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ABSTRACT 

Three methods of fusing information from maximum liklihood and neural network methods for multispectral 
data classification are discussed in this paper. The purpose of the fusion is to enhance the interpretation of a 
pixel under study with the classifier that has a minimum uncertainity in assigning the pixel to one of desired 
classes. The classification performance with the fusion techniques is found to be superior to that of the 
individual classifiers. 

I. INTRODUCTION 

Hierarchial, decision-tree based classifiers (DTCs) 
are very useful for complex pattern recognition 
tasks involving several pattern classes and a large 
number of features. In remote sensing, the DTC is 
of great interest for classifying many earth's targets 
with several of their subcatagories, and for 
handling space-borne imaging spectrometer data 
with channels ranging from a few tens to a few 
hundreds [Kim, 1991]. There are many advantages 
with the DTC over an one shot classifier (OSC) for 
these applications. Tho DTCs are flexible in that 
new branches of the tree can be opened as and 
when the application demands. At each decision 
node of the DTC, we have a maximum of two or 
three classes (or groups of classes or of spectral 
channels), and hence the training at each node is 
computationally less intensive when compared to 
the OSC. 

Despite these advantages, there are several factors 
that affect the classification performance of the 
DTC : (1). classification strategy at. each decision 
node, (2). the design criteria of the tree; the 
performance depends significantly on how the 
given features or classes are grouped at each node, 
(3). its sensitivity to the noise, to mention a few. 
For the univariate feature cases, the classification 
strategy is largely restricted to simple thresholding 
[Sethi, 1995], while for the multivariate cases, the 
conventional Maximum Lililihoocl (IVfL) method is 
commonly employed. · In the recent past, the 
artificial neural networks (Al\TNs), both supervised 
and unsupervised, have been e:qJlored by several 
research workers as a viable alternative to the 
conventional statistical approaches for the remote 
sensing data classification problems [Benocliktsson, 
1993, Hara, 1994]. In this paper, we are concerned 
with fusion of the information obtained from both 
the ML and the Al\TN classifiers in order to realize 
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overall better classification performance for a 
multispectral satellite imagery data. 

The motivation behind the information fusion 
approach (IF A) is to enhance the interpretation of 
a particular pixel under study with the classifier 
that has a minimum uncertainity in assigning the 
pixel to one of desired classes. It is frequently 
observed that the ML method works very well for 
some classes better than the ANN, especially in the 
mulispectral data classification [Bischoff, 1992]. 
This may be surprising, since it is now well 
established that the ANNs are capable of 
estimating the a posteriori conditional probabilities 
of all classes presented to them [\Van, 1990]. In 
principle, it is possible to realize these conditional 
probabilities with an optimum neural network 
architecture, provided that there is no limit on the 
network size and the training database is unbound. 
But in reality, one has to deal with only a finite 
set of training data and limited computational 
resources. A common practice is that one has to 
start with an educated guess of the network size 
and after training it, he has to crossva.lidate its 
performance with a set of test data. If the network 
size chosen is less than the optimum one, it learns 
the training data poorly. On the other hand, if it is 
bigger than tho optimum size, the net generalizes 
the test data poorly. A common practice is that we 
start with a set of neural networks of different 
sizes, train all of them before deciding the one that 
gives the best overall performance with both the 
training and the test data [Bischoff, 1992]. The 
penality is, however, high computation involved for 
training these networks, and is very cumbersome, 
in particular, for the DTC realization in which 
several decision nodes are to be trained. 

In a recent study, we have reported the use of the 
FI for integrating an ensemble of ANNs for 
multispectral data classification [Kumar, 1997]. It 



was shown that the FI approach gives an overall 
better classification when compared to that of the 
individual networks. We further eJ>..tended this 
approach for combining two different information 
sources (the original and its smoothed version) to 
improve the overall classification. In this paper, we 
explore three methods of integrating the ML and 
the ANN classifiers at each decision node of the 
DTC, and compare their classification performance 
with those obtained when the classifiers are 
applied individually. 

Earlier, Ersoy and Hong [1990] suggested a 
hierarchial approach for classifying airborne 
multispectral data. Their cascaded approach is, of 
course, different from the DTC in that each of the 
neural nets was learnt first, and classification was 
performed, and those misclassified pi:·mls were 
allowed down in the cascade after undergoing a 
nonlinear tranformation. While t:his method works 
well for a low-dimensional input data, success with 
the high-dimensional, numerous class cases will 
depend heavily on how fast the nonlinear 
transformation can be implemented. 

The rest of the paper is organised as follows. 
Section 2 describes the two methods of integrating 
the ML and the ANN classifiers. Section 3 
discusses about the experimental study over a 
multispectral data with the design aspect of the 
DTC. Section 4 brings out the effect of additive 
noise on the classification performance of the 
individual and fused classifiers. Our conclusions 
are summarized in Sec. 5. 

2. CRITERIA FOR FUSION 

. As mentioned above, the criteria for fusing 
information from different classifiers differ only by 
the way the information measure is defined. In the 
following, three methods of information fusion are 
discussed. 

2.1. Direct Pinz Method: 

Pinz and Bartl [1992] proposed earlier a method of 
fusing the NIL and ANN methods for a one shot 
classifiation of the Landsat-Tl\1 multispectral data. 
According to this method, for each test pixel, the 
confidence of the A.""JN is first evaluated as the 
difference between the most activated outp1.1.t 
neurons. If this confidence is above a desired 
threshold, the fusion selects the ANN for 
classification. Else, it selects the ML classification. 
We have directly adapted this method • for 
implementing it at each decision node of the DTC. 
This method is henceforth referred to DPM. 
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2.2. Modified Pinz Method : 

It is clear that the DPM is biased toward the ANN 
as the confidence of the l\1L for the test pixel is 
never considered. This is not a desirable approach, 
as pointed out in the introduction, the ML performs 
better than the ANN. In addition, it is difficult to 
select an appropriate threshold since the ANNs 
are, in general, undertrained (ie., their learning is 
usually terminated after a certain number of 
iterations) for better generalization properties, 
since the overtrained network does not classify the 
test data as it does for the training data. 

To overcome these problems, we propose here a 
modified verll!ion of the Pinz method described as 
follows: The test pixel is first subjected to both the 
classifiers (For ML, the search for maximum 
probability is not carried out). The peak difference 
between the two most competant outputs for the 
pixel is estimated for each classifier, and 
normalized to the maximum peal{ value. The pixel 
is assigned to the classifier for which the 
normalized peak difference is higher. As will be 
shown in the nex-t section, this modified Pinz 
method (MPM) in1proves the overall classification 
accuracy when compared to that of the DPM. 

2.3. The Fuzzy Integral Method: 

A brief introduction on the FI is given below for the 
sal(e of completeness. For full details, the reader is 
referred to Kumar [1997]. 

The computation of the FI is as follows: Let 
U={UJ,U.2, ... ,un} be a finite set of values, and h:U-> 
[0,1] be a function. The fuzzy integral I is 
evaluated from h and a parameter, the so-called 
fuzzy measure g, as 

n 
I = max [ min { h(w) , g(Ai i) } ] (1) 

i=1 

where A= {uJ,U2, ... ,u.n}. The fuzzy measures, g(A), 
are obtained using its additive properties in a 
recursive manner: 

g(A;) = g(UJ) = g1, 

g(Ai) =If + g(Ai-1) + A If g(Ai-1), 
for i = 2, ... ,n. (2) 

The value }.. is determined by solving the equation 
n 

f...+1=11 (l+f...g), (3) 
i=l 

where}.. e (.:1, + oc ), and A* 0. This is obtained by 
solving an (n-l)th degree polynomial equation and 



finding the unique root greater than -1. The fuzzy 
measures g can thus be fully determined by the so­
called density function g. 

The physical interpretation of the FI can be 
described as follows. The density function g, is 
related to the degree of importance of the classifier 
u;, towards the final evaluation. The (min) operator 
in Eq.(1) is interpreted as the grade of agreement 
between the evidence values, h(u.;), and the degree 
of importance or expectations g, while the (max) 
operator does the searching process ·for the 
maximal grade of agreement between the objective 
evidence and the expectations. Now, let us apply 
these concepts for the current problem of combining 
different classifiers. 

Consider Y={CJ,C2, ... ,Cn} as a set of classes of 
interest. In hierarchial classification, each Ci may, 
in fact, repre ent a set of groups or subgroups by 
itself. Let U = {u.J,U.2, ... ,u.,} represent the set of 
classifiers, and X be the pixel under consideration 
to be recognized. Let hp:U--> [0,1] represent the 
partial evaluation of the object of the pixel X for 
each class Cp, i.e., hp is an indication of how certain 
we are in the classification of the pixel X to be in 
class Cp, which takes the value of unity for 
absolute certainity and zero when X not in Cp. 
Corresponding to each classifier u; , the degree of 
importance, g, i.e., how important the classifier u; 
is in the recognition of the class Cp. The 
classification accuracies obtained from the classifier 
for each class imply the degree of importance of this 
classifier, and hence are used here directly as the 
values of the density function. 

3. RESULTS AND DISCUSSIONS 

To validate the above methods in hierarchial 
classification, we have considered a multispectral 
data set of the IRS- l A satellite data with spatial 
ground resolution of 72 mts. over the north-eastern 
part of India. Samples of 12 prominent features 
were extracted visually from the data at three 
spectral bands, B2 (0.52-0.58 ~Lm .), B3 (0.62 - 0.68 
~.) and B4 ( 0.77-0.86 ~Lm.) . The fifty percent of 
the samples are used for training, and the entire 
data set for testing the classification strategies 
mentioned above. Table 1 gives the classes 
ex-tracted from the multispectral data with their 
size and their legends. 
As mentioned in the introduction, another 
important issue is the very design of the DTC. It is, 
of course, essential that the groups and subgroups 
of the classes at each decision node must be 
spectrally separable. We have used the 
Bhattacharaya distance (BD) for clustering the 
classes of interest (Table 1). This distance measure 
is recommended as it dears a closer relationship 
with the classification accuracy than any other 
measure functions [Kim, 1991]. The binary decision 
tree thus obtained is shown in Fig.l. 
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Table 2 summarizes the results ob~ained with the 
ML, the ANN, and the different fusion method 
mentioned in Sec. 2. The ANN is a multilayer 
perceptron network with a single hidden layer 
consisting of 20 hidden neurons at each decision 
node. The network was iteratively trained using a 
gradient descent algorithm till either the total 
squared error calculated for all the input classes 
and the network outputs has attained a minimm 
error bound (0.1) or when training has crossed 1000 
iterations. The bound on the number of iterations is 
due to the fact that some earth's features have 
belongingness to more than one class and hence 
the training process does not satisfy the minimu~ 
error condition. In such cases, overtraining the 
network does not improve the overall classification 
performance, even though the network would tend 
to memorize the training data very well, but it 
would generalize poorly with the rest of the 
samples. 

As evident from the results shown in Table 2, the 
fusion methods described here perform better 
classification perfonnances when compared to 
those of the individual classifiers. Both overall 
accuracy (i.e., the ratio of the correctly classified 
and the total number of samples) as well as the 
average of the percentage accuracies obtained for 
each class are given for comparison. Note that in 
some classes (see, for eg., sugarcane 1 and urban), 
the fusion methods try to obtain the balance 
between the ANN and the ML, while they retain 
the same accuracy if it is constant in both the 
classifiers. While, the maximum classification 
accuracy is obtained from the fuzzy integral fusion , 
the MPM edges past the DPM proposed earlier by 
Pinz and Bartl [1992]. 

4. CONCLUSION 

In this paper, we have shown that by combining the 
maximum liklihood and the artificial neural 
networks, one can achieve better classification 
performance when compared to that of them when 
applied indi'l.~dually. Of different fusion methods, 
the method using the fuzzy integral is found to be 
the best for data classification. A detailed study is 
in progress for theoritical evaluation of its 
performance. 
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Table 1. E:-.i:ract.ocl classes (legends) with corresponding number of samples 

Classos (lr.gonds) Samnle size 
Water (A} 451 
Sugarcane 1 (B) 64 
sugarcane 2 (B) 60 
Sugarcane 3 (B) 39 
Wheat 1 (E) 145 
Wheat 2 (F) 36 
Riversand (G) 260 
Fallow 1 (H) 58 
Fallow 2 (I} 40 
Fallow 3 (J) 31 
Fallow 4 (K} 48 
Urban (L} 95 

Total No. of Pixels 1327 
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Table 2. Recognition accuracies (in%) of clifiorent classifiers (see text) . Here the APA represents 
the average of percentage accuracies of all classes, and OA, the overall accuracy. 

Class ML ANN DPM MPM FI 

A 100.0 100.0 100.0 100.0 100.0 
B 40.6 78. 1 46.9 64.1 58.7 
c 93.3 68.3 93.3 76.7 93.3 
D 23.1 41.0 23.1 28.2 41.0 
E 97.9 98.6 98.6 98.6 98.6 
F 42.9 28.6 42.9 37.1 28.6 
G 5·1.2 53.1 53.5 53.5 53.5 
H 67.2 89.7 67.2 82.8 67.2 
I 97.5 100.0 97.5 100.0 100.0 
J 67.7 67.7 67.7 67.7 67.7 
K 56.3 79.2 79.2 75.0 79.2 
L 86.3 57.9 73.7 79.0 83.2 

APA 68.93 71.85 70.3 71.88 72.25 
OA 79.03 79.56 79.2 80.24 80.47 
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Fig.1. Decision tree obtained for 
classes of interest using the 
Bhattacharaya distance as a 
clustering measure. 
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