
TEACHING PHOTOGRAMMETRY ALGORITHMS
BY DEDICATED SOFTWARE

Vittorio Casella

Universita di Pavia
Dipartimento di lngegneria Edile e del Territorio

Via Ferrata, 1 - 27100 Pavia - Italia
email:casella@ipv36.unipv.it

Commission VI, W ork.ing group 3

KEYWORDS: Photogrammetry, Teaching, Algorithm, Least squares

ABSTRACT

A description is given of a set of programs conceived and written to teach analytical photogrammetry algorithms. Pro­
grams' aim is to make the students understand how these algorithms work and which role the various parameters play.
Programs will be freely distributed.

1 INTRODUCTION

Information technology can greatly enhance teaching
techniques. In photogrammetry teaching, in particular, it
permits every student to elaborate his own data (i.e.
measured by himself) directly.

The paper describes a set of programs written in the
Matlab environment, which are able to solve the basic
analytical photogrammetry problems and which have
been conceived and implemented to improve photogram­
metry teaching at the University of Pavia. The paper also
describes the way they are used.

2 THE RAISON D'ETRE OF THE PROJECT

It is well known that it is difficult to make students fully
understand some specific details of photogrammetry the­
ory and algorithms only by means of the traditional, ex­
cathedra, lessons. The Photogrammetry teaching staff at
the University of Pavia has become aware, over the last
two years, of the necessity of having specific software
able to calculate the photogrammetric orientations and
able to successively plot unknown points. All this, with
the aim of allowing the students to elaborate data meas­
ured by themselves in an autonomous and individual way.
The programs described are the first answer to these ex­
pectations: indeed the work is ongoing and, at the end of
the paper, new features will be described that it would be
useful to add in the near future.

3 MAIN FEATURES OF THE PROGRAMS

At the moment programs are able to solve interior, rela­
tive and absolute orientations and are also able to plot,
after the orientation procedures have been finished. All
the routines have the same philosophy: the user somehow
measures on images (photographs or digital files) points
instrumental coordinates (with an analytical plotter, a
digital plotter, a simple image processing software or a
digitizing tablet), and writes them in a textual file; then
the suitable software procedure is called: it reads data
from the files, works them out and displays results on the
screen, together with accurate statistical analysis and
graphical representation; to finish, it writes results on the
disk so that they are suitable to the following orientation
step.

Let's briefly consider an example. To complete the inte­
rior orientation of one photograph, it is necessary that the
user measures and records on a file the actual fiducial
marks coordinates and writes to another disk file theoreti­
cal fiducial marks positions, according to the camera cali­
bration certificate. Then the user has to call the interior
oriention calculation program, specifying data files and
which kind of coordinate transformation (there are few
different kinds, which will be described later in the paper)
has to be applied. The procedure evaluates the transfor­
mation parameters, records and shows them, together with
quality parameters and residuals. There is also an interior
orientation application program that, given the instru­
mental coordinates of a set of points, provided the interior
orientation parameters, transforms instrumental coordi­
nates into image coordinates.

The programs are highly modular, so they allow the user
to focus exactly the role of the various steps of the pho-

97

tograrnmetric procedure and the role of the different pa­
rameters involved; moreover they are open: it's easy to
read, modify or improve them. This is not always possible
with commercial software, which is, by its own nature,
closed and consequently hides many details of the internal
algorithms from the user .

4 HOW PROGRAMS ARE USED

The students are required, first of all, to make measure­
ments at our Geomatica Laboratory; they are subdivided
into groups of five or six and they have to take measure­
ments of a certain number of marked points (fiducial
marks, tie points, ground control points, points to be
measured) with three different instruments solely used as
collimators: an analytical stereoplotter, a digital low-cost
stereoplotter and a digitizing table; the instrumental coor­
dinates are written in files that have to be processed later.

Completely different instruments are used to make meas­
urements, with completely different working principles
and, of course, with very different quality levels. All this
helps us to underline that analytical photogrammetry al­
gorithms are completely separate from analytical stereo­
plotters (this is obvious, of course, but students often get
confused, especially if lessons and practices de facto
equate the two things). This allows also to show to the
students that photogrammetry procedures have a statisti­
cal nature, so that if good data are put in, they give back
good results, and viceversa.

For the subsequent processing, students and staff have
access to specialised laboratories, each with twenty com­
puters, where the students, subdivided into groups of not
more than two or three, are guided along the data proc­
essing and into the critical examination of the results. In
this way, we offer the students the possibility of seeing
results as they arise, step by step through the whole pro­
cedure, together with the possibility of understanding, as
a consequence, the role and the effects of each different
phase and of each parameter involved. Moreover, using
data coming from different measurement instruments, and
characterised, of course, by different accuracy levels,
allows the main orientations quality indicators to be re­
called.

It is also very important and useful that the students have
access to the computer laboratories also individually, out
of the teaching time. In this way they are allowed to freely
use the already known procedures and to better under­
stand their functioning. It is to be underlined that the stu­
dents can access directly the program listings, so they can
analyse the algorithms details or even modify them, if this
helps them to understand.

5 DESCRIPTION OF THE SOFTWARE

Rather than a detailed description of the programs, the
following section will focus on their global architecture
and will outline main procedures classes, main function
prototypes and the environment in which programs are
written, Matlab. A detailed handbook of the software
tools is currently carried out and will be distributed with
the software, as soon as possible.

Programs will be outlined grouped by categories: there
are two functions' groups that are needed to work out
analytical photogrammetry problems, but that have wider
interest and usefulness: they are the least squares func­
tion group and the coordinate transformation function
group. For these two groups the description will be a bit
more detailed, so as to show their capacities. For other
programs, strictly focused on traditional, well known,
analytical photograrnmetry algorithms, the description
will be synthetic.

5.1 Least squares functions

It has been written a universal least squares solver, able to
solve any problem, provided that the user builds a dedi­
cated function that calculates the deterministic model.

5.1.l Theoretical background. The programs that are
currently available manage only the parametric determi­
nistic model

Y=AX+a (1)

where Y is an m random variable that we are able to
measure, and X is an n random variable for which we
want to give an estimation of the mean value, based on an
extraction (a measurement) of Y, usually indicated by
Y0 . This is not a big limitation because it is known that

also the most general linear deterministic model

DY=AX+d (2)

can be reformulated in terms of a parametric model
problem. The user has also to supply the stochastic
model, that is the structure of the variance-covariance
matrix of the Y random variable. The word structure re­
calls that, writing the variance-covariance matrix in the

form Cyy = cr~Q , the matrix Q has to be given by the

user, while the coefficient er O will be estimated by the

least squares solution.

The routines calculate the well known solutions for the
estimated parameters

98

(3)

and for the estimated observations

Y==AX+a (4)

and for the overall quality parameter

(5)

The routine also estimates the variance-covariance ma­
trixes for both parameters and observations, respectively

(6)

Crr ==AC,ixA' (7)

In case of non linear problems

Y == f(X) (8)

solution is reached iteratively by a sequence of linear ap­
proximated problems: the user has to supply an approxi­
mated solution X 0 . Iterations are stopped when they give

no more significant enhancement to the solution.

5.1.2 The least squares solver engine. The engine
routine is 1 s_ca 1 c, and has the following prototype:

[EstPar, Estobs, Quality] =
ls_calc(DetMod, obs, Opt, optData)

Let's examine briefly input arguments:

• ModDet is a structure (sources have already been
updated to the fifth release of Matlab) containing
two fields: Name, the name of the deterministic
model function, and Xa, the aproximated parame­
ters vector, if any;

• obs is a structure containing the fields YO, the ob­
servations vector, and the matrix of observations
variance-covariance, Q;

• Opt is a structure containing some parameters that
the user can fix so as to tune program behaviour. It
contains the following fields: 1 s_Eps, related to
iterations stop condition; 1 s_IterMi n, which
fixes the minimum iterations number (the user
could choose a value greater than one, for testing
reasons); 1 s_Ite rMax, the maximum number of

iterations, to prevent infinite loops; 1 s_Verb,
which controls the verbosity of the screen and file
echo: it is possible to choose to have (i) no echo,
(ii) a screen echo of the essential parameters of the
running process, (iii) a file dump of the process,
(iiii) a complete and long file dump, including the
condition number of the deterministic model ma­
trix A.

• OptData is a structure which isn't used directly by
the engine, but it is passed to the deterministic
model function instead. It allows to pass to the
deterministic model function data which are nei­
ther in the observations vector Y0 , nor in the ap-

proximated values vector X 0 , but that are, never­

theless, necessary to calculate the matrixes A and
a of the deterministic model.

Let's examine output arguments now:

• EstPar is a structure containing two fields: Xs,
the estimated parameters vector and its variance­
covariance matrix, cxx;

• Estobs is a structure containing the fields Ys of
the estimated observations, the matrix cyy of its
variance-covariance matrix, and the Nu vector of
the residuals Y - Y0 ;

• Qua 1 i ty is a miscellaneous structure containing,
among the others: Sigma, that is the value of the
quantity indicated by the eq. (5) and IterNum the
number of the iterations executed.

5.1.3 Final remarks on the least squares engine. As
already underlined, the engine is able to solve any prob­
lem, provided that the user builds the deterministic model
function. This function must have a name beginning with
the prefix 'dm_' and has to give back to the calling func­
tion the deterministic model matrixes A and a .

It is noticeable that, thanks to the structures data types,
that have been introduced in Matlab only recently, it will
be possible in the future to modify functions' behaviour
without changing the prototypes. This will allow to
change the software without being necessarily obliged to
change the calls to the engine, spread into many different
programs.

5.2 Point class

The current version of the package takes full advantage of
the object oriented features of Matlab's language. There
is a class called Poi nt3D, which has the role of recording
the three dimensional coordinates of a set of points: for
each point it is possible to store a name, the three coordi­
nates and, if any, the variance-covariance matrix .

99

5.3 Coordinate transformation functions

Coordinate transformation functions constitute another
self-consistent set of functionalities. They have been
written taking advantage of the object oriented features of
Matlab's language. Each coordinate transformation is a
class, with many overloadable methods.

Each of these classes contains, among the others, the pa­
rameters values, their variance-covariance matrix, if any,
and the versus flag, assessing if the transformation has
to by applied directly or backward.

5.3.1 Direct application of coordinates transforma­
tions. One of the methods of coordinates transformation
classes (let CT indicate any of them) is app 1 y, which
transforms a Poi nt3D class instance according to the
rules specified by CT. If variance-covaTiance matrixes of
the to-be-transformed points are known, the method es­
timates also the stochastic behaviour of the transformed
coordinates.

If CT is an instance of a certain coordinate transformation
class and if Pt is an instance of the Poi nt3D class, the
following instruction

NewPt=apply(CT, Pt)

transforms the coordinates contained in Pt according to
CT and stores the results in NewPt.

The package offers three different Planar Coordinate
Transformations, PCT starting from now, with the func­
tional form

Pu= DRPx +T

where R is the rotation matrix

[
cos a

R= si~a

-s,

0

·n a
0
o
1

)
cos a

(9)

(10)

while T is the translation vector, with the third component
equal to zero, due to the planarity of the transformation.
D is the 'deformation matrix' which changes depending
on the transformation type; D has, in the case of PCT3, the
following shape

D=[~ : ~J (11)

while, in the case of PCT4, the matrix D has the form

(12)

and in the case of PCT5, Dis

~) (13)

The package currently offers only one three dimensional
coordinate transformation, the well known seven pa­
rameters transformation (called SCT7), having the form

(14)

where R is the usual three dimensional rotation matrix

R=RruRq,R,.

[' 0 -s~nw J R"'= 0 cosw
0 sinw cosw

[cos~
0 sin~) (15)

R = 0 1

CO~qJ 'P -sin qJ 0

[COSK -sinK

~) Rk = si~K COST<

0

5.3.2 Parameters estimation of coordinate trans­
formations. The method ca 1 c makes a least squares
estimation of the parameters of a certain transformation,
provided the coordinates of a sufficient number of points
respect to two different reference systems.

The PCT4 case is solved exactly, thanks to the well
known linearizing variable transformation. PCT3, PCTS
and SCT7 arc solved iteratively, starting from approxi­
mated values. Such values must be passed to the function
by the user or, in the case of PCT3 and PCTS, can be es­
timated by the method itself by a preliminary PCT4 esti­
mation.

If Poi ntuv and Poi ntXY are two instances of the class
Poi nt3D containing the coordinates of some points re­
ferred to two different reference systems, the instruction

ECT=calc(CT, PointUV, PointXY)

estimates the parameters of a coordinate transformation
and stores them in the ECT object, belonging to the CT
class. The CT object must be an instance of the chosen

100

transformation class and fixes the transformation type and
the approximated solutions, if they are needed. The CT
object can be void if approximated parameters are not
necessary (PCT4 case) or if they are unknown: in this case
the ca 1 c method estimates such approximated parameters
in the best possible way.

5.4 Interior Orientation routines

The interior orientation programs mainly uses the func­
tions and the classes already outlined. They estimate the
parameters of a PCT which transforms the instrumental
reference system into the image reference system, on the
basis of nominal and measured fiducial marks coordi­
nates. There are CTF objects, containing camera certifi­
cate information, and IOD (Interior Orientation Data) ob­
jects, able to store measured fiducial marks positions of
one photograph. The principal class is IOEP (Interior
Orientation Estimated Parameters) which stores the esti­
mated parameters, together with links to the processed
data object and many other data, useful for statistical
quality analysis. Among IOEP class methods, there are
cal c, with the following prototype

IOEP=calc(IOEP, CTF, IOD)

which estimates the parameters and give graphical visu­
alisation of the residuals, and apply, which transform
instrumental coordinates into image ones.

5.5 The relative orientation program

The relative orientation program, ro_ca l c has the fol­
lowing prototype

ROEP= ro_calc(ROEP, IOEP, IOEP, ROD)

where the two passed IOEP class instances contain the
interior orientation parameters of both involved photo­
graphs; the fourth passed argument is an instance of the
ROD class (Relative Orientation Data) which contains,
mainly, the instrumental coordinates of tie points on both
left and right image. The returned argument, a ROEP
(Relative Orientation Estimated Parameters) class in­
stance, is somehow analogous to the IOEP class and con­
tains the orientations values of both image, respect to the
model arbitrary reference system. The ro_ca 1 c program
uses the coplanarity condition to determine relative sym­
metric orientation parameters: the algorithm is able to
linearize the observation conditions everywhere, although
it is not able to determine the approximated solutions,
which are chosen in the usual way, with all the angles
null.

There is also a p 1 ot function, which determines the three
dimensional coordinates (model coordinates or object
coordinates) intersecting homologous lines; it uses a
geometrical approach, there is no adjustment indeed, and
only three of the four available equations are used.

5.6 The absolute orientation program

The absolute orientation program, ao_ca 1 c, has the
following prototype:

AOEP= ao_calc(AOEP, ROEP, AOD, GPO)

where the second passed argument, a ROEP class instance,
contains the relative orientation parameters; the AOD
(Absolute Orientation Data) class instance contains,
mainly, the instrumental coordinates of control points on
both left and right image and GPD class instance records
ground coordinates of control points. The program esti­
mates the parameters of a SCT7 transformation; as in the
relative orientation case, the program is able to linearize
equations everywhere, but isn't able to find a good ap­
proximated solution, that must be passed with the first
argument; if this one is void, the program start with the
standard approximated solution, with the angular values
equal to zero.

Obviously the returned AOEP (Absolute Orientation Esti­
mated Parameters) class instance contains the exterior
orientation values of the images, together with their vari­
ance-covariance matrix and other quality indicators.

5. 7 The programs language

Programs are written in the Matlab language, so they need
that environment to be executed, and this could be an
obstacle to the diffusion of the procedures. On the other
hand, Matlab allows development times much shorter
than a standard language, such as C language, does.
Moreover, Matlab procedures are platform independent:
the same programs can run in Matlab for Windows and in
Matlab for Unix.

5.8 Programs documentation and availability

As already mentioned, there isn't yet a programs hand­
book; however, all the functions are documented, al­
though in italian. Programs will be freely distributed, so a
package copy will be sent to whoever will ask them.

5.9 Further developments

Among all the many things that it would be fine to add to
the packet, there are certainly the bundle adjustment and
the digital images support. The first step in the digital
field will be the construction of a digital collimator, so
that the above described seminars will only need one
computer for both measurements and further processing:
digital photogrammetry has great potential also in the
teaching field.

101

6 CONCLUSIONS

Information technology can greatly contribute to making
teaching effective and up-to-date, on the condition that
the necessary software instruments are acquired: this re­
quires at the least a big time investment; for this reason it
has been decided to freely distribute the programs. The
author and the whole photogrammetry staff of the Univer­
sity of Pavia hope that this is the starting point of a deeper
collaboration in the field of teaching problems between
teachers and researchers from different Universities,
based on exchanges of experiences, materials and instru­
ments.

7 REFERENCES

Benciolini, B., 1989. Modelli di Compensazione. In: Pro­
gettazione e Ottimizzazione de! Rilievo Topografico e
Fotogrammetrico di Controllo, CISM, Udine, Italy.

Benciolini, B., 1990. Modelli Analitici di Base della Fo­
togrammetria. In: Dall' Analitico al Digitale; Nuovi Svi­
luppi della Fotogrammetria applicata all'Ingegneria,
CISM, Udine, Italy.

Kraus, K., 1994. Fotogrammetria: Teoria e Applicazioni,
Vol I, trad. Sergio Dequal, Torino. Libreria Universitaria
Levrotto & Bella, Torino, Italy.

Mikhail, E.M., 1976. Observations and Least Squares.
IEP, New York.

Mussio, L., 1984. II calcolo delle Trasformazioni Piane
Elementari. In: Ricerche di Geodesia Topografia e Foto­
grammetria, CLUP, Milano, Italy, Vol IV.

Sanso, F., 1989. II Trattamento Statistico dei Dati . Citta
Studi, Milano, Italy.

102

