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ABSTRACT
Laser altimetry has, and is continuing to have a profound impact on photogrammetry. This paper discusses the
interrelationship between the two fields, identifies problems, and suggests a common research agenda. Surface
reconstruction is an important application in photogrammetry. DTMs, for example, are as much an end result as
an intermediate step for orthophoto generation and for object recognition. The quality control is a central issue,
regardless how the surface is obtained. The paper analyzes the effect of systematic errors of laser ranging systems
on the reconstructed surface. To keep these effects as small as possible, rigorous calibration methods are necessary,
including suitable test surfaces and proper error modeling. In a more complex setting, better results are achieved
if laser ranging is combined with stereopsis. The combination of different surface measurements is a challenging
fusion problem. At the sensor level, the systems, such as camera and laser, can be tightly integrated to the degree
that the laser footprint is recorded by the camera. On the feature level, extracted features from imagery and laser
ranging must be combined in a way that accounts for the different error models. Finally, on the symbolic level, a
combined surface must explain the measurements resulting from the different sources.

1 Introduction

Photogrammetry and airborne laser ranging (ALR) are
the two most widely used methods for generating dig-
ital terrain (DTMs) and surface models (DSMs). Surfaces
play an important role in photogrammetry. A DTM is
as much an end result as an intermediate step for or-
thophoto production and object recognition.

The development of airborne laser ranging started in
the 1970s in North America mainly for bathymetric ap-
plications. With the emergence of GPS and INS other
applications, such as monitoring ice sheets in Green-
land and measuring canopy heights were successfully
approached. As a result, a “laser altimetry" community
emerged in North America with researchers from NASA
forming the nucleus, and photogrammetrists being vir-
tually absent—quite in contrast to Europe where pho-
togrammetrists greatly facilitated the application of air-
borne laser ranging.

The present workshop Mapping Surface Structure and
Topography by Airborne and Spaceborne Lasers is
unique in that it brings together for the first time
the laser ranging and photogrammetry community—
undoubtedly, for the benefit of both. This paper dis-
cusses the interrelationship between the two fields,
identifies problems and suggests a common research
agenda.

The paper begins with a comparison of photogramme-
try and laser ranging with respect to generating DTMs.
Such comparisons have been carried out in the past, see,
e.g. Ackermann (1999) and Baltsavias (1999) for an ex-
tensive review. Here, we emphasize similarities and im-
portant differences for the motivation of a joint research
agenda. The comparison is divided into data acquisition
and surface reconstruction.

Some effort is placed on the impact of systematic er-

rors on the reconstruction of surfaces from laser rang-
ing. This is an important issue because laser ranging
does not provide redundant information for the compu-
tation of 3-D points. Whether a point is correct or not
can only be inferred later—if at all. The quality of laser
surfaces depends a great deal on a well calibrated sys-
tem, including the identification of systematic errors.

The raw laser data forms a cloud of 3-D points that have
no topological relationship. Surface properties, such
as breaklines and abrupt discontinuities in surface nor-
mals, must be made explicit. This is an important post-
processing task. The remainder of the paper is a brief
summary of essential post-processing steps. Details
about most aspects appear as separate papers from our
research group at OSU. The collaborative work of Byrd
Polar Research Center’s Ice Dynamic Laboratory, headed
by B. Csathó, and the digital photogrammetry labora-
tory are a most rewarding experience. We hope that this
example encourages further contacts between the laser
and photogrammetry community in North America.

2 Comparison between Photogrammetry and Laser
Ranging

Photogrammetry and airborne laser ranging (ALR) are
the two most popular methods for generating digital
terrain models (DTMs) or digital surface models (DSMs)
of extended areas. Hence it stands to reason to com-
pare the two methods. This section elucidates similar-
ities and relevant differences. In the interest of brevity
we keep the comparison on a general level here. Acker-
mann (1999) and Baltsavias (1999) provide more de-
tailed analysis, for example. Table 1 contains a number
of comparison factors that are divided into data acquisi-
tion and surface reconstruction.



Table 1: Comparison between ALR and photogrammetry.

photogrammetry laser ranging

data acquisition

flying height H < 6000 m < 1000 m
swath < 108o < 40o

coverage continuous irregular
footprint size 15µm×H/f 1 mrad×H
flying time 1 hour 3 to 5 hrs
weather cond. very restrictive flexible

surface reconstruction

redundancy 2× photo− 3 0
accuracy

planimetry < 15µm×H/f 1 dm+ 5′′ × H
elevation ≈ H/10,000 m ≈ 1 dm

surface charact. explicit implicit
automation

degree medium high
complexity medium low

2.1 Data Acquisition

Essentially, both methods sample the surface. The fly-
ing height of existing ALR systems—typically less than
1000 m—is quite limited, compared to photogramme-
try. The sampling size (ground pixel size in case of pho-
togrammetry, footprint size in case of ALS) is consider-
ably smaller in photogrammetry when the same flying
height is assumed. For H = 1000 m and f = 0.15 m we
have a pixel size on the ground of 15 cm, but a footprint
size of 1 m, for example. In ALR systems the average dis-
tance between samples is several times larger than the
footprint size, resulting in an irregular sampling pattern
with gaps. On the other hand, photogrammetry provides
continuous ground coverage.

The smaller swath angle of laser scanning systems and
the limited flying height cause much longer flying times
for covering the same area. Baltsavias (1999) mentions
a factor of three to five. Since the initial equipment cost
and the shorter life time result in substantially higher
amortization cost, the data acquisition with ALR is quite
a bit more expensive. Now, this is partially compensated
by the much less stringent weather conditions for ALR
missions; the waiting time for crew and equipment is
certainly much longer in photogrammetry.

Another interesting aspect in this comparison is the sur-
face characteristic. It is clear that photogrammetric sur-
face reconstruction methods require a reasonable image
function, that is, good contrast or texture. Sand, snow,
ice, or water bodies defy photogrammetric methods. In-
terestingly enough, ALR works very well in these condi-
tions.

2.2 Surface Reconstruction

In this section we briefly compare ALR and photogram-
metry in terms of surface reconstruction. Fig. 1 illus-
trates the principle of determining a surface point by
ALR. Although grossly simplified, it captures the basic
notion of establishing relationships between different
coordinate systems. Let us begin with what we may call
the laser beam coordinate system (x′, y ′, z′) whose ori-

gin is at the center of the laser’s firing point and whose
z′−axis is oriented opposite to the direction of the laser
beam. In this system, point P on the surface is expressed
by the range vector r = [0,0, r ]T with r the measured
distance (range).
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Figure 1: Relationship of local laser coordinate sys-
tems and object space reference system for transform-
ing range data to surface points.

Obviously, the laser beam system changes with every
new range measured. Let us transform it into the laser
reference system, denoted by x, y, z. Its origin is also
at the laser’s firing point. The orientation depends on
the particular system; for example, in nutating mirror
systems, the z−axis would be collinear with the rotation
axis and the x − axis points to the starting position of
the rotating mirror; in the case of a scanning system, the
x − z plane would be identical to the scan plane with z
indicating scan angle zero.

The transformation from the beam system to the refer-
ence system is accomplished by the rotation matrix Ri
since there is only a rotation involved. Ri is determined
by the laser system. In the case of a profiler, Ri is the
identity matrix; for a scanning system, the rotation ma-
trix is determined by the scan angle; two angles are nec-
essary to determine Ri for a nutating mirror system. Let
us call the relationship of an individual laser beam with
respect to the reference system the interior orientation
of the laser system.

To establish a relationship of the laser system to the ob-
ject space, the exterior orientation is required. Thus, we
obtain for the position of the center of the laser footprint

p = c+ ReRir (1)

In this equation, c expresses the positional and Re the
angular component (attitude) of the exterior orientation
(see also Fig. 1). These two components are usually ob-
tained from GPS and inertial measurements. We omit
here the details of establishing the relationship between
the platform orientation system and the laser system



for it does not offer new insight into the comparison
laser/photogrammetry reconstruction.

Eq. 1 expresses the basic reconstruction principle for
laser systems. Note that there is no redundant infor-
mation for p; if the range or the orientation is wrong
we will find out—if at all—only later by analyzing local
properties of the reconstructed surface.

We now turn to the reconstruction of surfaces by pho-
togrammetry. Fig. 2 illustrates the concept. To compare
it as closely as possible to the case just discussed, let us
begin with a local image coordinate system (x′, y ′, z′)
that has its origin at the perspective center. Its z′−axis is
collinear to the light ray from the surface point P through
the perspective center. In this system, point P on the
surface is simply obtained by

r = λd (2)

with d = [0,0, d]T the point vector of image P in the
local image coordinate system; λ is a scale factor. Since
λ is unknown, it is not possible to determine P from a
single image. The standard photogrammetric procedure
is to perform the reconstruction from multiple images.
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Figure 2: Relationship of local image coordinate systems
and object space reference system for reconstructing
surfaces from images.

As discussed in the case of the laser system, the local co-
ordinate system changes from point to point. Let us in-
troduce a reference system, known as image or photo co-
ordinate system. The origin is the same, but the z−axis
is collinear with the camera axis. The transformation
from the local ray system to the reference system is ob-
tained by the rotation matrix Ri which is defined by the
spatial direction of the image vector r = [x,y,−f]T . In-
troducing the exterior orientation (c, Re), we find for the
reconstruction of P

p = c+ λReRid (3)

This equation is identical to Eq. 1, except for the un-
known scale factor λ. The reconstruction from pho-
togrammetry requires two or more images. This is

clearly a disadvantage compared to ALR, because work-
ing with multiple images requires that object point P
is identified on all images involved. This task—known
as image matching—is not trivial if performed automat-
ically. On the other hand, the reconstruction is redun-
dant; each additional image increases the redundancy
by two.

To complete the comparison of determining surface
points by ALR or photogrammetry, let us briefly discuss
how the exterior orientation is obtained. In photogram-
metry, two possibilities exist. In the case of direct orien-
tation, the relevant parameters are derived from GPS/INS
observations, just as in ALR systems. The traditional
approach, however, is to compute the orientation pa-
rameters from known features in object space, such as
control points. There are two important differences be-
tween these approaches. If the exterior orientation is
computed from control points then the reconstruction
of new points in the object space becomes essentially an
interpolation problem. In the case of direct orientation
(no control points in object space), the reconstruction re-
sembles extrapolation. Why is this important? Extrapo-
lation has a much worse error propagation than interpo-
lation. Another subtle difference is related to the interior
orientation, here symbolically expressed by Ri. Schenk
(1999) points out that errors in the interior orientation
are partially compensated in the indirect orientation, but
fully affect the reconstruction in the direct orientation.

3 Analysis of Systematic Errors

As discussed in the previous section, the computation
of 3-D positions from range measurement and GPS/INS
observations is not redundant. If one of the variables in
Eq. 1 is wrong we will not find out, except perhaps later
when analyzing the data. Thus, it is important to con-
sider the effect of systematic errors of a ALR system on
the reconstructed surface—the purpose of this section.
As illustrated in Fig. 3, we assume two systematic errors;
a positional error q and an attitude error, expressed by
the two angles ω and ϕ which determine the rotation
matrix Ra. Although this is a grossly simplified view it
captures the notion of reconstruction errors. A likely
source for a systematic positional error is rooted in the
problem of accurately synchronizing the GPS clock with
laser pulse generator. How significant is this error? Sup-
pose an average velocity of the airplane of 100 m/sec
and a timing error of 5 msec. Then, the resulting posi-
tional error would be half a meter—clearly something to
worry about for low altitude, high precision laser altime-
try projects. A typical example of a systematic angular
error is the mounting bias.

The airplane and the laser footprint in pointA of Fig. 3 il-
lustrate the data acquisition. The reconstruction of point
A is affected by the angular error a and the positional er-
ror q. Thus, the total reconstruction error is

a = Rar (4)

e = q+ a = q+ Rar (5)

With Eq. 1 we obtain for the reconstructed point C
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Figure 3: Illustration of a systematic positional and an-
gular error. The angular error causes the footprint in A
to be shifted by a to point B. The positional error q trans-
lates B to C which is the reconstructed surface point,
expressed by point vector p′.

p′ = p+ q+ RaReRir (6)

3.1 Reconstruction Errors Caused by Positional Er-
rors

Profiler and Horizontal Surfaces Fig. 4(a) depicts a
laser profiling system during data acquisition over flat
ground and a vertical object, say a building. The re-
construction shown in Fig. 4(b) illustrates the effect of
a positional error. A timing error, ∆t, causes a shift of

s = ∆t · v (7)

with v is the velocity of the airplane. Assuming a con-
stant timing error, it appears that its effect is simply a
shift of the reconstructed points. This is not quite true
as the following analysis reveals.

Fig. 5 illustrates the typical situation where an area is
covered by adjacent flight lines, flown in opposite direc-
tions. We notice that the shift s in both flight lines is also
in opposite direction, causing a distortion of the recon-
structed object. Consequently, the reconstructed object
space is not simply a translation of the true surface but
includes angular distortions, even in the simple case of
horizontal surfaces flown by a laser profiling system.

Finally, Fig. 6 shows the relationship between the posi-
tional error q and the flight direction. Withα the azimuth
of the flight trajectory, we have

s (a)

(b)

Figure 4: The data acquisition of a laser profiling system
is shown in (a). The reconstruction in (b) shows a shift
s due to a positional error, caused, for example, by a
timing error between GPS clock and laser pulse emission.

s

s

Figure 5: The data acquisition of a laser profiling sys-
tem shows the typical flight pattern necessary to cover
an extended area. The reconstructed rectangular object
is distorted, because the shift s is in opposite direction
between two adjacent flight lines.

q =
[
qx
qy

]
= |q|

[
sinα
cosα

]
(8)

The magnitude in this equation is identical to the shift s
of Eq. 7. Eq. 8 demonstrates clearly how different direc-
tions of the flight lines affect the reconstruction. Only
under the unlikely condition of α being constant is the
reconstruction a simple shift. All other data acquisition
scenarios will cause angular distortions.
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Figure 6: The coordinate components qx, qy of the posi-
tional error q are a function of the direction of the flight
line, here expressed by the azimuth α.

Profiler and Sloped Surfaces So far we only analyzed
the effect of a positional error on horizontal surfaces.
Let us now consider sloped surfaces, as illustrated in
Fig. 7. As before, a positional error causes a shift of
the reconstructed surface. This, in turn, introduces an
elevation error that depends on the slope as follows
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z

reconstructed surface

∆

γ

Figure 7: Illustration of the reconstruction error on
sloped surfaces. The elevation error ∆z depends on the
slope angle γ and the shift s′ due to the positional error.

∆z = s′ tanγ (9)

Here, s′ is the shift component parallel to the maximum
gradient of the slope. Let α be the azimuth of the flight
trajectory and β the azimuth of the slope gradient (see
Fig. 8). Then s′ can be expressed as a function of these
two azimuths. We have

s′ = |q| cos(β−α) (10)

∆z = |q| cos(β−α) tan(γ) (11)

An analysis of Eq. 11 reveals that the maximum absolute
elevation error is reached if cos(β− α) = ±1. This con-
firms our intuition that the error is largest if the flight

slope gradient

β flight trajectory

α

X

Y

Z

Figure 8: Relationship between the flight trajectory and
the slope gradient.

direction follows the maximum slope gradient. Conse-
quently, the elevation error is zero if the flight path is
perpendicular to the slope. Moreover, if the flight direc-
tionα changes, then an angular error causes a distortion
of the surface, even if the slope remains constant.

3.2 Reconstruction Errors Caused by Angular Errors

Let us now investigate the impact of a systematic angular
error on the reconstruction of surfaces. An example of
an angular error is the mounting bias, see, e.g. Filin et
al. (1999).

Profiler and Horizontal Surfaces Fig. 9(a) shows a
profiling laser system acquiring data over a flat surface
and an object, such as building. The reconstruction er-
ror a depends on the angle δ and the range r. Assum-
ing that δ remains constant during data acquisition, the
magnitude of a changes with the range; the orientation
of the error changes with the flight direction.

Because a, the angular displacement vector, depends on
the range, the error is smaller for surface points closer
to the laser system. Fig. 9(b) demonstrates the conse-
quence; we realize that the reconstructed flight path is
no longer a straight line. The angular error causes a
change in the angular relationship of the surface.

Profiler and Sloped Surfaces The next example, de-
picted in Fig. 10, refers to a profiling system acquiring
data on a slope. As the aircraft flies at a constant height
in the direction of the maximum gradient, the range gets
smaller and smaller. Since the angular displacement
vector depends linearly on the range, its magnitude de-
creases uphill. Consequently, the elevation error also
decreases, causing a slope error ∆γ of the reconstructed
surface. We find for the slope error the following equa-
tion:



(a)

(b)

δr

a

Figure 9: Shown in (a) is a systematic angular error, for
example the mounting bias, causing a reconstruction er-
ror a whose magnitude depends on the range. As a con-
sequence, points that were measured along a straight
flight path are unequally displaced, causing an angular
distortion in the reconstruction as shown in (b).

δ δ’ ’

reconstructed surface

γ
γ

’

Figure 10: An effective angular error δ′ causes an ele-
vation error that decreases as the profiling laser system
moves in uphill direction. This causes a slope error ∆γ
of the reconstructed surface.

tanγ′ = tanγ cosδ′

1+ tanγ sinδ
(12)

∆γ = tanγ − tanγ′

= tanγ
(

1− cosδ′

1+ tanγ sinδ′

)
(13)

≈ tan2 γ · δ′
1+ tanγ · δ′ (14)

Eq. 14 is obtained by approximating cosδ′ ≈ 1 and
sinδ′ ≈ δ′. Considering fairly small angular errors, the

approximation does not introduce noticeable errors.

a’
a’∆γ

δ’

Figure 11: A systematic angular error of δ′ introduces a
slope error. The reconstructed surface is tilted by ∆γ,
compared to the true, horizontal surface.

Scanning System and Horizontal Surfaces Let us fi-
nally examine the impact of angular errors of a laser
scanning system. The first example, shown in Fig. 11,
is related to a horizontal surface, flown with a scanning
system that has an angular error δ. This error is mea-
sured in the plane defined by the range vector and the
displacement vector, called error plane here. Fig. 12 de-
picts the effective angular error δ′. It is obtained by pro-
jecting the error plane into the scan plane. Thus, we
obtain

δ′ = δ cos(ε− τ) (15)
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Figure 12: A systematic angular error can be character-
ized by the angle δ, the angular offset, and the azimuth
ε of the trace of the error plane. The scan direction is
defined by azimuth τ. The effective angular error is the
projection of the error plane into the scan plane.

Fig. 11 illustrates the effective angular error δ′ causes a
displacement vector a′. Its magnitude depends on the
range. The shorter the range, the smaller the error. The
direction is approximately perpendicular to the range
vector. We find for the slope error the following simple
relationship

∆γ = sinδ′ (16)



Scanning System and Sloped Surfaces The last ex-
ample of a systematic angular error is related to a
laser scanning system that flies across a tilted surface.
Fig. 13(a) depicts this scenario; five individual footprints
of one scanning sweep are shown. As in the previous
example, the angle δ′ indicates the effective angular off-
set.

(a)

r

δ’

a’

a’

true surface
reconstructed surface

(b)a’

a’

φ

Figure 13: A scanning laser system flies across a tilted
surface. Five individual footprints of one scan sweep
are shown. The reconstruction is affected by the effec-
tive angular error δ′. It causes a displacement of the
reconstructed points by an amount that is proportional
to the range and δ′. Since the range changes on a tilted
surface, the error also changes from point to point. As
a consequence, the reconstructed surface has a wrong
slope (a). If the slope changes within the swath, the
angular relationship between the two slopes, in (b) ex-
pressed by φ, also changes.

The error a′ is a function of the range and the effective
angular error δ′. We have

a′ = |r| cos(ε− τ) tan(δ′) (17)

This error obviously reaches a maximum if ε = τ which
would mean that the angular offset is exactly in the scan
plane. On the other hand, the slope error vanishes if the
offset is perpendicular to the scan plane.

The magnitude of the error a′ depends linearly on the
range. Footprints that are closer to the laser system have
a smaller error. With the error vectors at both ends of the
scan sweep, we can determine the slope error as follows

∆γ = tanδ′ tan2 γ (18)

3.3 Summary

The simple error analysis in this section demonstrated
the effect of systematic positional and angular errors on
the reconstructed surface. By and large, the resulting
surface errors are a function of the topography, flight
direction, and the systematic error. This functional re-
lationship can be exploited to determine the errors if
the true surface is known. In the interest of brevity, the
error analysis was restricted to profiling and scanning
systems. Non-planar scanning systems, such as nutat-
ing mirror systems, will show similar effects, but closed-
formed expressions are more difficult to derive.

The simplest situation involves a profiling system and
horizontal surfaces. Intuition tells that causes a horizon-
tal shift that has no influence on the reconstructed sur-
face. The positional error is a vector quantity and as such
depends on the flight direction. This, in turn, causes
shift errors of variable direction and magnitude. That is,
reconstructed horizontal surfaces are distorted. We also
recognized that horizontal surfaces, reconstructed from
a scanning system with angular errors (mounting bias),
have a slope error.

Sloped surfaces present a more complex scenario. Here,
the reconstruction error depends on several factors,
such as slope gradiant, its spatial orientation, flight di-
rection, and systematic positional and/or angular error.
In most cases, the errors cause a deformation of the sur-
face. That is, the relationship between the true and the
reconstructed surface cannot be described by a simple
similarity transformation.

4 Processing and Analyzing Raw Surface Data

Photogrammetry and ALR deliver discrete surface points,
called raw surface data in this paper. The cloud of 3-D
points is hardly a useful end result. Further processing,
such as interpolating the irregularly distributed points to
a grid, extracting useful surface properties, and fusing
data sets. Moreover, as a quality control measure, the
data need to be analyzed for consistency, correctness,
and accuracy. We elaborate in the following subsections
on some of the post-processing issues with an empha-
sis on the similarity between data derived from the two
methods.

4.1 Calibration

The computation of raw laser data has no internal redun-
dancy. Whether a point is correct or not can only be in-
ferred after processing. For example, systematic errors
cannot be detected. The compelling conclusion from the
error analysis in the previous section is that systematic
errors cause not only elevation errors but also surface
deformations. To take advantage of the high accuracy
potential of ALR systems, it is imperative to detect and
eliminate systematic errors—a process usually referred
to as calibration.

In the previous section we have derived some closed
form expressions for elevation errors and surface defor-
mations as a function of systematic errors and surface



topography. This suggests to determine the systematic
errors based on known deviations of the computed sur-
face. Take Eq. 16, for example. This simple equation
permits to compute the effective angular error δ′, such
as a mounting bias error. Another example is the de-
termination of a positional error of a profiling system.
Eq. 11 can be used to determine the effective positional
error s′. However, this would require that we determine
elevation differences ∆z between the true and the com-
puted surface—a trivial problem at first sight. A closer
examination reveals a fundamental problem: how do we
compare two surfaces that are represented by irregularly
distributed points? Section 4.2 addresses this general
problem.

Other challenges of how to calibrate ALR systems loom
ahead. Some systematic errors are correlated. For ex-
ample, one can obtain the same elevation differences
or surface deformations either with a positional error or
angular error. Imagine the mounting bias error is in the
flight direction. Now, the effect of the angular error is
very similar to a positional error—the two error sources
cannot be separated. The calibration of cameras is also
confronted with the same problem. Here, the parame-
ter dependency is solved by choosing a proper calibra-
tion surface and decoupling those parameters that are
closely correlated. Choosing a suitable topography of
the calibration surface is an important issue in calibrat-
ing ALR systems. There is no consensus as to what type
of surfaces should be used to determine systematic er-
rors and calibration procedures remain ad hoc. Part of
the problem is related to the sheer impossibility of iden-
tifying the laser footprint on a known surface. Another
subtlety is the mathematical model that relates the laser
surface to the true surface. As demonstrated in Sec-
tion 3, most systematic errors cause surface deforma-
tions. Consequently, a simple similarity transformation
would not properly describe the relationship.

Filin et al. (1999) propose a new calibration scheme that
addresses some of the issues raised here and offers so-
lutions. It is a laudable attempt to make laser calibration
more transparent and, at the same time, better suitable
for quality assessment.

4.2 Comparison of Surfaces

Comparing surfaces is a fundamental, frequently occur-
ring problem when generating DTMs. Calibrating ALR
systems is a good example. Here, a known surface is
compared with the laser point surface and based on the
differences, calibration parameters are determined. An
interesting application is change detection where sur-
faces, determined at different times, are compared in
order to identify surface changes that may serve as a
basis for volumetric calculations. Merging two or more
data sets that describe the same physical surface is yet
another standard task. All these cases have in common
that the discrete points that describe the same surface
are spatially differently distributed, may have different
sampling densities and accuracies.

The standard solution is to interpolate the data sets to
a common grid followed by comparing the elevations
at the grid posts. Although this popular approach is
straightforward it is not without problems. For one, the
elevations at the grid posts are affected by the interpo-

lation. Moreover, the differences between the two sur-
faces are expressed along the z−axis which may not be
very meaningful for tilted surfaces. Take the extreme
example of a vertical surface; ∆z values contain no in-
formation about how close the surfaces are.

Schenk (1999) describes a surface comparison method
that is based on computing differences along surface
normals, without interpolating the data sets to a com-
mon grid. We present the problem statement, the pro-
posed solution and briefly describe the mathematical
model.

Problem Statement Let S1 = {p1,p2, . . . ,pn} be a sur-
face described by n discrete points p that are randomly
distributed. Let S2 = {q1,q2, . . . ,qm} be a second sur-
face described bym randomly distributed points q. Sup-
pose that the two sets, in fact, are describing the same
surface but in different reference systems. In the ab-
solute orientation problem, set S2 is the model system
and set S1 is referenced in an object space system. After
proper transformation we have S1 = S2, except for dif-
ferences due to random errors of the observed points p
and q. Yet another difference may arise from the discrete
representation of the surfaces, for example, n ≠ m.
Even in cases where n = m, the different distribution
may cause a differently interpolated surface. Suppose
further that no points in the two sets are known to be
identical (same surface point). The problem is now to es-
tablish a transformation between the two sets such that
the two surfaces S1 and S2 become as similar as possible
in terms of closeness and shape.

Solution The problem described is cast as an adjust-
ment problem where the second set of points q is trans-
formed to the first set such that the differences between
the two surfaces are minimized. Additionally, the orien-
tation of surface normals between S1 and S2 can also be
minimized. Minimizing the distances assures the best
positional fit while minimizing differences in surface nor-
mals assures the best shape fit.

Mathematical Model Let the points q be transformed
into the coordinate system of the first set by a 3-D simi-
larity transformation

q′ = sRq− t (19)

The observation equations are defined by the shortest
distance from q′ to the surface S1. Two scenarios are
feasible for expressing surface S1. Let us first approx-
imate S1 in the neighborhood of q′ by a plane, for ex-
ample by fitting a plane through points p confined to
a small spatial extent (surface patch). Then, the short-
est distance d from q′ to the surface patch, expressed in
Hessian normal form, using the three directional cosines
and the distance p from the origin, is

d = q′ · h− p (20)

with h = [cosα, cosβ, cosγ]T

The following expression is the observation equation for
point q



r = (sRq− t) · h− p − d (21)

The observation equations are not linear, hence, approx-
imations for the transformation parameters are neces-
sary. Habib and Schenk (1999) describe an elegant
method of obtaining transformation parameters and sur-
face differences.

If the points p of the surface patch cannot be satisfacto-
rily approximated by a plane, then a second order sur-
face can be used. Should this also fail, then surface
patch is not suitable (not smooth enough) for the pro-
posed procedure and no observation equation is formed
for this particular point q. If it can be sufficiently approx-
imated, then the situation depicted in Fig. 14 applies.
The distance from q to the surface is measured along
the surface normal.
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Figure 14: Illustration of determining the shortest dis-
tance between point q and surface patch SPq.

4.3 Post-Processing

The raw 3-D laser point data sets represent physical sur-
faces in a discrete manner. Because they lack an explicit
description of surface properties, meaningful informa-
tion must be extracted. For most applications, the ex-
plicit knowledge of surface properties, such as discon-
tinuities (in elevations and surface normals), piecewise
smooth surface patches, and surface roughness, is es-
sential.

Fig. 15 depicts a post-processing schema of raw laser
data points. Depending on the application, some or all
of the steps are followed. In this paper we have stressed
the fact that there is no redundant information available
for computing the 3-D position of laser points. On the
other hand, the discrete representation of surfaces by
randomly distributed laser points is highly redundant.
For example, three points suffice to define a planar sur-
face patch, but most likely, hundreds of laser points are
available. Statistical blunder detection methods exploit
this redundancy. Apart from this traditional methods,
there are also reasoning-based approaches for checking
the data. Such methods would try to explain the data
given the hypothesis of a segmented surface.

Thinning is related to the redundancy of the points.
From a practical point of view, thinning is recommended

raw 3-D laser points other sensory input

blunder detection
thinning

ground/non-ground separation
gridding

model-based object recognition

segmentation

Figure 15: Schematic diagram of the most important
post-processing steps of raw laser data sets. By and
large, the application determines whether all or even ad-
ditional steps are necessary.

to reduce the size of the (huge) data sets. Since some
points carry more relevant surface information than oth-
ers, the cardinal question is what points can safely be
eliminated. Theoretically, thinning should be treated
as a resampling problem with the objective function to
minimize the loss of surface information. This, in turn,
requires knowledge about the surface topography—a
problem that segmentation tries to tackle.

Most every post-processing scheme includes the interpo-
lation of the quasi-randomly distributed laser points to a
regular grid (gridding), motivated by the fact that there
is a plethora of algorithms available to process gridded
data. It is almost equally popular to convert the inter-
polated elevations at the grid posts to grey levels. The
resulting range images are now in a suitable representa-
tion for image processing.

Segmentation is the next step in our processing schema.
The goal is to make surface properties explicit. Such
properties include surface discontinuities (e.g. abrupt
elevation changes, abrupt changes of surface nor-
mals), piecewise continuous surface patches, and sur-
face roughness. Surface properties are essential in ob-
ject recognition. As Csathó et al. (1999) point out, seg-
mentation is not yet a standard procedure in processing
laser data sets. Data thinning and blunder detection,
frequently performed in an ad-hoc manner and with pro-
prietary algorithms, is immediately followed by an at-
tempt to detect objects, for example, buildings. It is well
known in computer vision that such shortcuts are dan-
gerous. Success with one example does not guarantee
generalization of the method.

A more general approach to object recognition requires



additional sensory input, for example imagery. Com-
plementary surface information becomes available from
stereopsis. As indicated in the diagram, such informa-
tion can be merged with laser data in the segmenta-
tion process, extending the process to a fusion problem.
Csathó et al. (1999) present a conceptual framework
for including panchromatic, multispectral/hyperspectral
imagery, and laser ranging data for the purpose of object
recognition and analyzing urban scenes.

5 Concluding Remarks

Photogrammetry and airborne laser ranging are the two
most widely used methods for generating DSMs. In some
applications, the two methods compete. In this case, the
market decides; for example cost, expertise of service
providers, availability, project duration. Other applica-
tions are clear-cut cases either for laser ranging, such
as measuring ice sheets, snow fields, and beaches; or
for photogrammetry, for example projects that require
imagery for object recognition.

Since the two methods have different performance char-
acteristics, it stands to reason to combine the two meth-
ods to solve more challenging problems. Such a combi-
nation is facilitated by the possibility of mounting both
systems on the same platform. Hence, the data acqui-
sition time does not increase. Perhaps more important,
the same GPS/IMU can be used to orient both systems.
The ultimate solution in this respect would be an imager
that also measures the range, at least of some of the
pixels.

The full potential of airborne laser ranging, particularly
in combination with photogrammetry, has not nearly
been reached. Enthusiasm about the new method is
not enough, however. Considerable effort must be de-
voted to processing the raw laser data. The fair assess-
ment of quality and performance requires transparent
processing methods that should be as application in-
dependent as possible. Ad-hoc methods should give
way for algorithms with a more theoretical underpinning.
Some problems look simple at first sight but prove much
harder when attempting general and robust solutions.
Thinning laser data sets may serve as an example. Most
everyone involved with processing laser data developed
some sort of thinning algorithm. Do we have a solution
that is universally accepted and capable of dealing with
profilers and scanners alike? We can compile an impres-
sive list of problems whose efficient solutions require
the expertise of different specialists.

A distinct improvement on the system level of laser rang-
ing systems would be the complete recording of the re-
turning signal for the time interval the laser beam in-
teracts with the surface(s). Preliminary studies indicate
that additional information about the footprint can be
expected—information that is most desirable for solving
the difficult object recognition problem.
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