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ABSTRACT 

Several geocoding methods for SAR interferometry are compared. The discussion results in the proposal of a new geocod­
ing model. It is based on a least squares adjustment combining interferometric phase, range, Doppler centroid frequency, 
flight path and control point data. A complete mathematical framework for the computation of object space coordinates 
without approximations is presented. This gives a way to an efficient implementation of the algorithm for geocoding the 
pixels of an interferogram. 

1 INTRODUCTION 

Geocoding of SAR data has first been conducted for single 
scenes. A frequently used approach is the range-Doppler 
approach (Curlander, 1982, Raggam, 1988, Meier, 1989) 
where object space coordinates are computed from ob­
served ranges, Doppler centroid frequencies, i.e. Doppler 
frequencies which occur when the object points are in the 
center of the radar beam, and flight path data. As range 
and Doppler centroid frequency determine the location of 
an object point in two dimensions only, additional informa­
tion about the earth's surface is introduced. This is pos­
sible when the flight path is given in a coordinate system 
referring to the earth's surface, e.g. in a cartesian geocen­
tric coordinate system. Two approaches are to be distin­
guished: in the first, a standard reference body of the earth, 
ususally an ellipsoid, is introduced (Roth et al., 1993). The 
resulting location of an object point is correct only when 
the point is located close to the surface of the reference 
ellipsoid. All other points are subject to distortions, partic­
ularly mountainous areas. This is avoided in the second 
approach where in addition to the reference ellipsoid a dig­
ital elevation model (OEM) is used to describe the surface 
of the earth (Meier et al., 1993). This geocoding procedure 
for SAR data is very similar to the derivation of orthophotos, 
a standard photogrammetric procedure (Kraus, 1993). 

For geocoding SAR interferograms there is no need for ad­
ditional information such as a reference ellipsoid. In com­
bination with range and Doppler centroid frequency which 
determine the location of object points in two dimensions 
the interferometric phase determines the third dimension. 

Figure 1 explains the geometric principle of SAR interfer­
ometry. An object point p is imaged twice from sensor 
positions s1 and s 2 separated by baseline B. The mea­
surements taken from each sensor position are range r, 
Doppler centroid frequency f, and the complex amplitude 
V = VI exp {jcp} consisting of magnitude VI, where I 
is called intensity, and phase cp. Range is determined by 
time measurement with an accuracy limited to e.g. 10m for 
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satellite-borne sensors. The range measurement defines a 
sphere on which an object point to be geocoded is located. 

The Doppler centroid frequency is approximately o. This 
means that the radar has a pointing direction more or less 
perpendicular to the flight path. In general, the Doppler 
centroid frequency defines a hyperboloid on which the ob­
ject point is located. When the Doppler centroid frequency 
is precisely 0 the object point is located on a plane perpen­
dicular to the flight path. Figure 2 shows the interferomet­
ric point determination for this case under the assumption 
of parallel flight paths. The drawing plane is the Doppler 
centroid plane to which the flight paths continue perpendic­
ularly. The spheres defined by range measurements are 
shown by circles with s1 as center. 

The phase components cp1, cp2 of the complex amplitudes 
of both SAR scenes are used to determine the range differ­
ence between the object point and the two sensor positions. 
The phase-based measurement has a high precision as it 
is computed from the difference ¢ of the phases cp1 and cp2 
of both SAR scenes. But¢ is ambiguous, because it is lim­
ited to the interval] - 1r, 1r]. This ambiguity can be solved 
by integrating phase differences t...¢ between neighbour­
ing pixels, a process usually called phase unwrapping, and 
adding an integration constant ¢c determined, for instance, 
from a single control point. The range difference defines a 
hyperboloid which intersects the drawing plane of Figure 2 
as a hyperbola on which the object point is located. In a 
general sense the range difference determines the eleva­
tion angle under which the object point is observed. Putting 
all the geocoded object points together a OEM can be de­
rived. 

The new approach combines the three observations range, 
Doppler centroid frequency and interferometric phase 
which are obtained for each interferogram pixel with flight 
path data to compute object space coordinates. First, the 
flight path data is refined by a least squares adjustment; 
then, the object space coordinates are computed using a 
multi-dimensional Newton-Raphson algorithm. In Section 
2 previous approaches to the geocoding of SAR interfere­
grams and the derivation of OEM from SAR interferometry 



Figure 1: Geometric principle of SAR interferometry. 

Figure 2: Interferometric point determination by range and 
phase difference. Drawing plane is the Doppler centroid 
plane. Circles correspond to "equi-range" lines and hyper­
bolas to "equi-difference of range" lines. 

are discussed. It is shown that most approaches are lack­
ing a consistent mathematical framework. In Section 3 such 
a framework is introduced by the new approach following 
the spirit of the publications about geocoding of single SAR 
scenes mentioned at the beginning of the introduction, but 
extending it for interferometry. Section 4 presents an out­
look to future research. 

2 PREVIOUS WORK 

Approaches to geocoding of SAR interferograms can be 
subdivided into two groups. The first group uses a two-step 
procedure: first, terrain heights are computed from range 
and interferometric phase difference. Then, the heights 
usually referring to slant range geometry are transformed 
into the object space coordinate system to derive a OEM. 
Approaches of the second group compute object space 
coordinates directly from sensor positions, range, Doppler 
centroid frequency and interferometric phase. 

Several methods conducting the first step of the first group 
of approaches, the computation of intermediate heights, 
have been developed. They are summarized here (see 
also (Small et al., 1996)). (Zebker and Goldstein, 1986, 
Li and Goldstein, 1990) consider SAR interferometry for an 
airborne single-pass (two-antenna) system. The height of 
the airplane above the object point is computed from base­
line parameters, range and interferometric phase using pla­
nar trigonometry. (Massonnet and Rabaute, 1993, Gens 
and Genderen, 1996) follow this line of thinking, extending 
it to satellite-borne dual-pass interferometry. (Gabriel and 

Goldstein, 1988) compute the flying height in the case of 
dual-pass interferometry with crossed orbits. 

Also (Prati et al., 1990, Hartl and Xi a, 1993, Xi a, 1996) treat 
the dual-pass sensor configuration. Using planar trigonom­
etry terrain height differences of neighbouring object points 
are computed from differences of interferometric phases of 
neighbouring pixels as a function of baseline components 
and flying height above ground. As an approximation, in 
(Hartl and Xi a, 1993, Xi a, 1996) the directions from the sen­
sor positions to the object point are assumed to be paral­
lel. The computed height differences of neighbouring object 
points are integrated starting at a control point. (Hagberg 
and LJ:ander, 1993) use a similar approach . Instead of local 
terrain height differences incidence angle differences are 
computed. The integrated local incidence angles are then 
converted to object point heights using planar trigonometry. 

None of the publications mentioned in the previous para­
graphs treats the second step, the geocoding of height in­
formation. In all cases, either the earth surface is consid­
ered to be planar, or the height computation is treated re­
ferring to a tangential reference plane to the earth surface. 
Therefore, at least in the satellite-borne case, the descrip­
tions are rather meant to be a treatment of the principles 
of SAR interferometry than a description of interferogram 
geocoding. 

A more complete description of interferogram geocoding 
is given in (Small et al., 1993, Small et al. , 1994). Con­
trol points are used to refine image and baseline geome­
try. The parameters estimated to refine the image geom­
etry are range offset and scale expressed as corrections 
of the near range boundary and the range pixel spacing 
of the SAR scene, as well as time offset and scale in the 
form of scene start time and azimuth pixel spacing. The 
baseline parameters are a cross-track and a nadir bias pa­
rameter and a cross-track drift parameter. In addition to 
these parameters a phase constant is estimated from con­
trol points which is used to compute absolute interferomet­
ric phase from unwrapped interferometric phase. After the 
refinements height is computed in a way similar to the ap­
proaches mentioned above. Planar trigonometry is used 
to compute object point height above a tangential plane 
centered in the imaged area. Applying cosine law the an­
gle between the refined baseline and the look direction is 
computed. Then the look direction is used to compute 
height above the reference plane. The object point height 
is corrected with respect to an approximation of the earth's 
curvature. In the second step, the intermediate OEM is 
geocoded. For this task two different methods are used. 
The first method is the same as the one mentioned above 
for terrain-corrected geocoding of single SAR scenes using 
a reference OEM. In this case the interferometric OEM can 
be validated using the reference OEM. For practical appli­
cations this method does not appear to be very useful, as 
it requires a OEM as input which generally is output of the 
geocoding procedure. According to the second method the 
look vector is computed and added to the sensor position 
vector to compute object point coordinates. Unfortunately, 
the procedure of computations is not described. 

(Schwabisch, 1995, Schwabisch, 1997) solve the geocod­
ing problem with a single step approach. Object point 
coordinates are computed from an equation system con­
sisting of range, Doppler and ellipsoid equation, i.e. the 
equations used for ellipsoid-corrected geocoding of single 
SAR scenes (Meier, 1989). The difference of (Schwabisch, 
1995, Schwabisch, 1997) with respect to geocoding single 
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$AR _scenes is that the height h of the object point above 
a ge'odetic reference ellipsoid is added to the equitorial and 
polar radii of the ellipsoid used. This means that each ob­
jectpoint is located on the surface of its individual ellipsoid. 
On the basis of precise flight path data absolute interfero­
metric phase can be simulated for given object points and 
their ellipsoidal heights h. By computing object space co­
ordinates for the pixels of the interferogram using range r, 
Doppler centroid frequency f, and a set of assumed values 
h a look-up table of h = h( c/J;i) is simulated. It provides val­
ues h as a function of pixel row i and column j and absolute 
interferometric phase ¢. Absolute interferometric phase is 
computed from unwrapped interferometric phase by addi­
tion of a phase constant derived with the help of at least 
one control point. The final height of an interferogram pixel 
is found by entering the look-up table with a phase value. 
Finally, point locations can be determined from the equa­
tions for ellipsoid-geocoding of singiEl SAR sr:enes. 

(Madsen et al., 1993) proposes a one-step geocoding al­
gorithm applied to single-pass SAR interferograms. The al­
gorithm is based on three-dimensional vector calculus. It 
uses the approximation that the look directions from the 
sensor positions to the object point are parallel. With the 
help of an orthogonal basis object space coordinates are 
computed from range, Doppler and interferometric phase 
equation. As this approach is similar to the new approach 
proposed here it is not described in further detail. The 
new approach differs from (Madsen et al., 1993), as it does 
not assume approximately parallel look directions. Conse­
quently, a closed-form description of object space coordi­
nates cannot be derived, and an iterative procedure is cho­
sen for the computations. In contrary to (Madsen et al., 
1993) the new-approach refines the baseline information 
using control points. 

3 A NEW CONCEPT FOR INTERFEROGRAM 
GEOCODING 

In this Section a brief description of the new approach is 
given which does not rely on any conceptual approxima­
tions and strictly uses three-dimensional geometry. It was 
sketched previously in (Hellwich, 1997). Object space co­
ordinates are computed on the basis of range, Doppler 
and interferometric phase equation. Sensor positions are 
derived from fl ight path data which are refined by a least 
squares adjustment using control point data. As range, 
Doppler and interferometric phase equation cannot be 
transformed to explicit formulas for object space coordi­
nates, the interferogram pixels are geocoded using a multi­
dimensional Newton-Raphson algorithm. Input parameters 
are the three observations per pixel (range, Doppler cen­
troid frequency and interferometric phase) and the refined 
flight paths. 

Image geometry can be refined according to (Small et al., 
1994), an approach discussed in Section 2. As the refine­
ment of image geometry can be conducted for each scene 
individually, it can be kept separate from the kernel geocod­
ing operations. 

Then, the least squares method is used to refine the sen­
sor positions whi_ch is eq~ivalent to a refinement of the 
baseline. As the elevation angle from a sensor position 
to the object point is computed from range difference as a 
function of interferometric phase, the baseline component 
in look direction has to be known with, superior accuracy, 
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for instance, to a fraction of a wave length_ For satellite­
borne dual-pass interferograms this is not the case as long 
as original orbit data determined according to the recent 
state of the art are used. The orbits are determined by 
an epoch state vector and an orbit model including several 
influences among which the earth's gravity field is most im­
portant. While the orbit model guarantees a relative accu­
racy sufficient for interferometric purposes, the epoch state 
vector is subject to errors in the range of dm. This means 
that the shape of the orbit is known, but that position and 
scale are not known accurately enough. The latter can be 
refined by bias and drift parameters determined with the 
help of control points. 

The observation equations of the least squares adjustment 
are 

• the interferometric phase equation (dual-pass case) 

where ¢ is the observed unwrapped interferometric 
phase as a function of the sensor positions s1 , s 2 , the 
object point p, the phase constant c/Jc to transform un­
wrapped interferometric phase to absolute interfero­
metric phase, and the wave length .A. v is the resid­
ual, and the "hat" (') indicates adjusted variables. The 
vectorial parameters consist of three coordinates x, y 
and z. Note that Equation 1 states that the sensor po­
sitions are unknowns and as such determined in the 
course of the adjustment. 

• the range equation 

(2) 

where r1 is the range between sensor position 1 and 
the object point. 

• the Doppler equation 

, (p- 81) · v1 
/J + Vft = .A (jp- 811) (3) 

where !I is the Doppler centroid frequency and v 1 is 
the velocity of sensor 1. 

• the equations of flight path parameters 

s1 + vs1 
VJ + vv 

82 + Vs 2 

81 + b1 + d1t 
vr 
sz + b2 + d2t 

(4) 

where b; is the vector of bias parameters in x, y and z­
direction, and d; the vector of drift parameters of flight 
path i. t is the time of measurement which is assumed 
to be correctly set or corrected due to a preceeding 
image refinement. The sensor positions 8 are only for­
mally considered unknown and to be determined by 
the adjustment. Practically, the shape of the orbit is to 
be preserved which means that s is only influenced by 
band d, and not by its residual vs . This is achieved by 
introducing 8 with a high weight. 

• the control point equation 

(5) 



Observation equations could also be \introduced for bias b 
and drift d whose accuracies are available from orbit de­
termination. This would allow to control the magnitudes of 
the adjusted bias and drift parameters, a means which is 
considered to be not absolutely necessary. 

The adjusted unknowns :i: are computed according to the 
well-known equations of least squares adjustment (Mikhail, 
1976): 

(6) 

where ~ is the vector of approximations of the unknowns 
and Llx is the vector of corrections to the approximations. 
The linearized observation equation system is 

v=Atlx-w (7) 

where v is the vector of residuals, A is the Jakobi ma­
trix containing the derivatives of the observations with re-

spect to the unknowns, and w = o- o(~) is the vector of 
shortened observations, i.e. the difference between obser­
vations o and observations as a function of the approxima-

tions of the unknowns ~ - The "circle" ( a ) indicates approx­
imated variables. The corrections to the approximations of 
the unknowns Llx are resulting from 

(8) 

where P is the weight matrix. The covariance matrix of the 
adjusted unknowns Qa:a: is computed according -to 

(9) 

where a-5 is the a posteriori reference variance associated 
with the weight unity: 

-2 VTPV 
O'o=-­

r 

where r is the redundancy. 

(10) 

The adjustment is conducted for the control points only. 
This means that in the adjustment the bias and drift param­
eters, the sensor positions and velocities as well as the ob­
ject space coordinates of the control points, and the phase 
constant <Pc are estimated. Note that only bias and drift pa­
rameters and <Pc are used in the following processing step. 
Object points which are not control points are not included 
in the adjustment, as they are not determined redundantly 
and, therefore, do not contribute to the determination of 
bias, drift and r/Jc . 

Once bias and drift parameters refining baseline geometry 
are computed, all interferogram pixels are geocoded. First, 
the adjusted sensor positions .S1 and .S2 are computed from 
(4). This means that the sensor positions are interpolated 
and refined. Then, for each pixel a system of three equa­
tions (1 ), (2) and (3) with the three unknown object point 
coordinates xp, YP and zp has to be solved. As there is no 
closed-form solution for this problem, an iterative solution 
is attempted. Here a multi-dimensional Newton-Raphson 
algorithm is applied (Press et al., 1992). It uses the Jakobi 
matrix Ap, basically by computing 

(11) 

and 
(12) 
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where 

( 
o o 0 )T 

Wp = ¢- ¢(x), r1- r1(x), h- h(x) . 

Simulations have shown that the convergence properties of 
the algorithm are very good owing to the geometric proper­
ties of the problem. Figure 2 shows that the solution space 
does not contain any severe irregularities. For the first un­
known object point any loc.ation on the correct side of the 
baseline can serve as approximation. In about four iter­
ations the algorithm provides a sufficiently accurate solu­
tion. In an interferogram geocoded pixel by pixel, any ob­
ject point to be processed after the first one will be located 
close to a previous point which will serve as an approxi­
mation. The simulations conducted so far have shown that 
under these circumstances a single iteration always results 
in sufficiently accurate coordinates. This means that the al­
gorithm provides a solution which is computationally equiv­
alent to a closed-form solution of the equation system. 

The resulting object space coordinates usually have to be 
transformed, e.g. from a geocentric cartesian coordinate 
system to a map projection coordinate system. In this coor­
dinate system a OEM can be derived from the object points. 

Summarizing, the proposed geocoding method consists of 
five steps: 

1. Image refinement 

2. Baseline refinement by least squares adjustment 

3. Computation of object space coordinates for each in­
tetierogram pixel by Newton-Raphson method 

4. Transformation to map projection coordinates 

5. OEM generation 

4 DISCUSSION AND OUTLOOK 

The main advantage of the new geocoding method is that it 
is based on a consistent mathematical framework. A con­
sequence of this framework is an implementation which al­
lows fast geocoding of the bulk of interferograll} pixels and 
a high potential for the analysis of accuracy. 

A disadvantage may be the requirement for comparatively 
accurate flight path information. The question whether pre­
viously developed methods have an implicit advantage re­
garding a lower demand for flight path accuracy still .has to 
be investigated. The new method has an obvious disadvan­
tage concerning the introduction of control points, as their 
covariance matrices have to be transformed (rotated) from 
e.g. a topocentric to a geocentric qoordinate system. Pre­
viously developed geocoding methods do not require such 
an operation. 

Future work still has to be conducted concerning 

• simulations of the adjustment for various baseline con-
figurations, 

• analysis of accuracy properties, 

• tests with real SAR interferograms and 

• comparisons with other geocoding methods under 
well-controlled conditions. 



The authors apologize for the incompleteness of this work, 
yet hope that the new concept favours discussions about 
more consistent approaches to the geocoding of SAR in­
terferograms. 
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