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ABSTRACT

A knowledge based approach for the surface reconstruction of buildings to be used in computer graphic applications is presented. Using
a calibrated stereo camera pair, scene depth is estimated by correspondence analysis. To compensate for noisy ‘and not dense depth
maps we use a-priori knowledge about the scene to further inicrease the quality of the reconstruction results. Symbols are assi igned to the
image content which are used to establish an interpretation of the scene in form of a semantic net. Together with the scene description
additional geometric constraints can be selected from a generic knowledge base. Each of these constraints describes a relationship
either between parts of the model (e.g. the perpendicularity of two walls) or between the 3-D scene and extracted 2-D image features
(e.g. edges or depth information). In the latter case 3-D edges and orientations of model parts are linked by constraints to the respective
2-D feature. Due to noisy data the resulting set of constraints normally lacks consistency. Numerical optimization is applied to solve
this inconsistency, thus determining the model which best meets all imposed constraints. They are used both for restoring the object’s
geometry from the data and incrementally adding new camera viewpoints as parts to the scene description. In this mode the constraints
afe minimized by optimizing the camera pose and orientation.

1 Introduction : most of the data labeling and the constraint assignment automat-
ically. The surface reconstruction described in this contribution

The visualisation of virtual environments, e.g. for driving simu- could also be part of a fully interactive system,

lators or architectural planning systems, ask for highly photore-
alistic 3-D models. The automatic or semi-automatic generation In this contribution the facilities of the system are shown for the

of these models is of current interest [1][5]. The data-driven ap-  application of modelling buildings. The model surfaces are ap-
proach [4] uses only the assumption of piecewise continuous sur- ~ proximated with polygonal meshes.

faces and creates a triangular mesh from depth maps. Often mod-

els of well known regular objects like buildings appear unnatural ‘ - 2 System Overview

due to errors in the restored object geometry. It is important for
these models that certain expectations of human observers are
met. Geometric distortions and symmetries are particularly crit-
ical. Inaccuracies are recognized 1mmed1ately and appear to be
disturbing,

The presented system AIDA (fig. 1) processes a sequence of
stereo image pairs, taken with two cameras mounted on a rigid
bar. One stereo pair is the input of the system for one sequential
operation. In subsequent operatlonal steps the followmg stereo
pairs are integrated.

On the other hand there are approaches to integrate explicit
knowledge into the reconstruction process. The work presented
here uses a model driven approach where the object properties are
stored in an explicit knowledge base [6]. It is part of the scene
interpretation system AIDAI[Z][3]. An interpretation identifies
the objects and selects appropiate geometric constraints for sur-
face reconstruction. In addition to these internal constraints the
interpretation assigns image features like regions and contours
to object parts. This measured data and the internal geometric
constraints are used in a uniform scheme: The 3-D model under
reconstruction is compared with the constraints and the back pro-
jected contours and regions using specific cost functions. The Figure 2: Gray coded depth- and certainty map of a building
restoration of object geometry is usually not possible without :
conflicts. Therefore a numerical error compensation method is In an initial processing step the system is calibrated using a regu-
applied. lar calibration pattern of control points. The calibration estimates
The constraint description in conjunction with the labeled datais  the internal camera parameters (internal camera orientation) and
a generic description of the objects in contrast to parameterized the relative external camera orientation using the method of Tsai
models. The latter models have a fixed topology and complexity. ~ [10]. With this information the input image pair is rectified to
In an optimization process only size and orientation of the models ~ achieve epipolar geometry. In a next step a disparity map is cal-
are adapted to the data. The complexity of generic models is culated using a stereoscopic correspondence analysis based on
determined adaptively during the reconstruction. the cross correlation of blockwise pixel luminance values. With
the known relative camera orientation of the camera pair the dis-
parity or parallax values are used for the calculation of (camera
! Automatic Image Data Analyzer centered) depth values (fig. 2 left). During depth calculation an

The goal of the scene interpretation system AIDA is to perform
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Figure 1: System overview

additional certainty map is created containing a reliability mea-
sure for the depth value. The certainty measurement is a com-
bination of NCC? between left and right image and the image
gradient (fig. 2 right).

In addition to the estimation of the depth maps, regions and con-
tours are extracted. The segmentation into regions uses the cri-
teria of the same orientation of surface points found in the depth
map. The details of the stereo pair processing and the segmenta-
tion can be found in [8][4].

The central module of the system is the interpretation. It assigns a
semantic meaning described in the knowledge base to the features
extracted in the image processing pipeline before. The knowl-
edge is formulated in a semantic net [6] and structured into three
layers of abstraction (fig. 3): The top layer or scene layer de-
scribes the world in terms that are highly symbolic. The middle
layer called world centered layer describes the appearance of the
objects found in the model world in 3-D space and in absolute
world coordinates. The bottom layer describes the objects ap-
pearance in camera centered coordinates, i.e. in 2-D space.

part—g part=of
)
: © is-a )
con-of | House | . part-of
part—of ‘ part—of is—a
_Roof {  Wall 1 Surface |
m con—of con=of

Figure 3: Example semantic net (part)

The objects are represented as nodes in the net. The nodes are
connected via special edges or links: The part-of link enables

2Normalized Cross Correlation
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an object decomposition. The concrete-of (con-of) link connects
different layers of abstraction. The is-a link permits inheritance
of attributes from general to specialised nodes. Another link is
the instance-of link. It connects an instance node that was build
up during the interpretation with its prototype in the knowledge
base.

The creation of instances that describe the real scene is the goal
of the interpretation. It assigns those node types to objects that
are found in the scene, for example an instance of the node House
in fig. 3. The process of the interpretation is described in [6] in
detail. It is based on hypotheses and the their verification. In the
beginning of the interpretation a hypothesis House is established.
In the following the interpretation creates sub-hypotheses for ob-
ligate parts (like walls) of the house and tries to verify them in
the image. After all obligate hypotheses have been verified the
higher hypothesis House is validated.

From the resulting scene description geometrical constraints are
selected. These are together with the measured features from the
image processing pipeline the input of the surface reconstruction
module, which is described in the following sections.

3 Surface and Camera Representation

To achieve our goal to optimize the resulting 3-D model accord-
ing to some constraints, we need a scene representation that al-
lows parts to be moved around under the influence of an global
optimization algorithm.

As can be seen in figure 4, each part of the model (e.g. a wall
or a roof) is represented as a plane in space. The 3-D model
edges result from intersections between two neighbouring parts,
thus leading to a polygon description of each model element. To
control its position and orientation, each model part is assigned a
local coordinate system. The origin ¢ of the system is positioned
above the center of the wall with the three axes u, v, w spanning
a righthanded coordinate system. The vector (1,1, 1) has the op-
posite direction of the surface normal. A local coordinate system
for each part is necessary since the desired global optimization
is sensitive to inhomogeneous coordinates. With the proposed
local system all coordinates are treated with equal influence on
optimization.

The scene description consists of elements of the actual model
such as walls, as well as cameras. For camera representation the
cahv-model is used [7]. There are six degrees of freedom for
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Figure 4: Used local coordinate system

the extrinsic parameters of a camera and three for each part of
a model, which in the following is refered to as model part or
surface element.

4 Constraint Description

We propose a number of different constraints that are intended to
judge properties of man-made regular objects such that subjec-
tively good-looking models result.

Every constraint is represented by a function c. The value of
c corresponds to the deviation of the model from the respective
restriction. An optimization module moves the parts to find the
part positions which lead to the minimum sum of all constraint
functions.

Two different kinds of constraints are used: Internal and mea-
surement constraints. Internal constraints describe properties
within objects, i.e. they relate model parts to each other (e.g.
perpendicularities or parallelisms). They are described in section
4.1 through 4.4.

Measurement constraints, on the other hand, integrate sensor data
like depth maps and a scene segmentation into the model (section
4.5 and 4.6). Hence internal properties and measured data are
integrated in a uniform representation.

Figure 5: Internal constraints used for the system

4.1 Angle constraint

Model parts can be arranged to form a certain angle between
them. In figure 5 the angle @3 between the front and side wall
of the model is intended to be 90 degrees. The use of the angle
constraint is not restricted to 90 degrees, though. The constraint
function is

cp = (s = 9(P))” - wy, M

where . denotes the angle as it should be. ¢(p) describes
the actual angle as function of the position vector p of the in-
volved parts. w, is a weight that controls the relative influence
of the constraints among each other. Every constraint function is

595

weighted with some weight w that empirically has to be deter-
mined once. The function equals zero if the actual angle equals
the intended angle. '

4.2 Parallel constraint for parts

Two model parts can be constrained to be parallel. Extensions
of buildings, for example, can be aligned parallel to larger walls,
whose spatial orientation can be estimated more precisely from
image data. In figure 5 the walls P; and P; are an example where
an parallel constraint for parts could be used. This constraint is
a special case of the angle constraint. For ps = 0 the constraint
function is:

Cpar = (‘P(p))z * Wpar- (2)

4.3 Parallel constraint for edges

In addition to model parts two model edges, which are the inter-
sections of two parts, can be constrained to be parallel, e.g. two
edges of a house should be parallel like edge Es3 to E4 or E; to
Ej5 in figure 5. The constraint function is the same as above ex-
cept that the angle between the edges is used instead of the angle
between the plane normals.

4.4 Symmetry constraint

Symmetries are important for subjectively good looking objects.
Human observers are very sensitive to violations of expected geo-
metric relations. For this purpose a symmetry constraint is intro-
duced that judges the difference between two supposedly equal
angles. In figure 5 this concerns the angles ;1 and @2, which
means the slope of the roof should be identical for the front and
back part.

The cost function is:

Coym = e - (1 (P) — 02(p))". 3

where @1 and 2 must equal each other to minimize the func-
tion’s value to zero.

We propose the following measurement constraints to incorpo-
rate 2-D image features: :

4.5 Position constraint

We introduce a position constraint to ensure that depth informa-
tion (fig. 2) matches with the actual part position and orientation.
A segmented image and a depth map are jointly used to estimate
an initial orientation 7;,;+ and an initial center of gravity ¢; ;¢ for
each part by plane regression. If the part is being moved by the
optimization algorithm the actual position ¢(p) and n(p) may
differ from their initial values (cf. figure 6).

€ init

N jnjt

Figure 6: Moving a surface element

The cost function

cdir = we [£7(Minit, n(P)) + wn - ((€(P) — Cinit) * Minit)?]
€]
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values the match between initial and current position and orienta-
tion respectively. For orientation the angle between initial normal
direction 72;5;+ and moved normal n(p) contributes to the cost
function whereas for position the projection of (c(p) — Cinit)
onto the plane normal is used. Thus a position shift perpendic-
ular to the plane normal does not have any influence on the cost
function.

All values w(4, j) of the part’s area in the certainty map (fig. 2
right) are integrated into the constraint function weight w. ac-
cording to the following formula:

we = Z w(i, §).

(i,4)eR

Larger walls (regarding their area in the image plane) with more
reliable certainty values lead to model parts that are less moveable
by the optimization than smaller parts. Together with internal
constraints (e.g. the parallel constraint) smaller extensions are
aligned to larger parts whose spatial position can be estimated
more accurately from image data.

4.6 Edge constraint

As shown in figure 7 the goal of an edge constraint is to make the
projection of a model’s 3-D edge congruent to the correspond-
ing image contour. To have the 3-D edge’s projection lie on the
image edge is particularly important for texturing, which is the
backprojection of image information onto the 3-D model.

auxiliary planes

image plane

camera focus

Figure 7: Using edge information for 3-D modelling

The image edge is represented by the points p1 and p2, which are
used to span two auxiliary planes. These planes are perpendicular
to the so called plane of sight which is determined by the focal
point of the camera, p1 and pa. The 3-D model edge intersects
with the auxiliary planes in S1 and Sa. The orthogonal distances
41 and J2 between the intersections and the plane of sight have
influence on the cost function:

Cedge (p) = Wedge * (5%(1)) + 5%(1)))7 ©)

with the weight weqge that controls the relative influence of the
contraint during optimization.

All above constraints are designed to meet the needs of human
spectators regarding geometric properties.

5 Incremental Surface Reconstruction

The goal of surface reconstruction is to find the object’s shape and
perform the accompanying viewpoint registration. The latter is
used to integrate new information if further viewpoints are added
to the scene description.
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As described in section 3 the model is represented a planes in
space which can be moved through the parameter vector p. To-
gether with the model parts a number of geometric constraints,
as described in the previous section, are derived from the generic
knowledge base during interpretation. Due to faulty image data
the resulting set of constraints generally lacks consistency. Nu-
merical optimization is applied and leads to a model which best
meets all constraints. Therefore the optimizing algorithm finds
the parameter vector p such that the global sum of all N cost
functions ¢(*) is minimized:

N
cgton(p) = Y wi - ¢ (p) = Min, (©)
i=1

where w; denotes the respective weight for the cost function. For
details on how to choose the weights refer to[9].

In the approach presented here the method of conjugated gradi-
ents is employed for minimizing the global sum of cost functions.
The use of a general minimization technique like conjugated gra-
dients makes it easy to extend the existing set of constraints. Only
a new cost function is needed to integrate the judgement of new
features into the system.

To avoid local minima and to reduce the parameter space needed
for optimization, the search for the best fit is done hierarchically,
by use of the system’s control structure. In'a the first step the
shape is only approximated by a few planes and then refined in
following minimizations.

In addition the cost functions are used for verification of hypothe-
ses generated during interpretation.If for instance an angle be-
tween two parts has been wrongly predicted to 90 degrees in-
stead of, say, 135 degrees, the affiliated cost function will return
an unusually high value. This indicates that the hypothesis has
probably to be rejected by the interpretation.

3rd Kamera-
position

first camera-\‘ —

position 2nd cameraposition

Figure 8: Registration of new camera viewpoints

Internal constraints apply only to objects. The measurement con-
straints like edge constraint or position constraint, on the other
hand, are used for integrating camera related image features like
edges or depth information into the model. Thus two ways of
minimizing the latter constraints are possible: Either the model
parts or the camera model can be moved in space by numerical
optimization. This allows not only to further optimize the model
but also to incrementally add new camera viewpoints to the scene
description. In this mode the constraints are minimized by mov-
ing the new camera to the position best matching the constraints.

As depicted in figure 8 the first camera viewpoint is used as a
reference position, Together with a first shape approximation the
second viewpoint is determined. Using this shape approximation
the following camera positions are estimated. In final steps the
model is completed with smaller extensions.
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Constraints are hence exploited both for improved surface recon-
struction and camera pose estimation, thus leading to a consistent
and closed surface description from multiple viewpoints.

6 Experimental Results

This section deals with some experimental results that have been
achieved with the system. In the first part we show the incremen-
tal reconstruction of an existing appartment building. The'second
part deals with the view point registration that can be achieved
with the system.

6.1 Hierarchical Surface Reconstruction

Figure 9 shows the input from the first of two camera viewpoints
for the modelling process: The original camera image (a), a depth
mep of the scene (b), which has a large number of dropouts, and
a manually created segmentation of the scene (c).

Figure 9: Input data for the modelling process: image (a), depth
map (b), segmentation (c)

In a first step the approximate shape is reconstructed consisting
only of the main walls and the front roof (fig. 10 left). The knowl-
edge base inserts the back walils although they are occluded in the
first viewpoint. A number of edge, position and angle constraints
are then imposed on the model, which serve to improve the initial
model’s shape.

Figure 10: Incremental surface reconstruction

In the same optimization process the second viewpoint position
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is estimated through edge and position constraints that link the
model to the other camera position. After computing the basic
form, the main parts are fixed and used as references for the in-
cremental refinement of the model. As shown in fig. 10 (right)
smaller parts like oriels are aligned through parallel constraints
to the already determined main walls.

Figure 11 depicts the completed wireframe model of the build-
ing. In a last reconstruction step the original image information
is backprojected onto the model, which can be seen in fig. 12. It
has been generated from two stereo images, depth maps, a manual
scene segmentation and constraints derived from the knowledge
base. 28 surface elements are connected by 51 constraints., The
model is completely closed and has been textured only from two
original images. The camera position of the second camera has
been determined together with the model’s construction.

Figure 11: Reconstructed Wireframe

Figure 12: Textured Model

6.2 Viewpoint Registration

During view point registration new camera positions are added
to the scene description. They can be used for incrementally re-
fining the model. To show the performance of the system during
viewpoint registration a reference object of well known geome-
try has been used. Figure 13 shows two original images (front
and right side). The estimated shape in form of a simple box is
overlayed.

Figure 13: Two views of the reference object using already regis-
tered camera positions
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front  right rear left
reference angle (degrees) 0 85 195 265
calibration result (degrees) 0 85,07 195,02 265,02

Table 1: Viewpoint calibration results

The registration procedure is illustrated in figs. 14 and 15. Begin-
ning with the front camera position a new viewpoint is registered.
The left image of fig. 14 shows the camera image of a new view-
point with the model’s edges projected in the (yet) wrong camera
position. The projected edges do not match with the image edges.
Fig.14 (right) shows the model’s geometry together with the ini-
tial front camera position in form of a pyramid.

Figure 14: Before registration of a new viewpoint

Figure 15: After registration of a new viewpoint

The situation after registration is depicted in fig. 15. The new po-
sition has been estimated leading to a projection of the geometry
that matches the image edges (fig. 15 left). The second pyramid
(fig. 15 right) depicts the estimated camera position.

An angle of about 45 degrees between two viewpoints could be
estimated without encountering numerical instabilities. In case
larger movements have to be estimated an initial guess had to
be made. The images of the reference object were taken with
one camera while the object was rotating in front of it on a com-
puter controled turntable. Due to the very accurate positioning
of the turntable the rotational angle between the images is ex-
actly known. Table 1 shows the calibration results for some se-
lected viewpoints. It should be stated that the presented estima-
tions were achieved only using a manually generated segmenta-
tion. By use of a subpixel-accurate edge detection the precision
could probably be further increased.
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7 Conclusions

We have discussed the surface reconstruction of the system
AIDA, which extracts 3-D geometry from a sequence of stereo
images. It is particularly employable when reconstructing scenes
consisting of man-made objects like buildings. Through the use
of an explicit scene description in form of a generic semantic
net geometric constraints are selected during interpretation. They
restrict the model geometry to fulfill some expectations human
observers have about such scenes like rectangular, plane walls,
straight edges or symmetries.

This allows to further increase the model’s quality compared to
the results that can be achieved by only using image data. In
particular properties that are important to human observers, like
symmetries and parallelisms, are improved. Especially the edge
constraint has proved to be very important since texturing de-
pends directly on the exact congruence between projected model
edges and image contours.

The approach presented in this contribution leads to realistic
models that can be employed e.g. for driving simulators or in
virtual scenes for film production.
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