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ABSTRACT
Surfaces play an important role in diverse applications, such as orthophoto production, city modeling, ice sheet
monitoring, and object recognition. Surfaces are usually obtained by a sampling process. The raw sampled data
must be processed further. A frequently occurring task is the comparison of two surfaces. In the most general
case, the two surfaces are described by discrete sets of points, whereby the point density may be different as well as
the reference systems. We propose to compare two surfaces by computing the shortest distance between points in
one surface and locally interpolated surface patches of the second surface. This entails a correspondence between
points and surface patches. We describe a solution to this matching problem that is based on a parameter space
representation. After a brief problem statement we explain the proposed matching scheme by way of an example.
We then apply the method to determine the transformation parameters between the two surfaces. To arrive at an
operational solution, we reduce the n-parameter space to one dimension by an iterative solution. The feasibility
of our matching scheme is demonstrated with simulated data sets as well as real data. We show how a surface
determined by laser scanning can be compared with the same physical surface but established by photogrammetry.
As a natural extension, one can use the method for change detection.

1 Introduction

There is an increasing demand for the rapid generation
of digital surface models (DSM). The production of digi-
tal orthophotos as backdrops for GIS requires DSMs, for
example. More recently, city modeling is an application
that poses a challenge for generating DSMs. Surfaces
play also an important role in such diverse applications
as ice sheet monitoring and recognizing objects in aerial
and satellite scenes.

Surfaces are typically determined by a sampling process.
This is certainly true for airborne laser scanning and
stereo photogrammetry. The net result of data acquisi-
tion is a set of points that constitutes a discrete surface
description. In case of laser scanning, the point distri-
bution is irregular and the surface characteristics, for
example breaklines, are not explicitly encoded.

The set of points obtained during data acquisition is
hardly a useful end product. There are a number of ba-
sic operations that must be performed on surfaces. One
of the first steps usually involves what we may consider
a resampling process. The classical example is interpo-
lating the original set into a regular grid (gridding) be-
cause most every subsequent process assumes regularly
spaced data.

In one way or another, many processes involve the com-
parison between surfaces. Examples are abundant; cal-
ibrating data acquisition systems involves the compar-
ison between the observed surface and the known sur-
face (e.g. test field); change detection compares two sur-
faces sampled at different times; merging two or more
data sets for a combined surface (fusion) requires quality
control; a data set acquired in a local reference system
must be transformed into a differently registered set.

Surface comparison is usually performed by interpolat-

ing both data sets into a regular grid. Then, the compar-
ison is reduced to analyzing the elevations at the grid
posts. Not all applications allow this simple procedure,
however. Take the example of two irregularly spaced
data sets that are acquired in different reference systems
with unknown transformation parameters. We describe
in this paper a new approach for solving this general
problem.

Ebner and Strunz (1988) and Ebner and Ohlhof (1994)
describe a solution that is based on interpolating the
data to a grid, subject to a transformation with unknown
parameters, which are determined in an adjustment pro-
cedure whereby the elevation differences at the grid
posts are minimized. We propose to minimize the dis-
tance between the points of one set along surface nor-
mals to locally interpolated surface patches of the other
surface. As shown in Schenk (1999a) this makes a weak-
posed problem well-posed.

The next section provides a more detailed problem state-
ment and discusses solutions. We then concentrate on
the solution of the matching problem and illustrate the
proposed approach of using a voting scheme to analyze
the parameter space by an example. Finally, we present
experimental results obtained from synthetic and real
data sets.

2 Problem Statements and Solutions

2.1 Simple Case

Given are two sets of points that describe the same
surface. Let S1 = {p1,p2, . . . ,pn} be the first set and
S2 = {q1,q2, . . . ,qm} the second set, n ≠ m. Suppose
the points are randomly distributed (no point to point
correspondence). The problem is to determine how well
the two data sets agree describing the same surface.



The traditional approach to this problem is to interpo-
late both data sets to a regular grid, followed by deter-
mining the z−differences at the grid posts. There are
problems with this simple approach, however. First, the
z−differences that serve as a comparison criteria are af-
fected by interpolation errors. More critical is the re-
striction to compare differences only along the z−axis.
Take the extreme example of a vertical surface; here
z−differences would be meaningless to capture surface
differences.

An improved solution is to compute the difference be-
tween the two sets along surface normals and at the orig-
inal point location, to avoid interpolation. Suppose now
that local surface patches for S1 are generated. The sim-
plest approach would be to create a TIN model—quite
adequate for laser surfaces. Let surface patch SP in S1

be defined by the 3 points pa,pb,pc and let qi be a point
in the second set. Then, Eq. 2 is the shortest distance
between a point in the second set to the correspond-
ing surface patch, as illustrated in Fig. 1. If we want to
impose the condition that qi lies on the surface patch
(coplanarity condition), then we have D = 0 in Eq. 1.
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Figure 1: Illustration of comparing two data sets that de-
scribe the same surface. The points of one set are shown
by circles. Solid circles represent a few points of the sec-
ond data set. The comparison is achieved by computing
the shortest distances di from points in one data set to
the corresponding surface patches of the other data set,
here shown as triangles.

We call the association of point qi with the proper tri-
angle pa,pb,pc the matching problem in this paper. In
the simple case of both data sets being registered in
the same reference system, the matching can be solved
in the x−, y−coordinate plane by selecting that surface
patch which contains point qi within its perimeter.

2.2 General Case

We generalize now the surface comparison problem by
allowing that the two data sets S1 and S2 are in dif-
ferent reference systems. We assume that there is a
known functional relationship between the two sets but
with unknown parameters. An example would be the
knowledge that the two sets are related by a 3-D simi-
larity transformation; and the seven parameters should
be determined without identical points. This situation
exists when merging two data sets that may be affected
by uncompensated systematic errors. Calibrating laser
systems is a classical case; here the surface defined by
laser points from an uncalibrated system is compared
with a known surface (control surface). The expected er-
rors must be modeled, e.g. by an affine transformation,
and the unknown parameters of that model—the cali-
bration parameters—can be determined with the method
described here (see, e.g. Filin and Csathó (1999)).

It is important to realize that any functional relation-
ship between the two sets can be used in our proposed
matching scheme. We use a 3-D similarity transforma-
tion as an example to aid the following discussions. The
solution sketched above must be extended by subject-
ing S2 to the relevant function. With the example of a
similarity transformation, we have

q′i = s · R · qi + t (3)

where s is the scale factor, t the translation vector, and
R a 3-D orthogonal rotation matrix. We can solve the
parameters in an adjustment procedure using Eq. 2 as
the target function (see Schenk (1999a) for details).
Such a procedure would determine transformation pa-
rameters that minimize the distances di according to
the least-squares principle. This implies that the differ-
ences between the two surfaces are assumed to be ran-
dom; hence, the remaining distances after establishing
the transformation parameters are residuals.

We are faced with a new problem, however. To compute
the distances di, a correspondence between the points
qi and the surface patches must be established. This
matching problem is no longer trivial because the two
sets are in different reference systems. The proposed
solution to this intricate problem is based on searching
the solution in the parameter space by a voting scheme.
Before delving into details we first introduce the notion
of parameter space and voting scheme by way of an ex-
ample.

3 The Notion of Parameter Space and Voting
Scheme

The method of determining parameters by a voting
scheme was first proposed by Hough (1962). Variants of
this approach are known as Hough technique or Hough
transform. Let us introduce the notion of parameter
space and voting scheme by way of an example. Sup-
pose we are interested in detecting points that happen
to lie on a circle of known radius. Fig. 2(top) depicts a
cloud of points. It would be quite cumbersome to solve
this problem in the spatial domain. Instead, we repre-



sent it in the parameter space, motivated by the follow-
ing considerations.

1
2

3

5 4

0 10 20 30 40 50

10

20

30

40

50

0

x - axis

y 
- 

ax
is

1

2

3

45

0 10 20 30 40 50 60

10

20

30

40

50

60

0

u - axis

v 
- 

ax
is

Figure 2: Illustration of finding circles through data
points. A point in the spatial domain (top) corresponds
to a circle in the parameter space (bottom) and vice
versa. Here, the intersection of circles determines the
center of the sought circles in the spatial domain. The
intersection of four circles at u = 20, v = 25 identifies
points 1,2,3 and 5 as belonging to circle whose center c
in the spatial domain is c = [20,25]T .

A circle of radius r can be defined by

(x −u)2 + (y − v)2 − r 2 = 0 (4)

with x,y the spatial variables and u,v the parameters
of the circle (center) in the spatial domain. Let us now
introduce the parameter space, represented by the coor-
dinate system u,v. After a moment’s thought we real-
ize that in this representation, variables and parameters
switch roles; u,v are now variables and x,y become
parameters. A point xi,yi in the spatial domain corre-
sponds to a circle in the parameter space, centered at
xi,yi. What do we gain? For every point in the spatial
domain there exists a circle in the parameter space and
vice versa. The intersection of circles define centers of
circles in the spatial domain—a simple solution of our

original problem. The number of intersecting circles in
the parameter space is directly related to the number of
points that lie on this circle.

The Hough method is usually implemented by a so called
accumulator array which is an n-dimensional, discrete
space where n is identical to the number of parameters.
In our example with circles of known radii, the accumu-
lator array is two-dimensional. Each circle is discretely
represented in the parameter space. To keep track of all
the circles, we simply increment the cells that are turned
on by every circle. After having processed all points in
this fashion, we analyze the accumulator array and de-
termine the number of hits per cell. Every hit casts one
vote for a point lying on that particular circle. The cell
with the maximum number of hits, located atumax, vmax,
yields the center of a circle in the spatial domain that
passes through max points. Similarly, other peaks in
the accumulator identify additional circle centers.

In order to identify the points belonging to the circles
found by analyzing the accumulator array, the procedure
is repeated. This time we already know which accumu-
lator cells yielded a circle. Whenever a point happens to
turn a peak cell on, it is immediately labeled.

4 Surface Matching in Parameter Space

In this section we apply the concept of determining
the parameters by a voting scheme to solve the sur-
face matching problem as stated in Sec. 2.2. To deter-
mine the seven parameters of the similarity transforma-
tion, seven equations of the type of Eq. 2 are required.
Since there is no redundancy, we introduce the condition
di = 0. That is, Eq. 2 becomes the coplanarity condi-
tion. Theoretically, we can select seven points q in set S2

and match them with all possible surface patches of S1.
For every such combination, a set of seven equations is
found and solved. The discretized solution yields those
cell addresses of the 7-D accumulator array that need
to be incremented. Once all possible combinations are
explored, we select again seven points q and repeat the
procedure. The correct solution will emerge as a peak
in the accumulator array.

Of course, this trial and error approach is not practical at
all. To explore all combinations leads quickly to combi-
natorial explosion. The maximum number of combina-
tions of points q with surface patches is roughly n ·m.
We need seven independent combinations with repeti-
tions allowed. Thus the total number of solutions s is

s = n!m!
7!(n− 7)!(m− 7)!

(5)

With a modest number ofn =m = 100 we get≈ 1011 so-
lutions, a vivid impression of the combinatorial problem
indeed!

The memory request of the 7-D accumulator array cre-
ates another problem. Even restricting the solution
space to plausible solutions, the size of the parame-
ter space may get astronomical, depending on the dis-
cretization size. Take ten arc second for the three ro-
tation angles and a range of ±10o, for example. Each
of the three parameter axes would require 7,200 units.



Similar considerations for the translational parameters
lead a request of 7.2·1010 cells capable to store the num-
ber of solutions. Again, it appears that the approach is
highly impractical.

The problems just identified are caused by the attempt
to determine all seven transformation simultaneously.
Let us pursue the other extreme and calculate the param-
eters sequentially, in an iterative fashion. Consequently,
the accumulator array will be one dimensional and the
memory problem disappears. The total number of point
to surface patch combinations reduces to m × ns with
m the number of points in set S2 and ns the number of
surface patches, e.g. triangles, in S1. Since this is now
an iterative process that has to be repeated for every pa-
rameter, the computational complexity is proportional
to m×ns × 7×maximum number of iterations.

The method proceeds along the following steps:

1. Select one of the parameters, e.g. tk. The cur-
rent values of the other parameters are considered
constants. Initialize the 1-D accumulator array for
parameter tk.

2. Pick point qi in set S2.

3. Select surface patch SPj in S1, e.g. defined by
points pa,pb,pc and compute parameter tk by
solving the coplanarity condition.

4. Update accumulator array.

5. Repeat steps 3 to 4 until all plausible point to sur-
face patch correspondences have been explored.

6. Repeat steps 2 to 5 until all points q have been
evaluated.

7. Analyze accumulator array for a distinct peak. Up-
date parameter tk with the peak value.

8. Repeat steps 1 to 7 until all parameters have been
updated.

9. Repeat the entire procedure if the parameters
changed more than a predefined threshold.

This procedure can be executed under a coarse-to-fine
strategy that controls the precision of the solution (dis-
crete interval) and the permissible range. As one pro-
ceeds from coarse to fine, the range becomes smaller as
well as the discrete solution steps. The dimension of the
accumulator array may remain constant.

So far we have determined the transformation param-
eters iteratively, one by one; we have yet to solve the
surface matching problem. For explicitly labeling the
correct point to surface patch correspondence we sim-
ply repeat the procedure described above. This time
we already know the correct transformation parameters,
however. Hence, whenever a correspondence is found
with the correct solution (correct accumulator cell), the
point is labeled accordingly. Now, as a mandatory final
step we could determine the transformation parameters
simultaneously, for example by the adjustment proce-
dure described in Schenk (1999a). Like every non-linear
adjustment problem, reasonable approximations are re-
quired. Of course, the iteratively determined transfor-
mation parameters are excellent approximations.

An important aspect in comparing surfaces is concerned
with detecting blunders in the data. It is well known that
undetected blunders that participate in a least-squares
adjustment may greatly influence the solution. How ro-
bust is our proposed approach in this respect? Step 3
of the procedure computes values for parameter tk with
point qi and all surface patches. The values are entered
into the accumulator array. Suppose now point qi is
wrong (blunder). As a result, wrong parameter values
are computed and cells in the accumulator array are in-
cremented which are separated from the peak. It fol-
lows that blunders have no impact on the solution—an
important property of our approach that can be applied
to detect blunders.

Let us again analyze the final step, involving the explicit
labeling of matches. Points that remain unlabeled have
never contributed to the correct solution of a transfor-
mation parameter. Such points are obviously not part
of a consistent surface description; they can be labeled
as blunders. This allows for change detection. Here, we
would analyze the spatial distribution of blunders and
signal a significant difference between the two surfaces
whenever blunders are locally concentrated.

determine transformation parameters
by following steps 1 through 7

surface matching
blunder detection

simultaneous adjustment of
transformation parameters

error analysis

applications: change detection,... 

Figure 3: Schematic diagram of surface matching, blun-
der and change detection. The iterative determination
of the transformation parameters is accomplished by a
voting scheme in the parameter space, described above
by steps 1–9. Surface matching is obtained by repeating
the procedure, but now with known parameters. At the
same time, blunders are detected and labeled accord-
ingly. A mandatory step is the simultaneous adjustment
of the transformation parameters, using the previous re-
sults as approximations. Other steps may follow, for
example error analysis and applications such as change
detection.



5 Experiments

In order to test the feasibility and performance of the
proposed surface matching method, we have performed
several experiments with synthetic and real data. This
section briefly summarizes the most pertinent results.

5.1 Tests with Synthetic Data

Fig. 4 depicts the synthetic data set. Following the no-
tation used in the previous sections, data set S2 con-
sists of the points qi, i = 1,2, . . . ,30. Surface S1 on
the other hand is given in form of five surface patches
SP1, . . . , SP5. The true correspondence of points q to
the surface patches is known in this simulation, as well
as the transformation parameters. The tests served the
purpose of recovering the parameters and the corre-
spondences. Moreover, the convergence rate was ex-
amined as a function of surface topography.

SP1

SP2

SP3

SP4

SP5

pts. 1 - 6

pts. 7 - 1
2

pts. 13 - 18

pts. 25 - 3
0

pts. 19 - 24

X

Y

Z

Figure 4: Synthetic data sets for simulation studies with
the proposed matching method. Data set S1 is given
by the five surface patches SP1, . . . , SP5 and data set S2

is represented by 30 points. The figure also shows the
correct correspondence of points to surface patches.

The initial values of the parameters were set off by 3o

for the angles, 2 meters for the translation parameters,
and 40% for the scale factor. All parameters were de-
termined correctly. Fig. 5 shows the accumulator array
for the scale factor. The number of non-zero elements in
the accumulator array corresponds to the number of cor-
respondences evaluated—in our example 30 × 5 = 150
(every point q with every surface patch SP ). The distinct
peak with a value of 30 indicates that for all points one
correct correspondence was found.

Not all parameters exhibit the same behavior as a closer
examination of Fig. 4 reveals. Take the shift parameter
along the Y−axis, for example. It can only be deter-
mined from a correspondence to SP3; all other surface
normals have no Y−component. Thus, the accumulator
array has a peak value of six, referring to the correct
correspondence q13, . . . ,q18 to SP3.

Finally, Fig. 6 shows the change of parameters as a func-
tion of number of iterations. As expected, the conver-
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Figure 5: One-dimensional accumulator array (his-
togram) for the scale parameter. The peak value of 30
indicates that all 30 points of data set S2 contributed in
one correspondence to the correct scale factor.

gence rate depends on how separable a parameter is.
The translation parameters are linear hence fewer itera-
tions are required. By the same token, the angular ele-
ments need more iterations because of the highly non-
linear rotation matrix.
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Figure 6: Change of parameters as a function of num-
ber of iterations. After initial fluctuations, the parame-
ter stabilizes after a few iterations. The iterations are
terminated once the changes become marginal.

There is another factor that greatly influences the con-
vergence rate, however. Remember that we impose the
coplanarity condition to compute the transformation pa-
rameters. In essence, the distance di in Eq. 2 is set to
zero. The distance is parallel to the normal of the surface
patches. To obtain a good solution for our transforma-
tion problem surface patches with normals oriented in
all directions are necessary. The topography of S1 is im-
portant. As shown in Schenk (1999a), the surface slopes
should point in different directions. The slope angle di-
rectly influences the goodness of the solution.

5.2 Experiments with Real Data

As reported by Csathó et al. (1998), ISPRS Technical
Commission III has acquired a multisensor/multispectral
data set over Ocean City, with several laser data sets pro-
vided by NASA Wallops, and aerial imagery flown by NGS
(National Geodetic Survey). The data provide an excel-
lent opportunity to test the proposed procedure on a real
world problem; how well does a laser surface agree with



a photogrammetrically derived surface?

Fig. 7 shows a portion of an aerial image covering three
apartment buildings (top) and a wire frame diagram of
the laser data of the same area (bottom). We used the
laser data set in the sense of S2, that is, as a sequence
of unrelated points. The necessary surface patches of
S1 were obtained from measuring the stereo model on a
softcopy workstation.

Figure 7: Aerial image patch showing an apartment com-
plex of the test site Ocean City (top). The laser data set
of the same area is represented by a wire frame diagram
(bottom).

We skip the details here but present a short summary
of the results. Fig. 8 (left) shows the laser surface rep-
resented as a gray level image. Superimposed are the
photogrammetrically measured points (crosses) and a
few triangles that were formed when generating a TIN
model. The triangles served as surface patches SP . The
parameters found by our approach indicate very good
agreement between the two data sets.

A more meaningful check is to perform the transforma-
tion with the parameters found, followed by computing
the distance of the transformed points to the surface
patches S1. The average distance of 0.03 m between the
laser and stereo surface confirms the accuracy potential
of both methods. Fig. 8 (right) is a graphical illustration
of the matching. The white crosses show all the laser
points that were found as correct matches.

Finally we show the result of detecting blunders. In the
area examined, one laser point did not correspond to

Figure 8: The left part shows the laser surface repre-
sented as a gray level image. Superimposed are the
points measured photogrammetrically. Also shown are a
few triangles formed by generating a TIN model. The re-
sult of the establishing the correspondence between the
two surfaces, the laser points that were matched with
the triangles are shown in the right part of the figure.

any surface patch. As discussed in the previous sec-
tion, such points are labeled as blunders. Fig. 9 depicts
the laser point and the triangle to which it should corre-
spond. A closer analysis reveals that the laser point is on
top of a tree. The planar surface patch, determined by
photogrammetry, is on the ground. Hence, the distance
from the laser point to the surface patch exceeded the
tolerance.

Figure 9: Small squares identify correct matches of laser
points within one triangle, established by photogram-
metry. The cross identifies a point that should lie on the
triangle. However, the distance exceeded the tolerance
and the point is considered a blunder. The laser foot-
print is on the top of a tree while the surface patch was
measured on the ground.

6 Conclusions

Comparing surfaces is a frequently occurring task and
a prerequisite for merging data sets that describe the
same physical surface but with different sets of discrete
points. If the two data sets are in different reference
systems then the comparison is quite challenging be-



cause neither can we count on identical points nor are
the transformation parameters known. Our proposed
matching scheme solves this problem in a general, ef-
fective, and robust fashion.

The reliability of the transformation parameters between
the two sets depends on the surface geometry. Us-
ing distances along surface normals requires reason-
ably sloped surfaces, with different slope directions. Of
course, this is not specific to our method; rather, it is a
general requirement.

The proposed approach of reducing the n−parameter
space to one or a few dimensions hinges on the separa-
bility of the parameters. Highly non-linear transforma-
tions have a slower convergence rate. However, more
objective criteria must be established to assess the con-
vergence, for example as a function of the surface nor-
mal distribution. Moreover, the correlation among pa-
rameters depends on where it is measured on surface.

The proposed voting scheme is essentially a statistical
method. As such, many votes are necessary for a reli-
able analysis. One distance between a point in one sur-
face to a surface patch allows the computation of one
transformation parameter and its discretized value casts
one vote. Hence, the more independent point to surface
patch relations exist the more reliable becomes the solu-
tion. Generally, laser altimetry determines many points.
Thus, the method described here is particularly suited
for dealing with laser surfaces. Moreover, laser data sets
are irregularly distributed. Another advantage of our ap-
proach is that no interpolation to a regular grid is nec-
essary. Finally, the identification of blunders is of great
practical importance. Contrary to adjustment methods,
undetected blunders do not affect the solution. This
makes the proposed surface matching method robust.
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