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ABSTRACT 

A description is given of a set of programs conceived and written to teach analytical photogrammetry algorithms. Pro­
grams' aim is to make the students understand how these algorithms work and which role the various parameters play. 
Programs will be freely distributed. 

1 INTRODUCTION 

Information technology can greatly enhance teaching 
techniques. In photogrammetry teaching, in particular, it 
permits every student to elaborate his own data (i.e. 
measured by himself) directly. 

The paper describes a set of programs written in the 
Matlab environment, which are able to solve the basic 
analytical photogrammetry problems and which have 
been conceived and implemented to improve photogram­
metry teaching at the University of Pavia. The paper also 
describes the way they are used. 

2 THE RAISON D'ETRE OF THE PROJECT 

It is well known that it is difficult to make students fully 
understand some specific details of photogrammetry the­
ory and algorithms only by means of the traditional, ex­
cathedra, lessons. The Photogrammetry teaching staff at 
the University of Pavia has become aware, over the last 
two years, of the necessity of having specific software 
able to calculate the photogrammetric orientations and 
able to successively plot unknown points. All this, with 
the aim of allowing the students to elaborate data meas­
ured by themselves in an autonomous and individual way. 
The programs described are the first answer to these ex­
pectations: indeed the work is ongoing and, at the end of 
the paper, new features will be described that it would be 
useful to add in the near future. 

3 MAIN FEATURES OF THE PROGRAMS 

At the moment programs are able to solve interior, rela­
tive and absolute orientations and are also able to plot, 
after the orientation procedures have been finished. All 
the routines have the same philosophy: the user somehow 
measures on images (photographs or digital files) points 
instrumental coordinates (with an analytical plotter, a 
digital plotter, a simple image processing software or a 
digitizing tablet), and writes them in a textual file; then 
the suitable software procedure is called: it reads data 
from the files, works them out and displays results on the 
screen, together with accurate statistical analysis and 
graphical representation; to finish, it writes results on the 
disk so that they are suitable to the following orientation 
step. 

Let's briefly consider an example. To complete the inte­
rior orientation of one photograph, it is necessary that the 
user measures and records on a file the actual fiducial 
marks coordinates and writes to another disk file theoreti­
cal fiducial marks positions, according to the camera cali­
bration certificate. Then the user has to call the interior 
oriention calculation program, specifying data files and 
which kind of coordinate transformation (there are few 
different kinds, which will be described later in the paper) 
has to be applied. The procedure evaluates the transfor­
mation parameters, records and shows them, together with 
quality parameters and residuals. There is also an interior 
orientation application program that, given the instru­
mental coordinates of a set of points, provided the interior 
orientation parameters, transforms instrumental coordi­
nates into image coordinates. 

The programs are highly modular, so they allow the user 
to focus exactly the role of the various steps of the pho-
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tograrnmetric procedure and the role of the different pa­
rameters involved; moreover they are open: it's easy to 
read, modify or improve them. This is not always possible 
with commercial software, which is, by its own nature, 
closed and consequently hides many details of the internal 
algorithms from the user . 

4 HOW PROGRAMS ARE USED 

The students are required, first of all, to make measure­
ments at our Geomatica Laboratory; they are subdivided 
into groups of five or six and they have to take measure­
ments of a certain number of marked points (fiducial 
marks, tie points, ground control points, points to be 
measured) with three different instruments solely used as 
collimators: an analytical stereoplotter, a digital low-cost 
stereoplotter and a digitizing table; the instrumental coor­
dinates are written in files that have to be processed later. 

Completely different instruments are used to make meas­
urements, with completely different working principles 
and, of course, with very different quality levels. All this 
helps us to underline that analytical photogrammetry al­
gorithms are completely separate from analytical stereo­
plotters (this is obvious, of course, but students often get 
confused, especially if lessons and practices de facto 
equate the two things). This allows also to show to the 
students that photogrammetry procedures have a statisti­
cal nature, so that if good data are put in, they give back 
good results, and viceversa. 

For the subsequent processing, students and staff have 
access to specialised laboratories, each with twenty com­
puters, where the students, subdivided into groups of not 
more than two or three, are guided along the data proc­
essing and into the critical examination of the results. In 
this way, we offer the students the possibility of seeing 
results as they arise, step by step through the whole pro­
cedure, together with the possibility of understanding, as 
a consequence, the role and the effects of each different 
phase and of each parameter involved. Moreover, using 
data coming from different measurement instruments, and 
characterised, of course, by different accuracy levels, 
allows the main orientations quality indicators to be re­
called. 

It is also very important and useful that the students have 
access to the computer laboratories also individually, out 
of the teaching time. In this way they are allowed to freely 
use the already known procedures and to better under­
stand their functioning. It is to be underlined that the stu­
dents can access directly the program listings, so they can 
analyse the algorithms details or even modify them, if this 
helps them to understand. 

5 DESCRIPTION OF THE SOFTWARE 

Rather than a detailed description of the programs, the 
following section will focus on their global architecture 
and will outline main procedures classes, main function 
prototypes and the environment in which programs are 
written, Matlab. A detailed handbook of the software 
tools is currently carried out and will be distributed with 
the software, as soon as possible. 

Programs will be outlined grouped by categories: there 
are two functions' groups that are needed to work out 
analytical photogrammetry problems, but that have wider 
interest and usefulness: they are the least squares func­
tion group and the coordinate transformation function 
group. For these two groups the description will be a bit 
more detailed, so as to show their capacities. For other 
programs, strictly focused on traditional, well known, 
analytical photograrnmetry algorithms, the description 
will be synthetic. 

5.1 Least squares functions 

It has been written a universal least squares solver, able to 
solve any problem, provided that the user builds a dedi­
cated function that calculates the deterministic model. 

5.1.l Theoretical background. The programs that are 
currently available manage only the parametric determi­
nistic model 

Y=AX+a (1) 

where Y is an m random variable that we are able to 
measure, and X is an n random variable for which we 
want to give an estimation of the mean value, based on an 
extraction (a measurement) of Y, usually indicated by 
Y0 . This is not a big limitation because it is known that 

also the most general linear deterministic model 

DY=AX+d (2) 

can be reformulated in terms of a parametric model 
problem. The user has also to supply the stochastic 
model, that is the structure of the variance-covariance 
matrix of the Y random variable. The word structure re­
calls that, writing the variance-covariance matrix in the 

form Cyy = cr~Q , the matrix Q has to be given by the 

user, while the coefficient er O will be estimated by the 

least squares solution. 

The routines calculate the well known solutions for the 
estimated parameters 
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(3) 

and for the estimated observations 

Y==AX+a (4) 

and for the overall quality parameter 

(5) 

The routine also estimates the variance-covariance ma­
trixes for both parameters and observations, respectively 

(6) 

Crr ==AC,ixA' (7) 

In case of non linear problems 

Y == f(X) (8) 

solution is reached iteratively by a sequence of linear ap­
proximated problems: the user has to supply an approxi­
mated solution X 0 . Iterations are stopped when they give 

no more significant enhancement to the solution. 

5.1.2 The least squares solver engine. The engine 
routine is 1 s_ca 1 c, and has the following prototype: 

[EstPar, Estobs, Quality] = 
ls_calc(DetMod, obs, Opt, optData) 

Let's examine briefly input arguments: 

• ModDet is a structure (sources have already been 
updated to the fifth release of Matlab) containing 
two fields: Name, the name of the deterministic 
model function, and Xa, the aproximated parame­
ters vector, if any; 

• obs is a structure containing the fields YO, the ob­
servations vector, and the matrix of observations 
variance-covariance, Q; 

• Opt is a structure containing some parameters that 
the user can fix so as to tune program behaviour. It 
contains the following fields: 1 s_Eps, related to 
iterations stop condition; 1 s_IterMi n, which 
fixes the minimum iterations number (the user 
could choose a value greater than one, for testing 
reasons); 1 s_Ite rMax, the maximum number of 

iterations, to prevent infinite loops; 1 s_Verb, 
which controls the verbosity of the screen and file 
echo: it is possible to choose to have (i) no echo, 
(ii) a screen echo of the essential parameters of the 
running process, (iii) a file dump of the process, 
(iiii) a complete and long file dump, including the 
condition number of the deterministic model ma­
trix A. 

• OptData is a structure which isn't used directly by 
the engine, but it is passed to the deterministic 
model function instead. It allows to pass to the 
deterministic model function data which are nei­
ther in the observations vector Y0 , nor in the ap-

proximated values vector X 0 , but that are, never­

theless, necessary to calculate the matrixes A and 
a of the deterministic model. 

Let's examine output arguments now: 

• EstPar is a structure containing two fields: Xs, 
the estimated parameters vector and its variance­
covariance matrix, cxx; 

• Estobs is a structure containing the fields Ys of 
the estimated observations, the matrix cyy of its 
variance-covariance matrix, and the Nu vector of 
the residuals Y - Y0 ; 

• Qua 1 i ty is a miscellaneous structure containing, 
among the others: Sigma, that is the value of the 
quantity indicated by the eq. (5) and IterNum the 
number of the iterations executed. 

5.1.3 Final remarks on the least squares engine. As 
already underlined, the engine is able to solve any prob­
lem, provided that the user builds the deterministic model 
function. This function must have a name beginning with 
the prefix 'dm_' and has to give back to the calling func­
tion the deterministic model matrixes A and a . 

It is noticeable that, thanks to the structures data types, 
that have been introduced in Matlab only recently, it will 
be possible in the future to modify functions' behaviour 
without changing the prototypes. This will allow to 
change the software without being necessarily obliged to 
change the calls to the engine, spread into many different 
programs. 

5.2 Point class 

The current version of the package takes full advantage of 
the object oriented features of Matlab's language. There 
is a class called Poi nt3D, which has the role of recording 
the three dimensional coordinates of a set of points: for 
each point it is possible to store a name, the three coordi­
nates and, if any, the variance-covariance matrix . 
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5.3 Coordinate transformation functions 

Coordinate transformation functions constitute another 
self-consistent set of functionalities. They have been 
written taking advantage of the object oriented features of 
Matlab's language. Each coordinate transformation is a 
class, with many overloadable methods. 

Each of these classes contains, among the others, the pa­
rameters values, their variance-covariance matrix, if any, 
and the versus flag, assessing if the transformation has 
to by applied directly or backward. 

5.3.1 Direct application of coordinates transforma­
tions. One of the methods of coordinates transformation 
classes (let CT indicate any of them) is app 1 y, which 
transforms a Poi nt3D class instance according to the 
rules specified by CT. If variance-covaTiance matrixes of 
the to-be-transformed points are known, the method es­
timates also the stochastic behaviour of the transformed 
coordinates. 

If CT is an instance of a certain coordinate transformation 
class and if Pt is an instance of the Poi nt3D class, the 
following instruction 

NewPt=apply(CT, Pt) 

transforms the coordinates contained in Pt according to 
CT and stores the results in NewPt. 

The package offers three different Planar Coordinate 
Transformations, PCT starting from now, with the func­
tional form 

Pu= DRPx +T 

where R is the rotation matrix 

[
cos a 

R= si~a 

-s,

0

·n a 
0
o
1

) 
cos a 

(9) 

( 10) 

while T is the translation vector, with the third component 
equal to zero, due to the planarity of the transformation. 
D is the 'deformation matrix' which changes depending 
on the transformation type; D has, in the case of PCT3, the 
following shape 

D=[~ : ~J (11) 

while, in the case of PCT4, the matrix D has the form 

(12) 

and in the case of PCT5, Dis 

~) (13) 

The package currently offers only one three dimensional 
coordinate transformation, the well known seven pa­
rameters transformation (called SCT7), having the form 

(14) 

where R is the usual three dimensional rotation matrix 

R=RruRq,R,. 

[' 0 -s~nw J R"'= 0 cosw 
0 sinw cosw 

[ cos~ 
0 sin~) (15) 

R = 0 1 

CO~qJ 'P -sin qJ 0 

[COSK -sinK 

~) Rk = si~K COST< 

0 

5.3.2 Parameters estimation of coordinate trans­
formations. The method ca 1 c makes a least squares 
estimation of the parameters of a certain transformation, 
provided the coordinates of a sufficient number of points 
respect to two different reference systems. 

The PCT4 case is solved exactly, thanks to the well 
known linearizing variable transformation. PCT3, PCTS 
and SCT7 arc solved iteratively, starting from approxi­
mated values. Such values must be passed to the function 
by the user or, in the case of PCT3 and PCTS, can be es­
timated by the method itself by a preliminary PCT4 esti­
mation. 

If Poi ntuv and Poi ntXY are two instances of the class 
Poi nt3D containing the coordinates of some points re­
ferred to two different reference systems, the instruction 

ECT=calc(CT, PointUV, PointXY) 

estimates the parameters of a coordinate transformation 
and stores them in the ECT object, belonging to the CT 
class. The CT object must be an instance of the chosen 
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transformation class and fixes the transformation type and 
the approximated solutions, if they are needed. The CT 
object can be void if approximated parameters are not 
necessary (PCT4 case) or if they are unknown: in this case 
the ca 1 c method estimates such approximated parameters 
in the best possible way. 

5.4 Interior Orientation routines 

The interior orientation programs mainly uses the func­
tions and the classes already outlined. They estimate the 
parameters of a PCT which transforms the instrumental 
reference system into the image reference system, on the 
basis of nominal and measured fiducial marks coordi­
nates. There are CTF objects, containing camera certifi­
cate information, and IOD (Interior Orientation Data) ob­
jects, able to store measured fiducial marks positions of 
one photograph. The principal class is IOEP (Interior 
Orientation Estimated Parameters) which stores the esti­
mated parameters, together with links to the processed 
data object and many other data, useful for statistical 
quality analysis. Among IOEP class methods, there are 
cal c, with the following prototype 

IOEP=calc(IOEP, CTF, IOD) 

which estimates the parameters and give graphical visu­
alisation of the residuals, and apply, which transform 
instrumental coordinates into image ones. 

5.5 The relative orientation program 

The relative orientation program, ro_ca l c has the fol­
lowing prototype 

ROEP= ro_calc(ROEP, IOEP, IOEP, ROD) 

where the two passed IOEP class instances contain the 
interior orientation parameters of both involved photo­
graphs; the fourth passed argument is an instance of the 
ROD class (Relative Orientation Data) which contains, 
mainly, the instrumental coordinates of tie points on both 
left and right image. The returned argument, a ROEP 
(Relative Orientation Estimated Parameters) class in­
stance, is somehow analogous to the IOEP class and con­
tains the orientations values of both image, respect to the 
model arbitrary reference system. The ro_ca 1 c program 
uses the coplanarity condition to determine relative sym­
metric orientation parameters: the algorithm is able to 
linearize the observation conditions everywhere, although 
it is not able to determine the approximated solutions, 
which are chosen in the usual way, with all the angles 
null. 

There is also a p 1 ot function, which determines the three 
dimensional coordinates (model coordinates or object 
coordinates) intersecting homologous lines; it uses a 
geometrical approach, there is no adjustment indeed, and 
only three of the four available equations are used. 

5.6 The absolute orientation program 

The absolute orientation program, ao_ca 1 c, has the 
following prototype: 

AOEP= ao_calc(AOEP, ROEP, AOD, GPO) 

where the second passed argument, a ROEP class instance, 
contains the relative orientation parameters; the AOD 
(Absolute Orientation Data) class instance contains, 
mainly, the instrumental coordinates of control points on 
both left and right image and GPD class instance records 
ground coordinates of control points. The program esti­
mates the parameters of a SCT7 transformation; as in the 
relative orientation case, the program is able to linearize 
equations everywhere, but isn't able to find a good ap­
proximated solution, that must be passed with the first 
argument; if this one is void, the program start with the 
standard approximated solution, with the angular values 
equal to zero. 

Obviously the returned AOEP (Absolute Orientation Esti­
mated Parameters) class instance contains the exterior 
orientation values of the images, together with their vari­
ance-covariance matrix and other quality indicators. 

5. 7 The programs language 

Programs are written in the Matlab language, so they need 
that environment to be executed, and this could be an 
obstacle to the diffusion of the procedures. On the other 
hand, Matlab allows development times much shorter 
than a standard language, such as C language, does. 
Moreover, Matlab procedures are platform independent: 
the same programs can run in Matlab for Windows and in 
Matlab for Unix. 

5.8 Programs documentation and availability 

As already mentioned, there isn't yet a programs hand­
book; however, all the functions are documented, al­
though in italian. Programs will be freely distributed, so a 
package copy will be sent to whoever will ask them. 

5.9 Further developments 

Among all the many things that it would be fine to add to 
the packet, there are certainly the bundle adjustment and 
the digital images support. The first step in the digital 
field will be the construction of a digital collimator, so 
that the above described seminars will only need one 
computer for both measurements and further processing: 
digital photogrammetry has great potential also in the 
teaching field. 
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6 CONCLUSIONS 

Information technology can greatly contribute to making 
teaching effective and up-to-date, on the condition that 
the necessary software instruments are acquired: this re­
quires at the least a big time investment; for this reason it 
has been decided to freely distribute the programs. The 
author and the whole photogrammetry staff of the Univer­
sity of Pavia hope that this is the starting point of a deeper 
collaboration in the field of teaching problems between 
teachers and researchers from different Universities, 
based on exchanges of experiences, materials and instru­
ments. 
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