
IMPROVING THE LEARNING ABILITIES OF A
NEURAL NETWORK-BASED GEOCOMPUTATIONAL CLASSIFIER

Gordon German, Mark Gahegan and Geoff West

Geographic Information Science
Curtin University of Technology
Bentley, Western Australia 6102

ph +618 9266 3145
fax +618 9266 2819

email: gordon@cs.curtin.edu.au

KEY WORDS: Neural networks, classification

ABSTRACT

The classification of complex geographic datasets remains a long-standing problem. From a geocomputational perspective, the many
new techniques provided by computer science can offer some significant performance enhancements, but also give rise to a new set of
problems. The use of neural networks for classification is one such example, where separating boundaries in attribute space are
constructed from hyperplanes produced by the hidden-layer nodes. In an earlier work, the authors have shown how the Boundary
Misclassification Rate (BMR) matrix can be used to analyse the functioning of the neural network classifier during the learning phase
and help predict the classification ability for a given task.

We now extend this to show how the learning ability of the network can be optimised to the task at hand, by using the BMR matrix to
spawn additional hidden-layer nodes as required, during or prior to, the learning process. Importantly, this process can be both
automated or user-controlled, so that the accuracy of the classifier can either be maximised across all classes, or specific class
separations can be targeted for attention, as meets the user's requirements.

Results on a real world GIS dataset are presented and compared to results obtained previously without this optimisation; these show
encouraging improvements in performance.

1. INTRODUCTION

Modem technology has vastly expanded the range of measurable
attributes that can be gathered and analysed from a particular
geographic space, especially with the improvements in remote
sensing technology and the increase in available platforms (e.g.
Wilkinson et al., 1995). In order to make sense of these
increasingly numerous (and varied) types of measurements, some
form of data reduction and/or grouping is necessary that
maintains the focus of inquiry set by the researcher. As such,
classification is one of the more common transformations that
data undergo. Simply put, the task is to produce a mapping,

~P __ r_(_n_)-+ IF

where p is the number of input variables, or geodata type
attributes and q is the number of output variables, or classes.
Unlike reduction techniques such as principle components
analysis or canonical variate analysis, the goal of classification is
to select output classes from a (often) smaller and different
phenomenological domain (II, the classification scheme) to that
of the input attributes (\R). These transformation models can be
catagorised as unsupervised or supervised classifiers. In
unsupervised classification, a particular II, or scheme, is chosen
by the classifier, normally based on some form of cluster analysis
applied in \R. In the case of supervised classification, of which
our classifier is a representative, the scheme is chosen by the user

and the classifier learns an approximation r' (p) to the

required transfer function f(p). Hence the (common) scheme of
ground cover type is often derived from an attribute domain that
may comprise several bands of LANDSAT data, as well as
ancillary data such as digital elevation models, rainfall, etc ..

80

Supervised classification schema are popularly used by the GIS
professional as an aid to the decision-making processes in
disciplines such as land management, mineral exploration,
environmental science and habitat modeling. The dominant forms
of these classifiers are based on well-established statistical
models, themselves derived from the theories of Baysian
estimation (Mardia et al., 1979). The maximum likelihood
classifier (MLC) is an example and usually considered the better
of these classifiers, at the expense of computational overhead
(Rao, 1973). These classifiers, on the whole, try to estimate the
transfer function f(p) by modeling it as a known statistical
distribution <l>[T:p] (T being the defining parameter set of <1>),
which assumes a stochastic sampling process in selecting a
learning, or training set in \R, as well as the assumptions of the
associated per-class probability density functions «!>lx). The most
common distribution used is the Gaussian, as in the MLC.
Because of the requirement that a given «j>(x) approximates the
actual attribute population distribution for that class, these
classifiers have problems with nominal or ordinal attribute data,
as attribute values are assumed to be ranked when constructing
«j>(x). These classifiers also require a minimum number of samples
in each representative class within the training set to allow a
meaningful population distribution to be derived for the modeling
of «j>(x). The exact number is dependent on the number of degrees
of freedom for that particular <1> and the dimensionality of the
attribute space,p (Dunteman, 1976).

An artificial intelligence (Al) approach to classification has lead
to the development of classifiers whose basis is computational
rather than statistical in nature. Decision trees, genetic algorithms
and artificial neural networks are all examples of this alternative
approach (Lees, 1994). Although these classifiers can often
themselves be modeled statistically (Sarle, 1994), it is important
to note one fundamental difference; no statistical assumptions are
made in the implementation of these models, other than the
fundamental one that Euclidian distance has some meaning
within the attribute space. As such, on the one hand, they do not

suffer from the limitations noted above, but on the other, they
suffer from their own unique set of problems, as well as from the
limitations of the classification philosophy itself. The authors, in
previous papers (German eta/., 1997; Gahegan & German, 1996)
have focused on artificial neural networks, specifically a variant
of the multi-layered perceptron (MLP) coined DONNET
(Discrete Output Neural NETwork) and addressed some of these
problems, as well as issues of performance, as compared to the
statistically derived classifiers. In this paper, we will address one
further problem, that of building complex decision boundaries,
which leads to either overall improved performance as measured
on a given set of training or validation data, or to class-specific
improvements, depending on the information required by the
user.

2. Model Complexity - Hyperplane Analysis

2.1 Overview of DONNET- Previous Work

DONNET is a software simulation of an MLP, written to test the
research propositions of an ongoing project at the Dept. of
Geographic Information Science, Curtin University. It is available
via the World Wide Web to other interested researchers (see
address at the end of this article). Essentially, DONNET is an
extension of the philosophical stance taken for the task-based
MLP (Brieman et al., 1984; Dunne et al., 1992). Within this
conceptual model, each node of the (single) hidden layer is
responsible for the generation of a separating hyperplane within
the p dimensional attribute space, whose task is to separate out
one particular class (c;) from one other (c). The output layer
nodes and associated connections are then responsible for the
amalgamation of one or more of these hyperplanes into q-1 class
boundary decision surfaces. In earlier work (Dunne et al., 1993;
German & Gahagan, 1996) it was shown that, assuming complete
linear separability of the classes, q x (q-I) / 2 hidden layer nodes

are required to guarantee convergence on a solution for r' (p) .
It was also noted that such a formulation works well, even when
several of the classes are not linearly separable. This was shown
(German et al., 1997) to be due to the fact that often, one
hyperplane could separate out more than one pair of classes (eg
c1:c2 and also c 1:c4), making other hyperplanes "redundant".
These redundant hyperplanes were then used by the network to
construct more complex piecewise linear decision surfaces that
could be used elsewhere for non-linear cases. In the majority of
applications, this provides excellent results and a comparison of
DONNET' s performance in relation to other Al and statistical
techniques can be found in Gahegan & German (1996). However,
in certain cases, where a majority of classes are not linearly
separable from any other, performance can be poor. It is this
situation we wish to address.

2.2 Using the BMR and Task Matrices to Determine
Redundancy

The BMR (Boundary Misclassification Rate) matrix is described
in German et al. (1997). It is derived from the class confusion
matrix (e.g. Dunteman, 1976) and details the effectiveness of all
pairwise class separations in terms of errors of omission and
errors of commission (single-error boundaries), or both (dual­
error boundaries). A standard task matrix is derived from the
ouptuts of the hidden layer and shows the effective pairwise tasks
being done by each hyperplane (or hidden-layered node). It is
often used as a basis for pruning such networks (Brieman et al.,

81

1984; Dunne et al., 1992). From this, a zero-confusion task
matrix can be produced, as defined below. A worked example
will show how redundancy can be inferred from these matrices.

We will use a dataset from the Kioloa area of New South Wales,
Australia, which has been made available as a NASA pathfinder
data-set through the Australian National University in Canberra
(Lees and Ritman, 1991). There are 9 floristic-level classes to be
delineated from 11 attribute layers (four of these represent
nominal or ordinal data, four are Landsat TM bands) i.e. q = 9
and p = 11. The classifier is therefore initially set up with 11
input nodes, 36 hidden nodes (calculated from the formula given
above) and 9 output nodes. This dataset is considered a "hard"
classification problem, with a large overlap of class signatures in
the data. Prior to training, the DONNET classifier is fitted with
weights derived from Fisher's linear discriminant functions
(Mardia et al., 1979; German, 1995), rather than just randomly
selecting weights. Table 1 shows the initial class confusion
matrix of the classifier on the training set. Table 2 shows the
associated BMR matrix, where positive figures represent errors of
omission, negative figures are due to errors of commission and
bold typed figures are dual-error figures. The dual-error figures
are indicative of complex decision boundaries for which a single
hyperplane may be inadequate for class separation (see Figure I).
Using the following notation:

• { T}h; is the set of all tasks which node h; performs,
• { T min} h; is the set of all tasks performed by h; as well as, or

better than, any other node,
• Th; is the original, or primary task of h;, as performed by that

node,
• {½}h; is that task ½ performed by node h;, that is also the

primary task of node hj,
• SCORE[Th;] is the confusion with which h; performs its

primary task,

we can define the following levels of redundancy:
A node h; is considered to make node hj partially redundant if:

SCORE[T,,j] ~ SCORE[{ ½ }h;].
A node h; is considered to make node hj completely redundant if:

SCORE[T,,j] ~SCORE[{½ }h;] = 0. .

Nodes h; and hj are considered compatibly redundant if :

SCORE[{Tmin}h;)= SCORE[{Tmin}hj]= 0,
and both h; and hj are completely redundant. In other words, h;
and hi are compatibly redundant if their primary tasks are
performed with zero confusion by other nodes and they both
perform the same set of zero-confusion tasks. These definitions
will be used in conjunction with the zero-confusion task matrix.
The importance of compatibly redundant nodes is this: given a set
of compatibly redundant nodes, it is only necessary to maintain
one in its original configuration, the others may be removed or
moved elsewhere in attribute space without significant
degradation of the performance of the original set of tasks.

Table 3 gives the hidden-layer zero-confusion task matrix. This
matrix lists all nodes that perform tasks with zero confusion, i.e.
perfect separation. The node number h; is listed at the start of
each row, followed by those tasks that it performs with zero
confusion. There are several points to note from these tables:
I. As training has not yet been commenced, compatibly

redundant nodes, as identified from the zero-confusion task
matrix, are not to be pruned - they will be used by the

network elsewhere in !JlP for construction of non-linear class
decision boundaries (more precisely, piecewise linear class
decision boundaries).

2. It follows that training time could be significantly reduced
by moving these redundant hyperplanes into the areas of
concern prior to commencement of training. The areas of
concern are those class pairs shown in bold in the BMR
matrix.

3. Additional hyperplanes can be constructed and placed in the
appropriate areas if there are not enough redundant nodes
available, or more are required during training.

3. MANIPULATING HYPERPLANES

3.1 Positioning hyperplanes prior to training

The implementation of the above modifications requires some
caution in the initial setup of the additional hidden-layer nodes. If
analysis of the BMR and task matrices reveals the need for
additional hyperplanes, or movement of redundant ones, they
must be placed in position in attribute space so as not to perturb
the current state of the network (in terms of the error, or cost
function) too greatly. Further, new nodes and weights must be
added so as to avoid having parallel hyperplanes within the
attribute space, as the minimisation routines used by the network
have problems distinguishing between these when calculating the
partial derivatives necessary for weight updates. Let us return to
the example analysis of the network with the Kioloa dataset.

Note that within the body of this text, quoted classification
accuracy (%ANR) is a percentage based on the validation set, not
the training set and is calculated as the average of the
classification performance of each class, rather than a total . This
avoids any misrepresentation due to large differences in class
sizes, a common problem with real-world data. Performance on
the training set, as well as overall percentages (%PCC), are
quoted in the performance table (Table 7) at the end of this
article, to allow comparisons with other classifiers.

First of all, it is necessary to identify areas that may require
additional complexity (in terms of the class decision boundary).
Looking at the BMR matrix of Table 2, we note that the decision
boundaries at c1:c2 (10.4%), c1:c4 (12.4%), c1:c5 (10.7%), c4:c5

(17.8%) and c4:c1 (9.8%) are the major contributors to the total
dual-error figure. They have resulted from a complex separating
surface, an overlap of class data, or a combination of both, the
implication being that these errors will not be significantly
reduced by simple movement of the (single) separating
hyperplane.

We can now use the zero-confusion task matrix of Table 3 to
identify compatably redundant hyperplanes. Here we note that
nodes 7, 14, 20, 25, 29, 32 and 34 are compatably redundant
(node 21 is not, as its primary task, T21 , is not performed by the
other nodes). This results in 6 redundant hyperplanes that can
now be repositioned in proximity to the decision boundaries
identified above from the BMR matrix. As an example, let us
concentrate on the c4:c5 boundary (node h22 is primarily
responsible for this task - T22). The compatibly redundant
hyperplane primarily associated with task T7 (separating class I
and 8) can be repositioned as follows:

I. Construct a line between the group centroids for class 4 and
class 5.

82

2. Calculate the intersection point P between this line and the
hyperplane associated with h22 •

3. Construct a new hyperplane HA passing through P with some
small offset angle a 1 (typically a 1 < I 0°) from the primary
hyperplane H22 -

4. Fit the coefficients of the polynomial describing HA as input
weights to the redundant node h1 .

5. If further hyperplanes H8 , He, are to be associated with
this boundary, fit as above, but with new angles a2, a3, •.••

such that a 1 * a2,t,. a3 etc.

(In actual fact, any reasonable method of calculating the
hyperplane HA could be used here, providing it positions the
hyperplane within the error envelope associated with the decision
boundary and ensures HA is not parallel with H22).

This process is repeated for each redundant node that is to be
refitted. In this example, there are a total of 6 compatibly
redundant nodes identified from the task matrix and 11 dual-error
boundaries identified from the BMR. It is important to note that
at this stage (prior to training), the size of the dual-error figures in
the BMR matrix is not indicative of the complexity of the
boundary. The BMR matrix only allows us to discriminate
between dual-error and single-error boundaries. With this in
mind, we will arbitrarily assign one redundant hyperplane (node)
to each of the first 5 dual-errors. The U weights are recalculated
as per German & Gahegan (1996) and a new initial classification
performance figure of 48.03% is calculated for comparison with
the original network (51.9%). This initial figure is now slightly
lower, but we would expect this as we have "manually" placed
the redundant hyperplanes, reducing slightly the sub-optimal fit
that was given from the calculation via the linear discriminants.
What we will expect to see is a convergence on a final error
figure within fewer training epochs than that achieved with the
original network.

3.2 Initial training

Both the original and the repositioned networks are now trained
on the same dataset. The total network error per epoch is plotted
for each in Figure 2. As expected, the repositioned network
reaches a stable minimum in a significantly smaller number of
epochs (approximately 60 as opposed to 180) and goes on to a
slight improvement in classification of 61.2 % over the original's
60.8%. The class confusion matrix is shown in Table 4. There is
no significant improvement if the network is allowed to train
further (performance on the validation set peaks at 430 epochs at
62% - see Figure 3) other than overtraining. For any significant
increase, we must look at increasing the dimensionality of the
input data, or adding hidden layer nodes.

3.3 Adding hyperplanes

If the network is examined after 60 epochs, the BMR of Table 5
will result. As demonstrated above, a simple continuance of
training will not lead to a significant improvement in
classification, so we shall add further hidden-layer nodes before
additional training. Note that the majority of error (in Table 5) is
now due to dual-error boundaries, as the network has
repositioned the available hyperplanes to the best of its ability,
eliminating most single-error boundaries. From this BMR matrix,
we can now select the c1:c3, c1:c4 and c4:c5 task separations as
contributing to the majority of the dual-errors (tasks T2, T3 and
T22). We require additional hyperplanes for these decision
boundaries, implying further nodes must be added to the hidden
layer. Using the technique presented in Section 3.1, we now add

four more hyperplanes (nodes) to these areas of attribute space
and retrain the repositioned network. In practice, the network is
run for a few short iterations (we use IO per hyperplane) between
the addition of each node to optimise the output layer
connections, thereby reducing the risk of moving too far away
from the previous local minimum'. The resulting classification
figure after training for a further 150 epochs (over the original
60) is now 67.3%, with the class confusion matrix for the training
set shown in Table 6. (c.f. the standard network left to train for
200 + 150 epochs still only has a best classification rate of
61.2%).

4. CONCLUSIONS AND FURTHER WORK

The above techniques can be used to reduce trammg time,
produce a better overall classification, as we have done here, or
target specific classes for greater accuracy. For instance, in the
Kioloa dataset, class 7 (rainforest) may be required to be
delineated with greater accuracy than that of the other classes for
the purposes of ecological study. In this case, the additional
hyperplanes can be placed along the error envelope of the
appropriate boundaries (eg. c4:c7, c5:c7 and c6:c7). The method
could be extended to "freezing" hyperplanes that are giving
adequate performance and then constraining the remaining
hyperplanes to the area of interest in attribute space. One question
that remains unanswered is how many additional nodes are
feasible, or how far one persists with adding nodes during
training. Gains in classifier accuracy decrease with additional
complexity, to the point where further additions provide no
further gain when tested on the validation set (for this dataset, an
additional 2 nodes gives the peak figure of 68.6%). Further work
could consider some metric to describe the class overlap
complexity to be used by the network to determine the probable
number of additional nodes required for a given level of accuracy.

With all these methods, it is important to measure the
classification performance on a validation set, as we have done
here, to avoid the trap of overfitting the network to the training
data and losing generalisability. For a comparison, Table 7 shows
the performance of DONNET, both modified and unmodified,
with an MLC and a decision tree (C4.5) on the same dataset.
Note the greater generalisation ability of the neural networks over
the other classifiers (compare %ANR validation scores).

With prudent use, these classifiers can produce classification
schemes with greater accuracy and without the limiting
assumptions of the traditional statistical methodologies. Their
further advantages lie in the ease with which disparate types of
data (e.g. nominal and ordinal ancillary data, remote-sensed data
etc.) can be combined, as well as the ability to model a
distribution with relatively few examples.

1 The network "learns" by searching for a minimum in
some defined multi-dimensional error space (Ew, where w
>> p), analogous to the weight space. So at any particular
point of the training phase, the network has calculated and
stored the last minima found and the directions required to
get there. We do not want to invalidate this information by
moving too far from this point, when we add an extra node
and its weight connections.

83

X

0

FIGURE I : Reducing error at complex non-linear class boundaries. (a) Original single hyperplane used to
model the decision surface. (b) Using two hyperplanes to model the same decision surface.

0

0

X X
X X X

X X X X X X X X
X X X

X X X X

X X X X X
0

0 X ()
X u

0 0 X 0 0 0
0

0 0 0 0
0 0

0 0 0 0 0 0

0 oO 0 0 0 0 0
0 0

0 0
0

FIGURE 2 : Comparison of error for standard (fi_S) network and repositioned (fi) network
0.18 ~--------~----~-----,------

0.17

0.16

0.15

0.14

•

0.13 ~

0.12

0.11

0.1

0.09

0.08
0 50 100 150

Epochs

84

200

"fl.err• o
·n_S.err• +

250

FIGURE 3 : Error for repositioned network, 0 - 1000 epochs
0.14 ,------.-------r.....::..---,----,----r----,

•h36.1000.err• •

0.12

0.1

0.08

0.06

0.04

0.02

o~--~---~---~---~------~
0 200 400 600 800 1000 1200

Epochs

Table 1 : 9 Class Confusion Matrix (0 iterations)
Class1 Class2 Class3 Class4 Class5 Class6 Class? Class8 Class9 Totals

True 1 162 1 0 17 15 0 4 5 0 204

True 2 24 0 0 5 3 3 5 4 0 44

True 3 25 0 1 1 3 0 4 1 0 35

True4 42 0 0 97 21 2 6 0 0 168

True 5 22 0 0 22 73 1 3 0 0 121

True 6 10 0 0 31 6 17 1 0 0 65

True 7 14 3 0 9 7 0 25 0 0 58

True 8 0 2 0 0 0 0 0 109 0 111

True 9 0 0 0 0 0 0 0 0 333 333

Table 2 : 9 Class BMR Matrix (0 iterations)

Classl Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Av2
Class! - 10.4% -9.7% 12.4% 10.7% 7.3% +5.7% 2.2% 0% 7.3%
Class2 - - +2.2% 2.5% -1.1% -1.6% 4.3% -1.1% 0% 2.9%
Class3 - - - 0% -2.3% -0.9% -2.9% -1.2% 0% 2.4%
Class4 - - - - 17.8% -11.8% 9.8% 0% 0% 6.8%
Class5 - - - - - +1.0% 3.0% 0% 0% 4.5%
Class6 - - - - - - 4.7% 0% 0% 3.4%
Class7 - - - - - - - 0% 0% 3.8%
Class8 - - - - - - - - 0% 0.6%
2lass9 - - - - - - - - - 0.0%

85

Table 3: Zero Confusion Task Matrix for 9 Class Example (0 iterations)

Hvoervlane Primarv Class Seoaration Zero Confusion Tasks
6 Task 6 (c1:c1) 6, 13,19,24,28,31,33,35
7 Task 7 (c1:cs) 7, 14,20,25,29 ,32,34,35
14 Task 14 (c2:c8) 7,14,20,25,29,32,34,35
20 Task 20 (c,:c8) 7, 14,20,25 ,29 ,3 2,34,35
21 Task 21 (c3:C9) 7, 14,20,25,29,32,34,35
25 Task 25 (c4:c8) 7, 14,20,25,29,32,34,35
29 Task 29 (c,:c,) 7,14,20,25,29,32,34,35
32 Task 32 (c6:c8) 7, 14,20,25 ,29 ,32,34,3 5
34 Task 34 (c7:c8) 7,14,20,25,29,32,34,35

Table 4 : 9 Class Confusion Matrix for standard network (200 iterations)

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Totals

True 1 183 2 1 11 2 3 1 1 0 204

True2 10 24 3 3 2 0 0 2 0 44
True 3 12 1 15 2 1 0 3 1 0 35

True4 20 1 0 125 11 4 7 0 0 168

True 5 15 1 0 20 83 1 1 0 0 121

True 6 7 2 0 18 4 33 1 0 0 65

True 7 5 1 0 10 1 1 40 0 0 58

True 8 1 1 0 0 0 0 0 109 0 111

True 9 0 0 0 0 0 0 0 0 333 333

Table 5 : 9 Class BMR Matrix (200 iterations)

Class! Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Avg
Class! - 5.0% 7.4% 11.2% 9.0% 3.3% 2.7% 0.6% 0.0% 4.9%
Class2 - - +5.6% 1.7% 2.7% 2.4% 5.2% -2.3% 0.0% 3.1%
C!ass3 - - - 0.0% -2.3% +0.9% -2.9% -1.2% 0.0% 2.5%
~lass4 - - - - 12.9% 10.7% 7.5% 0.0% 0.0% 5.5%
Class5 - - - - - 1.9% 3.0% 0.0% 0.0% 4.0%
Class6 - - - - - - 3.6% 0.0% 0.0% 2.8%
Class7 - - - - - - - 0.0% 0.0% 3.1%
Class8 - - - - - - - - 0.0% 0.5%
Class9 - - - - - - - - - 0.0%

Table 6 : 9 Class Confusion Matrix for reoositioned network + 4 extra hidden nodes (60 + 150 iterations)
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Totals

True 1 191 3 0 5 4 1 0 0 0 204

rrrue 2 6 31 0 2 3 0 1 1 0 44
rrrue 3 5 1 25 0 1 0 2 1 0 35
True4 14 1 0 146 4 1 2 0 0 168

True 5 11 1 1 12 95 1 0 0 0 121

rrrue 6 4 4 0 10 6 41 0 0 0 65
True 7 3 2 0 5 1 3 44 0 0 58
True 8 1 0 0 0 0 0 0 110 0 111

True 9 0 0 0 0 0 0 0 0 333 333

86

Table 7 : Performance of Classifiers on the Same Dataset. The MLC (Maximum Likelihood Classifier)
figures are from Fitzgerald & Lees, 1993. The Decision Tree figures were produced with the package C4.5.
DONNET A is the standard neural network. DONNET B is the modified network with 4 additional nodes in
the hidden layer.

CLASSIFIER TRAINING SET VALIDATION SET
%PCC

MLC 50.50
Decision Tree 78.31
DONNETA 79.46
DONNETB 89.20

5. REFERENCES

Brieman, L., Friedman, J., Olshen, R. and Stone, C., 1984,

Classification and Regression Trees, Wadsworth

International.

Dunteman, G. H., 1984, Introduction to multivariate analysis.
Sage Publications, New York, USA.

Dunne, R., Campbell, N. A. and Kiiveri, H. T., 1992, Task Based

Pruning, Proceedings of the 3rd Australian Conference on
Neural Networks, ACNN'92, Melb., pp. 166-169.

Dunne, R., Campbell, N. A. and Kiiveri, H. T., 1993, Classifying

high dimensional spectral data by neural networks,

Proceedings of the 4th Australian Conference on Neural
Networks, ACNN'93, Melb.

Gahegan, M., German, G. and West, G., 1996, Automatic Neural

Network Configurations for the Classification of Complex

Geographic Datasets, Proceedings of the International
Conference on Geocomputation, University of Leeds, UK,

pp. 343-358.

German, G. W. H., 1995, The Use of Multi Layered Perceptrons
for Remote Sensing Classification with Temporal Data,
Proceedings of the International Conference on Neural
Networks, IEEE ICNN'95 Perth. .

German, G. and Gahegan, M., 1996, Neural network architectures
for the classification of temporal image sequences. To appear

%ANR %PCC %ANR

65.27
65.25
82.11

66.96 52.36
73.50 61.75
77.74 67.33

in: Computers and Geosciences (special edition on Neural
Networks).

German, G., Gahegan, M. and West, G., 1997, Predictive
Assessment of Neural Network Classifiers For Applications
in GIS, Proceedings of the 2nd International Conference on
Geocomputation, University of Otago, NZ.

Lees, B. G. and Ritman, K., 1991, Decision tree and rule
induction approach to integration of remotely sensed and GIS
data in mapping vegetation in disturbed or hilly
environments. Environmental Management, Vol. 15, pp. 823-
831.

Lees, B. G., 1994, Decision Trees, Artificial Neural Networks

and Genetic Algorithms for Classification of Remotely­

Sensed and Ancillary Data Proceedings, 7th Australasian
Remote Sensing Conference, Vol. 1, Remote Sensing and

Photogrammetry Association Australia, Floreat, Western
Australia, pp. 51-60.

Mardia, K. V., Kent, J. T. and Bibby, J.M., 1979, Multivariate
Analysis, London Academic Press.

Rao, C. R., 1973, Linear Statistical Inference and its
Applications, Wiley, New York.

Sarle, W., 1994, Neural Networks and Statistical Models,
Proceedings of the 19th Annual SAS Users Group
International Conference, SAS Institute, paper No. 320, pp.
1538-1550.

Wilkinson, G. G., Folving, S., Kanellopoulos, I., McConnick, N.,
Fullerton, K. and Megier, J., 1995, Forest Mapping from Multi­
Source Satellite Data Using Neural Network Classifiers - An
Experiment in Portugal, Remote Sensing Reviews, Vol. 12, pp.
83-106.

87

	SKMBT_36318061512140

