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ABSTRACT 

Extracting significant features is essential for processing, storing and/ or transmission of a vast volume of hyperspectral 
data. Conventional ways of extracting features are not always satisfactory for this kind of data in terms of optimality 
and computation time. 
We present here a purpose-oriented feature extraction scheme from hyperspectral data designed both for qualitative 
analysis (supervised classification) and quantitative analysis (density estimation). In processing or analysis of data 
we have some kinds of purpose or intention. We introduce subjective significance explicitly into feature extraction. 
We assume that we can get typical data describing the properties of objects: that is, training data for supervised 
classification and spectral data for various values of a quantity can be obtained. After all these data are orthogonalized 
and reduced by principal component analysis, a set of appropriate features for prescribed purpose or range is extracted 
as linear combinations of the reduced components. The features describe the properties of classes in classification and 
the variation of spectra of the quantity in density measurement. The feature specifies weights for the data of each 
hyperspectral dimension. Thus the dimension is fused and integrated according to the extracted features, which means 
new channels are generated from the hyperspectral data. 
The performance of the method is examined, and the validity of the feature extraction algorithm is confirmed. We used 
our ground-based imaging spectrometer for obtaining hyperspectral (about 400 channel) data, and applied our method 
for feature extraction to supervised classification and density estimation of a pigment. It is shown that our method 
yielded satisfactory results. 

1. INTRODUCTION 

Recently the dimension of remotely sensed data becomes 
higher and higher because of higher spectral resolution, 
increasing number of sensors, and multi-temporal obser­
vations. For example, the Airborne Visible Infrared Imag­
ing Spectrometer (AVIRIS) has 224 spectral bands in the 
0.4- 2.5µm region (Vane,1988). In order to efficiently ob­
tain necessary information from these hyperspectral data, 
or to transmit the data through a communication chan­
nel, the quantity of data must be reduced. This can be 
achieved by extracting significant features. 

One of the conventional methods of feature extraction 
utilizes an exhaustive search for selecting the best sub­
set of sensor channels (Landgrebe,1978). However, when 
it is applied to hyperspectral data, astronomical compu­
tation time is required to evaluate all the combinations 
of channels. Hyperspectral data contain useful informa­
tion spread in many channels. Therefore it would be bet­
ter to fuse the data from many dimensions and gener­
ate new channels to extract useful information. Princi­
pal component analysis (Ready,1973) or canonical anal­
ysis (Schowengerdt,1983) are the methods which can be 

used for fusing many dimensions of data. Though they ex­
tract features which yield high average separability among 
classes, they are not always suitable for purpose-oriented 
classification, because they are not selected from the view­
point of particular discrimination. 

We present here a purpose-oriented feature extraction 
scheme designed both for qualitative analysis (supervised 
classification) and for quantitative analysis (density mea­
surement). In processing or analysis of data we have some 
kinds of purpose or intention. This leads us to intro­
duce subjective significance explicitly into feature extrac­
tion (Fujimura,1994,1997). The destination of our feature 
extraction in classification is to extract a set of features 
which optimally separate one class from another among 
a particular set of important classes. As for quantitative 
estimation using hyperspectral data, our destination is to 
estimate the quantity in a particular range as accurately 
as possible. We regard the range setting in measurement 
or estimation as such like intention or significance, and 
features describing the variation of spectra are extracted 
by using the data for various values of a quantity. 

We assume that we can get typical data describing the 
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properties of objects: that is, training data for super­
vised classification and spectral data for various values 
of a quantity can be obtained for analysis. After all these 
data are orthogonalized and reduced by principal compo­
nent analysis, a set of appropriate features for prescribed 
purpose are extracted as linear combinations of the re­
duced components. These features describe the properties 
of classes in classification and the variation of spectra of 
the quantity in quantitative estimation. In this way the 
features specify weights for the data of each hyperspectral 
dimension. Thus the dimension is fused and integrated ac­
cording to the extracted features, which means that new 
channels are generated from hyperspectral data. 

The performance of the method is examined, and the va­
lidity of the feature extraction algorithm is confirmed. We 
use our ground-based imaging spectrometer for obtaining 
hyperspectral (about 400 channel) data, and apply our 
method for feature extraction to supervised classification 
and density measurement of a pigment. It is shown that 
the method proposed in this paper yields satisfactory re­
sults. 

2. QUALITATIVE ANALYSIS 
- Supervised Classification -

2.1 Description of Data 

First of all and as usual, we assume that we can get train­
ing data for almost all the classes in an image to derive 
feature with: that is, we can estimate the characteristics 
of most classes included in the image. 
We denote hyper-dimensional data (N dimension) by a 
vector y = (y1, · · · , y N )' ( ' : transpose), and suppose 
that they are classified into one of, say, n classes . Then, 
y can be decomposed into class mean ya and within-class 
dispersion Ye: that is, y is written as 

Yii = Ya, + Ye,, (1) 

{i = 1 ~ n, j = 1 ~ m;), 

(see Fig. I), where Yii is j-th data of class i . We write 
the covariance matrix of y, ya and ye as Cyy, Ca and Ce 
respectively. We call Ca and Ce between-class and within­
class covariance matrix, respectively. Here, we assume 
that the covariance matrix of each class is identical. This 
assumption is rather reasonable from the view point of the 
generality of training data. 

class 1 

Y, 

Figure 1 Description of data 
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2.2 Feature Extraction 

Here, for simplicity we consider two cases where one and 
two most important classes should be discriminated from 
all the other classes. In general, classification accuracy 
increases as the separability1 of classes increases. We use 
separability to evaluate the performance of features ex­
tracted. We extract the features which maximize the sep­
arability of a particular pair of classes that we wish to 
discriminate. 

Our method proposed here consists of two steps of pro­
cessing: pre-processing and feature extraction. 

In the pre-processing, hyper-dimensional data y = (y1 , • • . 

, YN )' are reduced and normalized to m ( m « N) com­
ponents z = (z1, · · ·, zrn)' by a linear transformation z = 
A'y. From the assumption on Ce , the within-class dis­
persion of each class in the original space has the same 
ellipsoidal shape shown in Fig. 1. After transformation, 
they are normalized into an m dimensional sphere . This 
makes the space uniform: this means that the distance 
measured in terms of variance does not have directional­
ity in the space. 

In the second step, features are successively extracted until 
there remains no class which has distance from the partic­
ular classes less than the minimum distance obtained so 
far. Feature extraction is done by determining sub-space 
in the feature space: that is, by making a linear combi­
nation of z as a' z, where a is an m dimensional weight 
vector which we call here feature vector. Thus, feature 
extraction is no other than the determination of a feature 
vector. As the space is uniform now, the direction of an 
optimal feature vector which discriminates between two 
classes is obtained just by connecting the centers of these 
classes. The feature vectors obtained are orthogonalized 
to make independent. 

The procedures for determining successive feature vectors 
is as follows: 

(1) First, we set an optimal feature vector a 1 between the 
two nearest classes among the prescribed classes. 

{2) Next, we evaluate the separability on a 1 for all the 
combination of the prescribed classes. 

(3) If there is any pair of prescribed classes which does 
not have enough separability, we set an additional 
feature vector a2 between them. We ortho-normalize 
the new vector a2 with a1 as shown in Fig. 2, so that 
this feature is independent of the first one. 

(4) Features are successively extracted in the same way 
until all the distance among the prescribed classes are 
larger than the minimum distance obtained so far. 

(5) Then, we apply the procedures (2)~(4) to the dis­
tance among the prescribed and the other classes . 

When only one class is prescribed, the procedure starts 
from setting a feature vector between the class and its 
nearest class in the feature space . 

1We used the divergence as a measures of separability. We 
call it as distance in the rest of this paper. 



0 z, 
Figure 2 Feature vectors discriminating between two 

classes 

A feature a\ z is equivalent to (A a;)' y expression using 
original data y, because z = A'y, where (A a;) means the 
weighting factor for spectral data. 

2.3 Experimental Results and Discussion 

We acquired data for four growth-stages of tree leaves 
(A~D: from young to fallen), soil, stone and concrete by 
using a ground-based imaging spectrometer which we de­
veloped. It produces 411 dimensional hyper-spectral data. 
For estimating the mean and the variance of each class, 45 
training data were used. Averaged relative reflectance is 
shown in Fig. 3. In the following, the covariance matrices 
of the classes are set identical. 

After reducing and normalizing the data to 7 orthogonal 
components, features were extracted from one to another. 
We selected classes A and B as those significant to be 
classified. The first feature vector was set between class 
A and B . The next feature vector was set between A and 
the nearest class C . There remains no other classes whose 
distance from A or Bis less than that between A-B. The 
two features characterize the weighting factor are shown 
in terms of wavelength in Fig. 4. 
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Figure 3 Spectral reflectance of objects 
( A~D : Leaves of plant ) 

In this case the distance of each class from class A and B is 
shown in Table 1: (a) in the original 8 dimensional space, 
(b) 1 dimension ( the first feature), and ( c) two dimensional 
space made by the first two features . From ( c), it is seen 
that the minimum distance is that between A and B which 
was already obtained in (a). Thus, the two features are 
sufficient for this case. 
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Figure 4 Weighting factors for the significant 
classes A and B 

Table 1 Distance from A and B (Relative Distance) 
( A~D: Leaves, E: Soil, F: Stone, G: Concrete ) 

(a) Distance in 7 Dimension 

A B C D E F G 
A - 4.2 19.3 16.3 17.3 17.0 18.2 
B 4.2 - 19.5 16.2 17.3 17.2 18.0 

(b) Distance in 1 Dimension 

A B C D E F G 
A - 4.2 Ll 2.7 2.0 1.2 1.8 
B 4.2 - 3.2 1.5 2.2 3.0 2.4 

(c) Distance in 2 Dimension 

A B C D E F G 
A - 4.2 19.3 13.7 16.3 16.3 17.5 
B 4.2 - 19.5 13.5 16.3 16.5 17.5 

To confirm the validity of this method when compared 
with canonical analysis, the classification accuracy was es­
timated by test samples. Figure 5 shows the classification 
accuracy for the class A and B in terms of the number 
of features. The accuracy depends on the number of fea­
tures used, and is higher than that by canonical analysis 
by about 35% (one feature) and 18% (two features). The 
confusion matrix is shown in Table 2. 

3. QUANTITATIVE ANALYSIS 
- Density Measurement ~ 

3.1 Feature Extraction Algorithm 

The two graphs in Fig. 6 illustrate the characteristics of 
spectral transmittance for various density of a pigment 
(methylene blue). Fig. 6 (a) shows the spectra for density 
from 2 to 20%, and Fig. 6 (b) those for the density from 
20 to 100%. It is seen that the most sensitive region of 
wavelength for density estimation depends on the density 
of solution. Fig. 6 suggests that it is reasonable to weight 
the data for wavelength according to the density to be 
measured. 
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Table 2 Confusion Matrix 
( A~D: Leaves, E: Soil, F : Stone, G: Concrete ) 

A 
B 
C 
D 
E 
F 
G 

A 
B 
C 
D 
E 
F 
G 

(a) Classification Using First Feature 
(%j 

A B C D E F G 
69.4 0 15.8 6.1 2.6 2.0 4.1 

0 83.2 0 16.8 0 0 0 
31.6 2.0 7.1 30.1 15.3 6.6 7.1 

0 0.5 1.0 45.9 25.5 8.2 18.9 
0 0.5 4.1 25.5 28.1 8.2 33.7 

7.7 0 23 .0 3.1 17.4 20.9 28.1 
1.0 0 9.2 27.0 30.6 10.2 21.9 

(b) Classification Using First Two Features 
(%) 

A 
91.8 

0 
0 
0 
0 
0 
0 

~ 100 
e:. 

90 >, 
() 
ca 80 :i 
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() 70 ci: 
C 
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B C D E F G 
8.2 0 0 0 0 0 

100.0 0 0 0 0 0 
0 83.2 3.1 1.0 11.2 1.5 
0 0 76.5 19.4 0 4.1 
0 0 0 83.7 16.3 0 
0 2.6 0 29.6 53.6 14.3 
0 17.9 0 12.8 11.2 58.2 
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Figure 5 Classification accuracy of calsses A and B 
versus number of features 

We assume that we get training data for several values of 
quantity and estimate the characteristics for each quan­
tity. The data from an object (class) is considered to be 
defined with mean and covariance as described above. 

We consider that a quantity in the region defined by the 
two values should be estimated with high accuracy. This 
corresponds to determining features to discriminate the 
two classes. We use a measure of separability between 
two classes and extract features which maximize the sep­
arability. 

We applied the same algorithm above to the estimation of 
density. After the features are extracted for each range of 
quantity, an estimation curve was determined. We fitted 
a polynomial to the relationship between the value of a 
feature and the quantity to be estimated. The quantity of 
unknown samples was determined by using the estimation 
curve. 
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Figure 6 Spectral transmittance of methylene blue 
solution 

3.2 Experiments 

We acquired data of spectral transmittance about methy­
lene blue solution for various density by using a the imag­
ing spectrometer above. 

We obtained 360 dimensional data between 470 and 860 
nm. For estimating the mean and the variance, 110 sets of 
(training) data were used for each class . Averaged relative 
transmittance is shown in Fig. 7. The transmittance is 
expressed in log scale. We divided the range into two 
ranges, one is from 2 to 20%, and the other from 20 to 
100%. Two features shown in Fig. 8 were extracted for 
each range. This figure shows how we weight and fuse the 
data. 

Fig. 9 shows the relationship between the density and the 
value of the features. The dashed lines are the quadratic 
polynomials fitted for density estimation. The polynomi­
als are written by eq.(2), where D is the density and S 
the value of a feature obtained from measurement. From 
eq.(2) , the density is determined as shown in eq.(3) . 

S(D) = { 0.383D2 - 19.3D + 12.6 
-0.00133D2 - 2.30D + 101 

D(S) = {-J2.61S + 603 + 25.2 
-J-750S + 8.22 x 105 - 864 

(2 ~ 20%) 
(20 ~ 100%) 

(2) 
(2 ~ 20%) 
(20 ~ 100%) 

(3) 
Table 3 shows the results of density estimation in the re­
gion from 2 to 20%. The estimation results from two con­
ventional methods of estimation are also shown in the ta­
ble: one from the sum of the transmittance at two different 
wavelength and the other from the ratio of the two values. 
Compared to the conventional methods(Gordon,1983) , the 
deviation of the quantity estimated by our method greatly 
reduced. 



Table 3 Result of density estimation (2 ~ 20%) 

conventional 1 conventional 2 proposed method 
density >.1 + >.2 >.1 I >.2 

(%) density Std.Dev. density Std.Dev. density Std.Dev. 

2 2.15 0.11 
6 5.91 0.15 

10 9.89 0.23 
14 14.0 0.43 
20 19.7 1.2 

z. 
feature a, - range 1 

feature a2 - range 2 

value 3 

0 z, 
Figure 7 Feature extraction in normalized space 

Wavelength[nm] 

Figure 8 Extracted features 

4. CONCLUSIONS 

We have proposed a purpose-oriented feature extraction 
scheme from hyperspectral data both for qualitative anal­
ysis (supervised classification) and for quantitative anal­
ysis (density measurement). By extracting features, hy­
perspectral data are integrated or fused to generate new 
channels. 

The method was tested using about 400 dimensional hy­
perspectral data obtained by a ground-based imaging spec­
trometer we developed. It was found by numerical simu­
lation using the data above that a small number of fea­
tures to classify the prescribed significant classes were 
extracted and that classification accuracy of particular 
classes increased by more than several percents, compared 
with classification using the features extracted by canoni­
cal analysis. 

We have also applied the approach to density measure­
ment of methylene blue in a solution. Experimental equa­
tions for the estimation of the density of methylene blue 
were derived using the extracted features. The range they 

2.02 0.33 1.83 0.071 
5.68 0.94 5.88 0.073 
10.4 1.8 9.87 0.13 
13.3 1.7 13.9 0.14 
20 .0 3.5 20.0 0.16 

Std.Dev. Standard Deviation 

Or-----,.---,--~-~~-~-----
featwre for .2.4.-.20 -

· · fitting model - -
·SO 

Density[%) 

(a) 2,4, • • • ,20% 

(b) 20,30,·· · ,100% 

Figure 9 Estimation of density using the extracted 
features 

cover was determined dependently on the accuracy. It was 
found that precision of density estimation highly increased 
compared with the conventional methods using the sum 
or the ratio of the values at two wavelengths. 

Application of this qualitative scheme to evaluating the 
performance of current multi-spectral sensors and to de­
signing spectral bands of new sensors, application of this 
quantitative scheme to the data of transmittance with 
scattering and those of reflectance, and application to real 
remotely sensed data are subjects for future studies. 
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