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ABSTRACT

Photogrammetric methods will increasingly be used for real-time applications. A typical requirement is the continuous 3-D
measurement of target locations which arise from three or more cameras at 0.02 ms. per measurement. In this situation user
interaction with algorithms and hardware will be relatively unimportant and a range of new issues will assume greater significance.
For instance, if 100-1000 target locations must be measured, then the computational effort must be minimised and if possible
completely predictable. Furthermore, the external parameters of the cameras must be checked and, if necessary, adjusted at the same
time as the 3-D co-ordinates are measured, while the internal parameters may be adjusted more slowly. Hence, under these
conditions, the characteristics of the currently available algorithms and the way in which they are applied must be studied.

This paper describes a methodology for solving collinearity equations based on iterative least squares estimation. Unlike the
traditional bundle adjustment which solves for the unknown co-ordinates of object targets and camera parameters simultaneously, a
solution for least squares estimation is developed which separates the parameters into two different groups, one for camera
parameters, and-the other for the co-ordinates of object points. Each group of parameters is adjusted individually with the other
group fixed. While conventionally this process may be carried out just once for a variety of purposes, by repeating this process both
sets of parameters are gradually refined. Because the same functional model is used in the two steps and the process is still a
conventional least squares optimisation, the-final result is the same as that obtained using the usual bundle adjustment but with a
considerable time and storage saving. The full covariance matrix is not available, but it will not always be necessary in real-time
systems and it can always be computed if required.
- ‘ estimation (Marzan, 1975; Karara, 1980). For situations where
1. INTRODUCTION interior and exterior camera parameters are known a direct
spatial intersection may be used (Granshaw, 1980; Shmutter,
In close range photogrammetry multiple CCD cameras are used 1974). Because each of these methods have deficiencies
to capture images of the targeted object from different  research is necessary to find an alternative fast, robust and
viewpoints. Based on the geometric perspective principle, a set  flexible solution.
of so called collinearity equations can be derived to establish ,
the relationships between 2-D observations on the camera This paper discusses a two step separated least squares
image planes and 3-D co-ordinates of object targets. By solving  adjustment. It can be shown that this method gives the same
the collinearity equations the 3-D co-ordinates of these targets results as the simultaneous bundle adjustment but with a
can be estimated. Three major steps are normally needed for  significant decrease in storage requirements and computational
this procedure: (i) 2-D image data  acquisition' and target time. While this method may not be new, to the authors
location; (ii) target matching between different cameras; and knowledge this is the first time the method has been discussed
(iif) least squares estimation of the unknown parameters of the in the context of real-time 3-D measurement. For example:
functional model. Using powerful processors or hardware real- Shmutter & Perlmuter (1974) discussed the use of iterations of
time target location can be realised. Various approaches to  the process of resection followed by intersection to save
target matching are possible such as using epipolar lines and  computer storage space. In this case the functional model was
epipolar planes (2-D and 3-D matching). However, solving not the same in the two steps hence the results could not be the
collinearity equations is still a considerable time consuming same as for a simultaneous bundle adjustment; Miles (1963)
procedure. It is not appropriate within the confines of this paper discussed the solution of normal equations by an iterative
to give a full review of the historical development of least process where submatrices representing part of the unknown
squares optimisation methods so some references and highlights parameters were solved separately. This was done to save
are given which are pertinent to the contents of this paper. The  computing storage requirements; and Hill et al (1995) described
principles of simultaneous least squares adjustment are well a two stage iterative solution for image interpretation based on a
known (Mikhail, 1981; Cooper, 1987). It is clear that this  point distribution model.
method provides the de facto standard for the output from an
adjustment. However, the requirement for large matrix 2. THEORETICAL BACKGROUND FOR ITERATIVE
inversions places large demands on storage and computing LEAST SQUARES ESTIMATION
power. To avoid this a sequential adjustment may be used as a
means of providing fast updates for a few parameters while not Least squares estimation is an efficient method dealing with
requiring a full matrix inversion (Shortis, 1980; Gruen, 1985). redundant measurement containing random errors of normal
For most true real-time applications the direct linear transform distribution. It has being widely used in control surveying and
(DLT) has been used but it does not provide the highest  photogrammeiry to evaluate unknown parameters when the
accuracy due to its modelling deficiencies and the reliance on measured elements are more in number than the minimum
accurately measured control points for camera parameter needed for a unique solution. In this section the normal least
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It is well known that increasing the number of photographs at
each camera station will increase the accuracy of 3-D co-
ordinates of the object points measured in photogrammetry.
Table 4.3 illustrates the results of the simulation test with six
camera stations and 200 targets. When the number of
photographs increase, the standard errors for x, y and z decrease
and they are inversely proportional to the square root of the
number of photographs as reported by Fraser (1992).

Number of &, (mm) oy (mm) o, (mm)

photographs
1 0.04686 0.04686 0.05752
2 0.03313 0.03313 0.04067
4 0.02343 0.02343 0.02876
6 0.01913 001913 0.02348
3 0.01657 0.01657 0.02034
[ 0.04686k"" 0.04686k " 0.05752k "

Table 4.3 Number of targets =200 o, =0.001 (mm) o =90°

Changing the network geometry gives different accuracy for
estimated 3-D co-ordinates. Table 4.4 and Fig. 4.2 illustrates
the influence of network geometry on the accuracy of 3-D co-
ordinates by changing the convergent angle a. A large angle
will cause the accuracy to worsen in x and y, and get better in z.
It can be seen approximately 110° will give the best accuracy
for x, y and z (RMS values) and that angles between 100° and
120° are reasonable. The g-value is equal to 0.5 in this situation
as reported by Fraser (1984).

() S, (mm) 5, (mm) o (mm) | Gpdmm)
60 0.04351 0.04351 0.08145 0.05893
80 0.04558 0.04559 0.06330 0.05217
100 0.04826 0.04827 0.05307 0.04992
108 0.04943 0.04944 0.05023 0.04970
110 0.04973 0.04974 0.04960 0.04969
112 0.05004 0.05005 0.04901 0.04970
120 0.05127 0.05128 0.04690 0.04986
140 0.05420 0.05421 0.04317 0.05080
160 0.05642 0.05643 0.04117 0.05184

Table 4.4 Number of targets = 200 Number of cameras = 6
6, =0.001 (mm)

80

Standard errors (Hm)

i
60 70 80 90 100 110 120 130 140 150 160

The convergent angle o

Fig. 4.2 3-D co-ordinate accuracy of different
network geometry

5. CONCLUSIONS

In this paper an iterative separated least squares estimation
method is introduced and compared with the simultaneous least
squares estimation method using a simple example. This
method has been applied to the solution of collinearity
equations as a two step separated adjustment method.
Simulation tests showed that this method gave the same result
as the traditional bundle adjustment. The advantages of this
method are: (i) it is much faster than the traditional bundle
adjustment. The bundle adjustment shows an exponential
increase with the number of target, while this iterative method

is linear; (ii) less memory is required than the traditional bundle
adjustment. With the bundle adjustment, the inversion of the
large matrix requires considerable memory space as the number
of unknowns increases. With the iterative method, the sizes of
the matrices to be inverted are 3x3 and 6x6 no matter how
many cameras and targets involved; (iii) it is reliable and
robust. Simulation tests show that the convergent property of
the separated solution is as good as that of the bundle
adjustment; and- (iv) it is more flexible than the direct linear
transform method, as camera orientations are continually
updated and a full functional model of all camera parameters
can be included. Further work is undeway to implement this
method in a real-time system and to consider other aspects such
as: datum problems; further mathematical analysis; and real-
time specific issues.
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Table 2.1 gives a comparison of the results between the
simultaneous least squares method and the iterative separated
least squares method for this plane positioning example with
various numbers ( m 10, 100, 1000 ) of base stations
surrounding the point P(x,y) whose position is to be estimated.
Distances /; (i=1, 2, ..., m ) from point P to each base station
are measured. The a priori standard deviation of each measured

distance is given by o, =0,/ , in which o, is the reference
variance which is taken to be 0.1 m. for /, = 100 m. In this
simulation test, (x,y )= ( 600.0, 500.0 ) is the true position of
the point P. (590, 510) is selected as the starting point for both
methods. The last two rows of Table 2.1 shows the standard
errors of x and y calculated from Eq. 2.11, Eq. 2.12 and Eq. 2.5.

No. BS 10 100 1000
i X y X y X y
0] 7590.00000 | 510.06000 | 590.00000 | 510.00000 | _590.00000 51000000
1 [7599.91478 | 499.99835 | 599.85208 | 500.02114 | 600.01219 499.99928
2| 600.03396 | 499.99296 | 600.02077 | 500.01939 | _600.00379 499.99861
3 [ 600.03412 | 499.99295 | 600.02079 [ 600.00378 s
SLS | 600.03412 | 499.99295 | 600.02079 | 500.01939 | _600.00378 459.99861
ISLSRMS T 008056 | 0.06587 | 0.03087 ] 0.02528 T 0.00957 | —0.00790
SLSRMS | 0.08545 | 0.06986 | 0.03103 | "0.02541 |  0.00958 | 0.00791

Table 2.1 Comparison between Simultaneous Least Squares
(SLS) and Iterative Separated Least Squares estimation (ISLS)

It can be seen from Table 1 that the iterative least squares
method gives exactly the same results as the simultaneous least
squares method after two or three iterations for this example
and the approximately estimated standard errors of x and y from
Eq. 2.11 and Eq. 2.12 are comparable with that calculated from
Eq. 2.5. Although this method is demonstrated for a specific
simple example, the results hold for other more complex
situations that require least squares estimation. The
computational expenses of the two methods are not compared
in this example since only two unknown parameters are
involved. If many unknown parameters, say hundreds or even
thousands, are to be estimated and the observation equations
have the special structure that is typical in photogrammetry, the
iterative separated least squares method will give a significant
advantage in terms of speed and memory requirements.
Furthermore, although the unknown parameters may be
estimated one by one, they may also be estimated in groups.

3. THE APPLICATION OF SEPARATED LEAST
SQUARES ESTIMATION IN PHOTOGRAMMETRY

3.1 Bundle adjustment

The bundle adjustment is a well known and powerful analytical
method for the determination of 3-D co-ordinates where
optimum results and statistical information are required. The
procedure of bundle solution is briefly reviewed here. If N,
cameras are used to measure N, object points and the jth object
point (X, ¥, Z) is imaged on the ith camera as a image point
(x5 ¥ij)> 2NN, equations can be constructed by the collinearity
conditions.  The well known collinearity equations are
expressed as

my (X ;= X ) +my, (Y = Y) +mys (2, - Z45)

Xij =—Ji

/ My (X = X))+ m (Y, = Y) +ms (2, - Z45)

vy =—f Mg (X ;= X))+ mg, (Y, = Y) +mps (2, - Z);)

y 'mf3|(X_j_XLi)*‘mfsz(}G‘YLi)+mi33(Zj'ZLi)
(i=1,2..,N. j=12.,N,)
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where X}, ¥, Z; are the 3-D co-ordinates of the jth object point ,
x; vy are the 2-D co-ordinates of its image on the ith camera,
X;i Yy, Z;; are the perspective centre position of the ith camera,
and m,,,, are the rotation coefficients derived from o, ¢, k; of
the ith camera. (3N, +6NN.) unknown parameters have to be
solved. Usually the number of equations 2NN, (2NN, +7 when
datum deficiencies are considered) is much larger than the
number of unknown parameters (3V,+6/V,). So these unknown
parameters can be estimated by the least squares method and the
3-D co-ordinates of each object point can then be obtained. The
traditional bundle adjustment estimates all unknown parameters
simultaneously. This means the dimensions of the coefficient
matrix (4'WA) of the lincarized observation equations will be
(BN, 6N )x(3N,+6N,). When the number of object points
and/or the number of cameras is very large, the computational
and storage expense of inverting the matrix (4'WA) will be
considerable. Even if partitioning of the coefficient matrix
(A'WA) is considered (Granshaw, 1980), inverting a matrix of
3N,x3N, or 6Nx6N, is still time consuming. Table 3.1
illustrates the computational expense of a typical Bundle
Adjustment operated on SUN SPARC Classic workstation.

| Number of targets [ 50 T 100 ] 150 T 200 [ 250 [ 300 [ 350 | 400 |
[Computational time(s) | 11 | 66 | 214 | 521 [ 997 [ 1690 | 3488 | 3967 |
Table 3.1 Computational expense of Bundle Adjustment

(Number of Cameras N, = 5)
3.2 Two step separated adjustment

When the iterative least squares method is used to deal with the
collinearity equations in photogrammetry, all unknown
parameters can be estimated one by one from the 3-D co-
ordinates of each object point to the parameters of each camera.
In this case, all the object points are independent when the
camera parameters are considered constant and all cameras are
independent when the object points are fixed. This can clearly
be seen from the structure of the Jacobian matrix 4 (Fig. 3.1a)
since there is no rank deficiency of the linearized observation
equations. It is convenient to divide all unknown parameters
into two groups, one for the 3-D co-ordinates of object points
and the other for the camera parameters, ie., X = (x,, ,xcp)l,
where the subscripts op and cp refer to 3-D co-ordinates of
object points and camera parameters respectively. This
technique may be termed a two step separated adjustment in
photogrammetry. The two grouped unknown parameters x,,
and x, are expressed as X, = (X}, Y}, Z;, X5, Vs, Zy..., Xy Y,
ZNp)t X, =Xpp Yip Zip ©p 04 Ky Xpo Yio Zpp 0 @y Ky
Xove Yine Zive One Ono Kne)' In this case, the Jacobian matrix
A is separated into two parts 4,, and A, the linearized
observation equations will be expressed as

Ax,,
[4, 4,],7 |=b+v

p
where 4,, and A, are submatrices of Jacobian matrix 4 which
refer to the partial differentials of the functional model with
respect to x,, and x,, respectively. Fig. 3.1a illustrates the
structure of the Jacobian matrix A4 with the size of
2NN,x(3N,+6N,), the left hand secn.on is A,,!, apd right hand
section is A, Each small block in A4, indicates a 2x3
submatrix and the big block in A, indicates a 2V,x6 submatrix.
(N, is the number of object points and N, is the number of

cameras).
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Fig. 3.1 (a) (b) (©)

(a) The structure of the Jacobian matrix 4 of the linearized
coIlinearity equations. (b) The structure of the coefficient
ma’mx A, WA,,I,. (c) The structure of the coefficient matrix

Ay WA

The basic principle of this two step separated adjustment
method is to estimate the unknown parameters x,, and x,
separately and iteratively. When estimating 3-D co-ordinates of
object points X,,, camera parameters X, are considered
constant. When estimating camera parameters x,,, 3-D co-
ordinates of object points x,, are considered constant. This two
step separated procedure is discussed in detail as follows.

3.2.1 Adjust 3-D co-ordinates of object points with cameras
fixed

If the camera parameters x,, arc supposed to be constant, all
elements of matrix 4, will be zero. Eq. 3.3 is simplified to

A%y = by +Vep 33

in which b,, and v,, are column vectors corresponding to the
right hand sides of Eq. 3.3 respectively. By the criteria of least
squares estimation, the corrections of object points Ax(,
given by

Ax,, =(A,,'WA,,)™" Aop’WbOp 3.4
where the coefficient matrlx (A ‘A,p) is a block diagonal
matrix with the size of 3N, x3N, whose structure is shown in
Fig. (3.1b). Each small block on the diagonal is a 3x3
submatrix. In this case, the covariance matrix (AOP'WA(,I,)'1 of
the 3-D co-ordinates of object points will have the same
structure as the coefficient matrix (Aop’WAop) and is calculated
simply by inverting N, 3x3 matrices instead of inverting a
3N,x3N, matrix. Since all the object points are independent
their corrections can be estimated one by one. The 3-D co-
ordinates of all the object points determined from the previous
iteration are used as the starting values in this iteration since the
collinearity equations are non-linear. After this iteration, these
3-D co-ordinates of object points are updated and refined. They
are then used to adjust the camera parameters in the next
procedure.

3.2.2 Adjust camera parameters with object points fixed

In this case, the 3-D co-ordinates of object points x,, are

considered constant. So all elements in matrix 4, are zero. Eq.
3.3 becomes
Agpxg, = by, + v, 3.5

in which b, and v,, are column vectors corresponding to the
right hand sides of Eq. 3.3 respectively. By the criteria of least
squares estimation, the correction of object points Ax,, is given
by

= (A, WA, 4,,' Wb, 3.6
where the coefficient matrix (ACP’WACP) is also a block diagonal
matrix with the size of 6N,x6N, whose structure is shown in
Fig. 3.1c. Each small block on the d1agonal is a 6x6 submatrix.
In this case, the covariance matrix (4, WAcp) of the camera
parameters will have the same structure as the coefficient matrix
(ACP’WACP) and it is calculated simply by inverting N, 6x6
matrices instead of inverting a 6/V,x6N, matrix. Since all the
cameras are independent their corrections can also be estimated
one by one. The parameters of all the cameras determined by a
previous iteration are used as the starting values in this
iteration. After this iteration, these camera parameters are
updated and refined.

3.3 Discussion.

In practise the two step process continues until the required
stopping criteria is met. Simulation tests and practical tests
show that this two step separated adjustment can always give
the same solution as the traditional simultaneous bundle
adjustment after a few tens of iterations even for a very weak
network and poor starting values. The test results are given in
the next section.

It has been assumed here that the focal length is a constant and
all systematic errors introduced by lens distortion or any other
sources have been calibrated beforehand, and the measured
image co-ordinates x and y are corrected accordingly. If these
systematic errors have not been calibrated or are not well
calibrated, additional parameters can be included in the
collinearity equations as for a self calibrating bundle
adjustment. In this case, more unknown parameters ( e.g. /4 or
more ) will be involved in the procedure of camera parameter
adjustment. Instead of 6x6, the size of each small block on the
diagonal of the coefficient matrix (Acp’WAcp) could be /4x14,
but the structure of remains the same, it is still a block diagonal
matrix. Alternatively, a third step may be used to adjust the
interior camera parameters only with object points and exterior
camera parameters fixed. It is well known that the Jacobian
matrix 4 and the coefficient matrix (4'WA) of linearized
observation equations in photogrammetry are very sparse and
very special in structure. There are 3N,+6N, elements on each
row of the Jacobian matrix 4 and only 9 of them are non-zero.
So the sparseness of A is given by

2
3N, +6N,

Sparseness (%)

S, = 3.7

Number of object points (N,)

Fig. 3.2 The sparseness of the Jacobian matrix 4
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Fig. 3.2 illustrates the sparseness of 4. When the number of
object points is 100, less than 3% of eclements in Jacobian
matrix A are non-zero. In this case, inverting the full size
matrix of (4'WA) or two partitioned matrices which is common
in the bundle adjustment is not efficient if the full covariance
matrix is not necessary. The full covariance matrix may be
valuable in some situations to evaluate the whole system, but in
many situations (e.g. real-time) the diagonal elements of
covariance matrix could be adequate to evaluate the accuracy of
estimated 3-D co-ordinates of the object points.

The two step separated adjustment makes full use of the special
properties of the Jacobian matrix 4 and the principle of iterative
least squares estimation. An accuracy evaluation of the
estimated 3-D co-ordinates of object points and camera
parameters are given approximately by

t -1
onp = (A4, WA,,) 3.8
! -1
O, = (A WA,) 3.9
In some industrial applications, for example real-time

monitoring of moving objects, the camera parameters are
relatively stable while the 3-D co-ordinates of object points
may move frequently. In this case, the object points can be
located with good estimates for camera parameters which can
also be monitored and if necessary adjusted. In addition real-
time 3-D co-ordinate measurement for hundreds of targets can
be achieved using inexpensive computers. Care must be taken
when the two step separated adjustment is applied in
photogrammetry in order to get the same results as the
traditional bundle adjustment. The linearized observation
equations should be the same for both steps. The objective of
the minimisation is the sum of squares of the residuals on the
image plane as is usual in the bundle adjustment but is often not
the case in many intersection algorithms for example Shmutter
& Perlmuter (1974).

4. SIMULATION TESTS

A simulation network was constructed to test the two step
separated adjustment method in photogrammetry and compare
it with the traditional bundle adjustment. Fig. 4.1 illustrates the
configuration of the simulation test network. The object points
were randomly distributed in a 400x400x200 mm. box with
eight control points on the edges which were used to initialise
the camera parameters. The focal length of the cameras was 25
mm. The cameras were uniformly located on a circle with a
distance of 2500 mm. to the centre of the box. The 2-D
projections of the targets on the image planes were then
computed. Approximate camera parameters were calculated
using control points with deliberately added errors.
Approximate 3-D co-ordinates of the object points were
computed using the approximate camera parameter. Both the
approximate camera parameters and the 3-D co-ordinates of the
object points were then used as the starting values. The results
of using the simultancous adjustment and the separated
adjustment were compared.

y

Fig. 4.1 The simulation test network

Table 4.1 shows some simulation test results of the bundle
adjustment and the two step separated adjustment for a four
camera network. The minimisation of the sum of squares of the
residuals (v'Wv) on the image plane is the objective of the least
squares process. The values of v'Wv calculated from both
methods were always same (the small differences in the eighth
decimal place is caused by the round off of input data), and all
residuals on the image planes were the same for the two
methods. A further check was made by comparing the
difference between 3-D co-ordinates of the object points
obtained from both methods after a 3-D transformation. The
results indicated no differences to the level of precision used. It
can be seen from Table 4.1 that the two step separated
adjustment is much faster than the bundle adjustment especially
when the number of targets is very large, since this method
shows a linear computational expense with the number of
targets. To measure 1000 targets for this four camera network,
the two step separate adjustment needs only 103 seconds. It
should be noted that the two step method iterates more times
than the bundle adjustment but for real-time applications only
one iteration may be required.

GAP TSSA

targets Time(seconds) v Wy(mm®) Time(seconds) v Wv(mm®)
50 11 0.00026146 5 0.00026144
100 66 0.00053658 11 0.00053662
150 214 0.00082628 17 0.00082622
200 521 0.00105640 22 0.00105626
250 997 0.00126715 27 0.00126712
300 1690 0.00148518 32 0.00148520
350 3488 0.00177046 34 0.00177045
400 3967 0.00206680 41 0.00206678
1000 103 0.00506967
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Table 4.1 Number of cameras = 4. (TSSA refers to the two step
separated adjustment. GAP, the General Adjustment Program
developed at the City University, is a simultaneous least squares
estimation program used in survey and/or photogrammetric
network adjustment - a typical Bundle Adjustment)

The accuracy of the 3-D co-ordinates of the object points
estimated by the two methods are the same since their results
are same. In the two step separated adjustment method, the full
covariance matrix is not calculated, the accuracy of the 3-D co-
ordinates of the object points estimated can only be evaluated
approximately by Eq. 3.8. Table 4.2 shows these approximate
values and the values calculated from the full covariance matrix
with a six camera network. It can be seen that the results are
similar especially when the number of targets increases. So the
approximately evaluated standard errors appear to be

acceptable.
Number of o, (mm) S, (mm) | o, (mm)
targets GAP TSSA GAP TSSA GAP TSSA
50 0.04653 | 0.04677 0.04644 | 0.04678 | 0.05614 0.05738
100 0.04678 | 0.04689 | 0.04677 | 0.04689| 0.05696 0.05763
150 0.04685 | 0.04693 0.04685 | 0.04693 | 0.05724 0.05770
200 0.04680 | 0.04685 | 0.04680 | 0.04686| 0.05716 0.05752

Table 4.2 Number of cameras = 6, 6, = 0.001 (mm), o = 90°
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It is well known that increasing the number of photographs at
each camera station will increase the accuracy of 3-D co-
ordinates of the object points measured in photogrammetry.
Table 4.3 illustrates the results of the simulation test with six
camera stations and 200 targets. When the number of
photographs increase, the standard errors for x, y and z decrease
and they are inversely proportional to the square root of the
number of photographs as reported by Fraser (1992).

Number of oy (mm) o, (mm) o, (mm)
photographs

1 0.04686 0.04686 0.05752

2 0.03313 0.03313 0.04067

4 0.02343 0.02343 0.02876

6 0.01913 0.01913 0.02348

8 0.01657 0.01657 0.02034

k 0.04686k "~ 0.04686k 0.05752Kk"

Table 4.3 Number of targets = 200 o, = 0.001 (mm) o =90°

Changing the network geometry gives different accuracy for
estimated 3-D co-ordinates. Table 4.4 and Fig. 4.2 illustrates
the influence of network geometry on the accuracy of 3-D co-
ordinates by changing the convergent angle o. A large angle
will cause the accuracy to worsen in x and y, and get better in z.
It can be seen approximately 110° will give the best accuracy
for x, y and z (RMS values) and that angles between 100° and
120° are reasonable. The g-value is equal to 0.5 in this situation
as reported by Fraser (1984).

a(°) G, (mm) o, (mm) ‘o, (mm) “Cpa(mm)
60 0.04351 0.04351 0.08145 0,05893
80 0.04558 0.04559 0.06330 0.05217
100 0.04826 0.04827 0.05307 0.04992
108 0.04943 0.04944 0.05023 0.04970
110 0.04973 0.04974 0.04960 0.04969
112 0.05004 0.05005 0.04901 0.04970
120 0.05127 0.05128 0.04690 0.04986
140 0.05420 0.05421 0.04317 0.05080
160 0.05642 0.05643 0.04117 0.05184

Table 4.4 Number of targets = 200 Number-of cameras = 6
o, =0.001 (mm)
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Fig. 4.2 3-D co-ordinate accuracy of different
network geometry

5. CONCLUSIONS

In this paper an iterative separated least squares estimation
method is introduced and compared with the simultaneous least
squares estimation method using a simple example. This
method has been applied to the solution of collinearity
equations as a two step separated adjustment method.
Simulation tests showed that this method gave the same result
as the traditional bundle adjustment. The advantages of this
method are: (i) it is much faster than the traditional bundle
adjustment. The bundle adjustment shows an exponential
increase with the number of target, while this iterative method

is linear; (ii) less memory is required than the traditional bundle
adjustment. With the bundle adjustment, the inversion of the
large matrix requires considerable memory space as the number
of unknowns increases. With the iterative method, the sizes of
the matrices to be inverted are 3x3 and 6x6 no matter how
many cameras and targets involved; (iii) it is reliable and
robust. Simulation tests show that the convergent property of
the separated solution is as good as that of the bundle
adjustment; and (iv) it is more flexible than the direct linear
transform = method, as camera orientations are continually
updated and a full functional model of all camera parameters
can be included. Further work is undeway to implement this
method in a real-time system and to consider other aspects such
as: datum problems; further mathematical analysis; and real-
time specific issues.
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