: A Markov network is an undi-
rected graph. The links of this graph represent
symmetrical probabilistic dependencies.

+ Bayesian networks: A Bayesian network is a di-
rected graph. The arrows of this graph represent
causal influences between the propositions. The
Bayesian network may not contain cycles.

Bayesian networks are very attractive for reasoning
problems, since they directly show the lines along which
the reasoning has to take place.
Information theoretic measures
The information 1(A) of a proposition A, on the one

hand is directly related to the above defined probability
P(A) by

I(A) = —log P(A)

and is interpreted as an amount (in bits) of surprise or
uncertainty. Hence, I(Sure proposition) = 0. On the
other hand, it is also motivated by research on com-
munication theory. The amount of information of a
proposition is the number of bits required to encode
the proposition with an optimal coding scheme [Shan-
non and Weaver, 1949, Blahut, 1987].

Popular concepts from this theory are the mutual in-
formation

P(A|B) _

P(BlA)
P(A) log

P(B)

I(A; B) =log
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and the minimum description length (MDL) principle.

Certainty factors

Certainty factors were introduced in the famous
MYCIN programme, a rule based expert system for
medical applications [Buchanan and Shortliffe, 1984].
A certainty factor (CF) is based on a measure of in-
creased belief (MB) and a measure of increased disbe-
lief (MD) in some proposition A given the fact B.

s A B 1 it P(A) = 1
(4,B) = mx[p(AE)P,F('x)]_P(A) otherwise

1 it P(A) = 0
MD(A, B) = P(A)—mingl?;/)i]B),P(A)] otherwise

CF(A, B) MB(A, B) — MD(A, B)
Though still often used in expert systems, it is recog-
nised [Weichselberger and PdhImann, 1990, p. 64] that
the usage of certainty factors can be very misleading
as it emphasizes the difference P(A|B) — P(A), but
almost disregards the prior P(A) itself.

Dempster-Shafer theory

One of the major criticisms on Bayesian probabilistic
reasoning is the requirement for a complete probabilis-
tic model. And indeed, the determination of prior and
conditional probabilities for all relationships is often
very difficult and cumbersome. The Dempster-Shafer
theory allows a partially complete model by assigning
probabilities to sets of propositions [Shafer, 1975]. Let
Q = {X,Y,Z} be an exhaustive set of mutually ex-
clusive propositions (called the frame of discernment).
A mass function m assigns probabilities to all sub-
sets of ), such that the sum of these probabilities
equals 1. For instance, one may know confidence that
m(X) = 0.2, but may have no further information.
Then, M{(X VY VvV Z) = m(Q2) = 0.8. Thus, for the
remaining 80%, no preference is given to Y, Z or even

X.

The belief Bel(.S) in some subset of (2 is defined as the
sum of the probabilities assigned to subsets of S. l.e.
in the example, Bel(X) = m(X) = 0.2, Bel(X VY)
=m(X VY)+ m(X) + m(Y) = 0.2, etc. Note that
always Bel(£2) = 1.

Similarly, a plausibility PI(S) is defined as 1 - Bel(—.5).
l.e. in the example, PI(X) =1-Bel(YV Z) =1
-m(YVZ)-mY)-m(Z)=1P(YVZ)=1-
Bel(X) =1- m(X) = 0.8, etc. Thus, the belief and
plausibility functions define lower and upper bounds
for the probabilities of the propositions. The differ-
ence PI(S) - Bel(.S) expresses our lack of knowledge in
the probabilistic model and is often referred to as the
ignorance. Hence, in contrast to Bayesian probability
theory, Bel(S) + Bel(—5) do not need to sum up to
unity.

Probabilistic logic

Probabilistic logic (also called interval probability the-
ory), like Dempster-Shafer theory is used to compute
the bounds for the space of all probability assignments
that are consistent with the available specifications
[Nilsson, 1986, Weichselberger and Pdhimann, 1990].
Thus, if @ = {X,Y,Z} and m(X) = 0.2, like in the

above example, one can conclude that P(X) > 0.2,
and, since P(X) + P(Y) + P(Z) = 1, it follows
that P(Y) + P(Z) < 0.8. Major differences with the
Dempster-Shafer theory arise when new sources of evi-
dence are added to the available knowledge (discussed
in section 5).

e Possibilities

Possibility theory was developed based on the idea of
fuzzy sets [Zadeh, 1978]. In set theory an object is
either member of a set or not. In fuzzy sets an object
can be a member to a certain degree, called the pos-
sibility. A typical example is whether a person belongs
to the set of young persons. At the age of 1 thisis
definitely true (possibility 1). At the age of 100 the
possibility will be 0. Somewhere in between there is a
transition, but there is no specific age at which a per-
son is suddenly no longer young. l.e. the dividing line
between the class of young and “not young” persons
is vague.

There are many similarities between possibilities and
probabilities. Cheeseman [1984], e.g. argues that the
possibility in the above example can be considered as
a conditional probability P(young|age).

3.2 Aspects of data quality

In the report of the Spatial Data’ Quality Commission of the
ICA [Guptill and Morrison, 1995], the quality of GIS data is
described in terms of lineage, positional and attribute accu-
racy, completeness, consistency, semantic accuracy and tem-
poral accuracy.

The lineage is the history record of a database. It contains
information about the time of observation (photo flight), the
methods of data capturing and data processing, and, most
important, the purpose of data collection.

Positional and attribute accuracy are well-known elements of
data quality and can well be described by probability (density)
distributions and derived quantities, like standard deviations.

Completeness is often understood as data completeness and
expressed by probabilities of omission and commission errors.
Another aspect, raised in [Guptill and Morrison, 1995], is
model completeness which should indicate whether the data
model used at the time of data acquisition contains the fea-
tures and attributes sufficient to solve the tasks of a particular
application (that may or may not have been foreseen at the
time of data acquisition).

Assuming that the data model is consistent, data inconsis-
tency is caused by errors in redundant data. Therefore, there
is a close link to attribute accuracy. Since, consistency al-
ways involves two or more features or attributes, conditional
probabilities are in particularly suitable.

Semantic accuracy has to do with the meaning of objects
and attributes. E.g., does an object or attribute contain the
information we think they do? Semantic accuracy is very
difficult to characterize. Especially for image interpretation
tasks, it is, however, of major importance, since the interpre-
tation process is supposed to attach a meaning to the objects
in the image.

Finally, accuracy of temporal information is often related to
consistency of a database during the actions of an update or
the accuracy of a time attribute. These aspects were already
covered. A new aspect may be information about the rate of
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change that is to be expected. This can be used to roughly
estimate the completeness of a database at some point in
time which may be valuable information for the verification
step.

4 UNCERTAINTY IN DATA FOR ROAD
EXTRACTION

On a first sight one might think that we will have to deal
with the precision of the GIS data and the precision of the
extracted image features. Yet, from the above aspects of
data quality it should have become clear that there are many
more causes for uncertainty.

4.1 GIS data

In fact, positional accuracy of GIS data is only a minor source
of uncertainty. The available data usually permits to outline
the sides of the road surface or the middle of the road within
a few pixels in the image. The (very few) results on updating
road networks by image interpretation are, however, much
worse. Thus, there must be other sources of uncertainty.

Like positional accuracy, attribute accuracy is usually very
high in comparison to the quality of the interpretation results.

Consistency of the GIS data may be considered a more impor-
tant factor. Inconsistent data will yield conflicting evidence
to some hypotheses and thereby can mislead the reasoning
process. Of special interest in GIS data are the topological re-
lations between the features. Egenhofer and Franzosa [1991]
classified eight different topological relationships between two
two-dimensional regions (like meet, overlap, disjoint, etc.).
Winter [1994] argues that such relationships between regions
can not be considered as certain, due to positional inaccura-
cies, however small they are. E.g., even due to the smallest
possible error, two regions that actually meet may be classi-
fied as disjoint or overlapping. Other changes in topology are
less likely. E.g., if one region is actually contained in another,
it is unlikely that they will be classified as disjoint. Winter
[1994] therefore derives conditional probabilities of topologi-
cal relations between regions in a GIS, given their true topol-
ogy. These probabilities very well model the uncertainty in
topological relations. A reasoning process can now take into
account the confidence that has to be given to some relation-
ship and does not have to accept all relations as correct.

Semantic errors in the GIS can also have a large impact on
the image interpretation. Suppose that, according to the
data model, a road database contains the roadsides. This
definition of the data still allows several interpretations. E.g.,
does the road include the sidewalk, or the shoulder? An
incorrect interpretation of the data model can clearly lead to
a large number of errors in the verification step. If the data
modei is ambiguous, the verification step should comprise
hypotheses for each of the different interpretations in order
to find the correct one.

Since the purpose of the image interpretation is in updating
the road database, it is obvious that the data completeness of
the GIS is significantly lower than what can be expected for
an up to date GIS. If available, a rate of change may be used
to calculate the expected data completeness at the time of
updating. This number can then be compared to the results
of the verification step.

The information in a GIS is clearly insufficient to automat-
ically solve the interpretation of the aerial images. In this
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sense, the model completeness of the GIS for the task of au-
tomatic updating is very low. Image interpretation requires
much richer descriptions of the objects than a few vectors in
a GIS. This leads to the problem of object modeling.

4.2 Object models

Describing roads in generic models such that these models
contain sufficient information to recognize all kinds of roads
is an extremely difficult task. Yet, humans have no problems
in recognizing the roads in figure 1 despite the large variety
in shape, size, scale, and pavement.

Figure 1: Variety of road appearances in aerial imagery.

Gunst [1996], after [Garnesson et al., 1990] describes a road
model in terms of geometry, radiometry, topology, function-
ality and context. Many attempts to describe a road only
use geometrical and radiometrical properties. E.g., a road is
defined as two parallel edges that include an elongated ho-
mogeneous area. According to this definition, a side walk,
a single traffic lane, a river, a dike, a beach, and probably
many other objects also can be classified as a road. Some
improvements can be made by including colour or texture
information, but a good result can only be expected if the
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context of a road is also considered.

Cars on a road, houses and trees alongside the road, shadows
of fly-overs, junctions with other roads, road markings, and
traffic signs are all clues that help an operator to identify a
road. The description of all these objects may in turn require
some other context information. The question then rises how
extended the context of a road should be and how detailed
each of the objects needs to be described. The answer is not
known, but it is clear that a lack of modeled knowledge about
the objects and their context is a major source for the un-
certainty in the outcome of image interpretation procedures.
Instead of finding support in the presence of cars, houses,
road markings, etc., most road detection schemes consider
these objects as noise which leads to detection failures.

4.3

The image data itself and the feature extraction process are
also sources of uncertainty. In the imaging process uncer-
tainties are introduced by the sensor noise and the imaging
circumstances. Due to a different perspective or changed
(weather) conditions object appearances may change drasti-
cally and thereby systematically affect the number and shape
of the extracted features.

Image data

When propagating the image noise to the parameters of ex-
tracted features, the assumed noise level is usually taken
much higher than the sensor noise (which is almost ne-
glectable). This higher noise level is required to account
for small violations of the image models used in the feature
extraction algorithms. E.g. many edge extraction operators
assume ideal straight step edges with constant grey values on
both sides of the edge. When extracting the side of a road,
small grey level variations due to structures in the concrete
or clumps of grass are ignored and (incorrectly) considered
as noise. Such incomplete or simplifying image models give
rise to a substantial amount of uncertainty in the extracted
features.

Due to the complexity of feature extraction a straightforward
error propagation is often not possible. In those cases exten-
sive experiments are required on either simulated [Fuchs et
al., 1994] or real [Vosselman, 1992] imagery in order-to cap-
ture the stochastic properties of the feature extraction pro-
cess. Transition matrices with conditional probabilities have
proven to be adequate for describing the uncertainty. Once
extraction probabilities of some basic features are known,
some probabilities of detecting more complex features can
be derived theoretically. E.g., Fuchs et al. [1994] determine
the probability of detecting line junctions by propagating the
probability of detecting edge pixels.

In the previous paragraph it was argued that many road mod-
els are to poor for a successful recognition. This recognition
is based on a comparision between object models and image
features. Like for the objects, it is largely unknown how to
describe an image such that the description is suitable for in-
terpretation purposes. Many feature extraction processes do
not preserve the information that would be very helpful for
interpretation and thus complicate the high level reasoning.

5 PROCESSING UNCERTAIN DATA

Image interpretation tasks have to combine several knowl-
edge sources. To assess the final quality the uncertainty in
the knowledge sources needs to be propagated. Related to
the different methods of representing uncertainty (section 3),
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Figure 2: Edges do not contain sufficient information to dis-
tinct roads from other linear features.

several techniques for combining uncertain knowledge and
propagating uncertainty have been developed.

e Probabilities

Most computations with probabilities are in some way
related to Bayes' theorem )

_ PBLAP(A)

in which the probability of the event A, given that
B has been observed is derived. Beside prior prob-
abilities P(A) and P(B), also the conditional proba-
bility of observing B in case of the event A has to be
known. This conditional probability corresponds to the
stochastic model used in adjustments, i.e. the assump-
tion of a Gaussian distribution with a certain standard
deviation. Error propagation with Bayes' theorem or
least squares adjustments of linearized models are very
common in photogrammetric calculations, but still find
little attention when dealing with GIS data. Heuvelink
et al. [1989] and Goodchild and Gopal [1989] give a
few examples of error propagation in GIS.

Probabilistic networks

Associated with the links of a probabilistic network
are conditional probabilities. The probability of each
proposition (node) may depend on the probability of
several neighbouring nodes. So-called relaxation meth-
ods update the probability of a proposition by using the
probabilities at the adjacent nodes together with the
conditional probabilities [Rosenfeld et al., 1976]. In
its simplest form, the probability of proposition A is
derived from neighbouring propositions B ... B, by

P(4) = [P(A|B:)P(B:) + P(A|=Bi)P(~Bi)] /n

i=1
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In Markov networks this approach may lead to prob-
lems, since the probability at a node A that has been
derived with the above formula, is used in a later stage
to recompute the probability at one (or more) of its
neighbouring nodes. Pearl [1988, p. 149] gives a nice
example of this kind of circular reasoning:

“Imagine that a processor F, representing the event
Fire, communicates asynchronously with a second pro-
cessor S, representing the event Smoke. At time tl,
some evidence (e.g. the distant sound of a fire engine)
gives a slight confirmation to F, thus causing the prob-
ability of Fire to increase from P(F) to P1(F). At a later
time, t2, processor S may decide to interrogate F; upon
finding P1(F), it revises the probability of Smoke from
P(S) to P2(S) in natural anticipation of smoke. Still
later, at t3, processor F is activated, and upon find-
ing an increased belief P2(S) in Smoke, it increases
P1(F) to an even higher value, P3(F). This feedback
process may continue indefinitely, the two processors
drawing steady mutual reinforcement void of any em-
pirical basis, until eventually the two propositions, Fire
and Smoke, appear to be firmly believed."

This kind problem can be solved by keeping track of
the source of evidence. However, this involves a more
complex algorithm, such that the advantages of local
asynchronous probability updates are lost.

Certainty factors-

Certainty factors CF1(A, B1) and CF2(A, B2) arising
from two observations B1 and B2 are used to derive a
combined certainty factor with [Buchanan and Short-
liffe, 1984]

CF1+CF2~CF1-CF2 if CF1,CF2>0
CF = CF1+CF24CF1-CF2 ifCF1,CF2<0
CF14+CFEF2 .
T (CF11,ICFa]) otherwise

Whereas single certainty factors can already be mis-
leading, combined certainty factors are even more dan-
gerous, since any correlation between observations is
neglected.

Dempster-Shafer theory

Given two sources of evidence, the mass functions m1
and m2 such that the combined probability of a subset
S, ml 4+ m2(S), is the sum of the joint probabilities
of all combinations of two subsets (T}, U;) which in-
tersection equals S. This sum is normalised by the
sum of the joint probabilities of all combinations of
two subsets which intersection is not an empty set.
This normalisation is required in order to take out the
so-called weight of conflicting evidence.

> my(T)m2(U;)
{z,j’T,'ﬂUj:S}

m1(T;)m2(U;)
{#,J1TsnU;#0}

m1+m2(S) =

This update formula shows many resemblances to com-
bining evidence from two independent sources with
Bayesian probability theory. The Dempster-Shafer up-
date formula is, however, controversial. Especially in
case of incomplete probabilistic models, i.e. Bel(S) +
Bel(=5) < 1, it may lead to curious results (see e.g.
[Pearl, 1988, p. 447]).

e Probabilistic logic

As more evidence becomes available, the theory of
probabilistic logic will use this information to further
constrain the space of all possible probability assign-
ments until the probabilistic model. In this way results
remain consistent with Bayesian probabilistic meth-
ods. Pearl [1988] therefore concludes that in case of
analysis problems with incomplete probability models
probabilistic logic should be preferred above Dempster-
Shafer theory.

e Possibilities
Possibilities of set membership are typically updated
with

poss(A A B)
poss(A V B)

min (poss(A), poss(B))
max (poss(A), poss(B))

Il

Il

These update rules are only equivalent to probabilis-
tic rules when A and B are completely dependent, i.e.
A — Bor B— A Butif eg, Aand B are mutu-
ally exclusive, it is clear that P(A A B) should be zero
[Cheeseman, 1984].

6 UNCERTAINTY IN EXTRACTING ROADS

Surprisingly, only a very few publications deal with automatic
updating of road maps. The usage of an old road database
as a valuable source of knowledge still is very uncommon.
Many more papers have been published on road extraction to
build up a database from scratch. Most of these publications,
however, pay very little or no attention to the uncertainty in
the extracted roads. It seems that, like in many areas of
image understanding, the results are too poor to seriously
consider to describe their quality.

In this section we will again make a distinction between the
verification and the detection step in the updating process.
For both steps several presented results will be shown and it
will be discussed how the uncertainty in these steps was dealt
with or could have been dealt with.

6.1 Verification

Four examples are discussed that compare the contents of
an aerial image with roads in a database. The first two are
aimed at verification. The goal of the last two papers was
the location of a road junction. However, the same strategy
might have been used for verification as well.

Gunst and Hartog [1994] and Gunst [1996] discuss the advan-
tages of a knowledge based interpretation strategy for updat-
ing road maps. The existence of an old road in the new
image is verified by submitting the cross correlation between
grey value profiles of road cross sections and an artificial road
profile to a statistical test. If the cross correlation is lower
than a threshold, a change is hypothesized. Problems arise
with (larger) cars and overhanging trees alongside the road.
Since the road model does not contain any knowledge about
possibly occluding objects, many false alarms result. Hence,
the uncertainty about the correctness of the verification re-
sults are mainly due to insufficient modeling of the road’s
context.

Baumgartner et al. [1996] compare extracted linear features
to the road sides in a vector-based GIS. Checks are performed
on parallelism, straightness and symmetry. With some effort
in error analysis of the feature extraction process, conditional
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Figure 3: Verification and detection of junctions [Gunst,
1996]. In black are detected changes. Starting from the
middle of the changed area, new roads are detected and fol-
lowed.

probabilities may be derived that can give these tesis a sta-
tistical basis. The question, however, remains whether a test
on linear features can be sufficient to confirm that the road
has not been changed. In other words, do extracted edges
that match in position with the roadsides in the GIS indeed
represent the sides of a road, or can they be due to some
other linear structure? This question is important for auto-
matic updating, since a false verification will not result in a
search for changes in the road network and therefore cause
omission errors in the updated database.

Nevatia and Price [1982] use a relaxation labeling technique
to match a structural description of a map to a structural
description extracted from an aerial image. The nodes in
such a graph-like description do not represent propositions
that are either true or false, but the different assignments of
map features that can be made to a certain feature of the
image. In [Price, 1985] different relaxation schemes for up-
dating the likelihoods of assignments are compared. Although
some schemes are called probabilistic, the final likelihoods of
the assignments cannot be considered as probabilities. Since
much- of the evidence found in the labelings at the neigh-
bouring nodes is used several times in the updating process,
many labeling “probabilities” converge to either zero or one.
The mapping between the descriptions that follow from the
likely assignments is, however, very useful for hypothesizing
the correct correspondences.

Haala and Vosselman [1992] use relational matching to match
the structural descriptions of a map and an image. Their
evaluation measure is based on the mutual information be-
tween the two descriptions and is derived from conditional
probabilities that were obtained in many feature extraction
experiments. Using the same probabilities the distribution of
the mutual information was also derived. Thus, it is pos-
sible to define a statistical test on the amount of mutual

information of the best mapping found. Since the structural
descriptions contain many attributes of features and their re-
lations, the probability of accepting a wrong match is fairly
low. Although the acceptance test was well defined, the num-
ber of performed matching experiments was too low to draw
conclusions about its applicability.

Summarizing, one may conclude that in many verification
tests it is possible to base these tests on a statistical analysis.
However, verification errors are likely to happen in case of
unmodeled occluding objects or poor object descriptions.

6.2 Detection and measurement

Gunst and Hartog [1994] and Gunst [1996] consider the case
of detecting and mapping new exit roads and fly-overs. After
the verification steps several locations with a possible change
are marked. In these areas goal-directed segmentation al-
gorithms try to detect parts of other roads of the junction.
Once these have been found, the new road parts are classi-
fied as either an exit road or a fly-over. The decision is based
on the values of a few attributes (e.g. the angle between
road elements) and knowledge of the road design rules (e.g.
exits only have a small angle with the main road). Probabil-
ity distributions of the attribute values are not used in this
test. They could, however, have been used to show the un-
certainty in the classification. In case of a high uncertainty it
would then be useful to consider multiple hypotheses about
the kind of junction. In.the current implementation no alter-
native classifications are considered.

Cleynenbreugel et al. [1990] suggest to use many more layers
of a GIS for the detection of new roads. Except for old roads,
other information like land cover, DEM'’s, and hydrological
information can also be helpful. Since land cover will dis-
criminate between urban and rural terrain, expectations for
the shape of road networks can be tuned to these classes.
DEM'’s can be used to derive slope maps that constrain the
possible directions of roads. It may even be possible to derive
probability distributions of the road direction at some point
given the terrain slope at that point. Finally, hydrological in-
formation (position of rivers, lakes, etc.) is also useful. Roads
in mountainous areas are often parallel to rivers and have as
few bridges (=construction costs) as possible. Roads in the
middle of lakes are very unlikely. Many of these heuristics are
valuable for image interpretation and will indeed be used by
human operators.

McKeown and Denlinger [1988] use profile matching for
tracking roads. Road trackers are usually initialized at po-
sitions indicated by an operator. In case of updating road
networks, it can, however, also be done automatically at those
positions where new junctions have been found. Vosselman
and de Knecht [1994] use the least squares method for pro-
file matching and Kalman filtering to estimate the position,
direction and curvature of the road. This approach enables
them to also estimate the precision of the road parameters
and to detect failures in the profile matching. Thus the un-
certainty in the road extraction is fairly well described. Road
trackers, in general, can however only deal with simple roads
and will fail at e.g. Y-junctions.

Other methods to outline roads are often based on snakes,
deformable templates or dynamic programming. Griin and
Agouris [1994] combine the advantages of snakes and least
squares template matching by constraining the matching re-
sults. Precision estimates are also obtained.
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Summarizing, relatively simple tasks like outlining single, and
completely visible roads can be performed successfully. If
the algorithm can be formulated as a least squares estima-
tion problem, quality descriptions can also be obtained. The
more complicated tasks that relate to interpretation of junc-
tions and the road context are far from being solved. It is
also clear, however, that much of the available knowledge is
not adequately modelled and, therefore, not available to the
interpretation process.

7 DISCUSSION

The main issues raised in this paper were the different ways to
describe and process uncertain data related to updating road
databases. It was also shown that there are many reasons for
the poor results in image interpretation.

Many ways to describe and process uncertain data are based
on probabilities and Bayes’ rule. Several alternatives, like cer-
tainty factors, Dempster-Shafer theory, and possibility theory,
have been applied successfully in some domains of Al, but
may lead to wrong results in other applications. The need
for conditional or prior probabilities is often mentioned as a
disadvantage of Bayesian probabilistic reasoning, but, in gen-
eral, the alternative strategies can not fill the gap of such
a lack of (modeled) knowledge. Gathering this information
remains important. Many claimed advantages of alternatives
for probabilities, e.g. possibility theory, can also be realized
with a probabilistic approach [Cheeseman, 1984].

Probabilities describe uncertainty, but probability numbers
themselves are also uncertain. Especially intuitive heuristics
will often only give us a rough idea about some probabil-
ity number. The endorsement theory [Cohen, 1985] studies
how to represent and reason with heuristic knowledge about
uncertainty. An interesting analogy can be found between
the concept of external reliability in least squares adjustments
(the influence of an error in an observation onto the estimated
unknowns) and the question how changes in probability dis-
tributions affect the outcome of a reasoning process.

Most algorithms for automatic road detection have very low
success rates. The context of an old road database contains
very useful knowledge to improve this. However, this knowl-
edge is far from sufficient to solve image interpretation tasks.
Much additional knowledge concerning the appearances of
roads in aerial images and the context of roads will need to
be modelled.

Uncertainty plays an important role in this knowledge. Much
of our knowledge is heuristic and therefore uncertain. This
uncertainty needs to be described in order to properly reason
with knowledge. In many cases conditional probabilities will
be appropriate, e.g. P(road direction|terrain slope).

Propagation of errors is also necessary. The purpose of error
propagation is not only to assess the quality of the final re-
sult, but also to value the correctness of intermediate results.
The latter motive may be even more important. A sound in-
terpretation can only be made when the quality of ali data in
all processing steps is known. If the results of some step are
found to be uncertain, this knowledge can be used to formu-
late multiple alternative hypotheses instead of only pursuing
the most likely one.

Modelling knowledge and propagating uncertainty are two
complicated tasks. A lot of effort will be required to ob-

tain satisfactory results in automatic image interpretation. It

therefore seems a good approach to first start with semi-
automated methods and gradually increase the interpretation
tasks of vision algorithms.
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