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ABSTRACT

In general, built-up areas or populated places are significantly changing within the revision interval of a GIS (Geographic Information
System) or map. In this paper we present a method by means of which built-up areas are extracted from panchromatic satellite images of
SPOT and IRS-1C and which makes use of the available information about built-up areas in the GIS. The method has been developed for
small-scale maps or GIS where built-up areas are represented by their outline stored as a closed polygon. The texture of built-up areas
in satellite images is characterized by a high spatial density of very short linear features. This density is used to classify built-up and
non-built-up areas. The decision is made by a threshold estimated from training sites which are derived from the built-up areas stored in
the GIS. The suitability of the method is demonstrated using SPOT and IRS-1C data as examples.

1 INTRODUCTION

1.1 Background

Current research efforts towards using digital images to automize
the acquisition and revision of GIS data focus on man-made ob-
jects, since they are a matter of rapid change. An overview of
the activities and the present state of the art is given by Grün et
al., 1997. The main work centres on automatic building extraction
from aerial images, where the roofs of the houses are clearly visi-
ble. There are only few publications dealing with satellite imagery
like TM, SPOT, or IRS-1C serving to detect built-up areas. Obvi-
ously, it is not possible to detect single houses in these images. But
this is not necessary, since the goal is to support the updating of
small-scale maps or GIS where only the outline of built-up areas is
stored and not single houses. In the images of the satellites men-
tioned above built-up areas are represented as a typical texture
that is strongly granulated. Thus, purely multispectral classification
is not suitable for this purpose. It would fail because of the differ-
ent spectral characteristics of the varying surfaces that are found
in settlements. Due to the size of the pixels, which is of the same
order as the size of the objects, different surfaces like roofs, veg-
etation, and roads contribute to a single pixel. This results in a lot
of mixed pixels. Nevertheless, multispectral classification can be
used as one source of information, if other features are also taken
into account and combined in a knowledge-based system (Vögtle
and Schilling, 1995, Schilling and Vögtle, 1997).

Texture is the characterizing feature of built-up areas in satellite
imagery. Modelling, synthesis, description, and segmentation of
texture are fields of intensive research in computer vision. Texture
has its own entry in surveys of the literature on image analysis (e.g.
Rosenfeld, 1998) . A series of methods for solving tasks like texture
description, texture classification, and texture-based segmentation
has been developed. Nevertheless, there is as yet no overall so-
lution for any of these topics due to the variety of different types
of texture. Simple techniques like statistical approaches which use
moments of the grey levels in an image window have the disad-
vantage that parameters like mean and variance are independent
of the order of the pixels considered. So they are successful under
certain conditions only. Better results are obtained by grey level
co-occurrence matrices (Haralick and Shapiro, 1992, vol.1, p.457,
Lohmann, 1994, Rotunno et al., 1996). Another group of methods
is characterized by autoregressive models or by Markov Random
Fields (Koch and Schmidt, 1994, p.320, Pan, 1994, Andrey and
Tarroux, 1996). Among the spectral approaches especially the
wavelet transformation has proved to be suitable for texture seg-

mentation (Shao and Förstner, 1994, Xie and Brady, 1996).

The application of texture analysis to satellite images is tackled as
a general segmentation problem (e.g. Lohmann, 1991, Mecocci et
al., 1995) or by methods that are designed for special tasks like
the extraction of built-up areas (Schilling and Vögtle, 1996, Kunz et
al., 1997, Busch, 1997). Because of the timeliness and geometric
accuracy of satellite images their use within the revision process of
small-scale maps or GIS has advantages as compared to the clas-
sical method of updating small scale-maps on the basis of maps of
a larger scale (Hanke and Proß, 1994, Konecny, 1996). In addition,
automatic cartographic generalization is still unsolved, since solu-
tions are available for special problems only (Burghardt and Meier,
1997).

1.2 Objectives

We want to present a method by means of which built-up areas are
extracted from panchromatic satellite images of SPOT and IRS-1C
automatically. The approach is based on the results of an earlier
paper (Busch, 1997). Now we intend to make use of the informa-
tion about built-up areas that is already stored in the GIS. Within
the scope of small-scale GIS we have do deal with geometric dis-
tortions due to generalization and replacement, especially if the
GIS data have been derived by digitizing small-scale maps. Au-
tomated methods for extracting features from images by means of
GIS data have to take into account these geometric distortions.
Other systematic effects are caused by the fact that built-up areas
will usually grow and that small towns or villages are represented
in the GIS by a symbol, e.g. a small circle, that does not cover their
whole area. Automation is another important aspect of this paper.
Our goal is to avoid control parameters that depend on the image
data. Control parameters should be clearly interpretable and have
a certain relation to, e.g. map accuracy standards.

2 BASIC IDEAS

2.1 How Do Built-Up Areas Look Like in Satellite Imagery?

Panchromatic satellite images of SPOT and IRS-1C with a ground
resolution of 10 and 5.8 meters, respectivly, reproduce built-up ar-
eas as a typical texture (Fig. 1). Since the size of most objects in
built-up areas like roads, houses, and trees is of the same order
as the size of the pixels, it is not possible to identify these objects
uniquely and completely. When the extraction of linear features,
i.e. lines and edges, is applied to satellite images, the results show
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Figure 1: Detail of a SPOT HRV scene.

Figure 2: Edges extracted from Fig. 1.

a high spatial density of linear features inside cities. Due to the
texture the majority of the extracted lines or edges has a length of
a few pixels only. Long structures mostly occur outside of built-up
areas, e.g. field boundaries or roads, and they are rare within built-
up areas (Fig. 2). Hence, if long linear features are eliminated, the
remaining short linear features provide a meaningful criterion for
the extraction of built-up areas (Fig. 3).

2.2 Extraction of Lines, Edges, and Points

Since our method for detecting built-up areas in satellite images
takes linear features as a starting point, an adequate feature ex-
traction algorithm is required for pre-processing. Any method for
edge or line extraction that provides chains of linear feature pixels
and stores also their length as an attribute may be used for this
purpose. We use an analytic model for extracting lines and edges
that is based on the facet model (Haralick, 1984). It has been ex-
tended by an approach for noise estimation (Busch, 1996), so that
it requires only two simple input parameters, namely the size of an
image window and the level of significance for a statistical test. The
method allows the extraction of significant points, too. They are in-
terpreted as very short lines, where the directions of maximal and

Figure 3: Short edges selected from Fig. 2, length � 3 pixels.

minimal curvature fulfill a certain relation.

For extracing points we make use of the line model

g�x� y� � k� � k�x� k�y � k�x
� � k�xy � k�y

� � (1)

It is a polynomial function of the row and column coordinates x
and y in an image window of a size of 3�3, 5�5, 7�7, � � � pix-
els. We determine the coefficients k�� � � � � k� from a least squares
fit of g�x� y� to the grey values in the image window. The direc-
tions of minimal and maximal absolute curvature of the polynomial
are obtained from the Hessian H, which is the matrix of second
derivatives calculated at the centre of the image window:
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The longest eigenvector ofH— with respect to the Euclidian norm
— points to the polynomial’s direction of maximal absolute curva-
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and
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In case of ambiguity both solutions agree with (3). Applying the
directional derivative (Haralick, 1984) yields the maximal curvature
(Busch, 1994)

cmax � k� sin
� �� k� sin� cos�� k� cos

� � � (5)
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Figure 4: Points extracted from Fig. 1.

The orthogonal direction

� � ��
�

�
(6)

furnishes the minimal curvature

cmin � k� sin
� � � k� sin � cos � � k� cos

� � � (7)

The fraction

f �
jcminj

jcmaxj
� ��� �� (8)

measures the compactness of the extracted points. If f � �, the
point is perfectly round. Smaller values of f indicate more elon-
gated structures. The signs of cmin and cmax allow to discriminate
peaks, i.e. local maxima, pits, i.e. local minima, and saddle points.
Since we are applying the noise estimation mentioned above, only
significant points are detected. Thus, the result is not as sensi-
tive to noise as simple techniques for locating local extrema. For
our purpose the use of points (Fig. 4) is superior to short linear
features, because the length of linear structures is not uniquely de-
fined in dense areas, due to many nodes, links and intersections of
the linear features. Other methods for detecting points (Förstner,
1991, p.40) may be suited for our applications, too.

2.3 Densities of Points and Linear Features

Given a binary image indicating that a pixel has a special feature
or meets a special condition, we define the feature density as the
number of pixels matching this feature that are contained in an
image window. For a certain window size we determine the feature
density for each pixel in an image. Thus, the result is again an
image which we call feature density image (Fig. 5). Within the
scope of this paper we use window sizes of 15�15 and 25�25
pixels. Since we calculate the feature density for each pixel, the
feature density image has the same resolution as the original one.
Hence, we are not losing anything of the original resolution. But
their will be effects of smoothing due to the large window size.

The size of the window should be chosen with respect to the fol-
lowing criteria:

� The window size has to be large enough to cover the charac-
teristic structures of the texture.

Figure 5: Edge density from Fig. 2 using a 15�15 window.

� The window size has to be large enough to contain a signifi-
cant number of feature pixels.

� Problems may come up if the number of counted feature pixels
is too large to be stored using one byte for each pixel of the
feature density image. So one should check for the maximal
feature pixel count and either scale it down or use more than
one byte per pixel, if necessary.

The application of an appropriate threshold to the feature density
image allows to select areas of a high density which correspond to
built-up areas.

3 CLASSIFICATION OF BUILT-UP AREAS

The decision whether a pixel is classified as belonging to built-up
or non-built-up areas is made by a threshold, which is a very simple
method. In this section our objective is to determine the threshold
automatically using the information about built-up areas that is al-
ready stored in the GIS and to rate the quality of the classification
process using distributions derived from the GIS and image data.

3.1 Training Areas Derived from a GIS

When using satellite images and small-scale GIS data or maps for
the revision of just that very data, the state depicted in the image
and the state documented by the data must differ, because other-
wise the images would be unsuited for the update of these data.
Therefore, automated methods for analysing images by means of
GIS data have to be robust with respect to the differences of the
GIS data and the content of the image. Reasons for the differences
are given in the following list:

� The information in a small-scale GIS is generalized and there
may be local geometric distortions, especially if the GIS data
have been derived by digitizing or scanning small-scale maps.

� Built-up areas will usually grow within the update interval.

� Small towns or villages are represented in the GIS by a sym-
bol, e.g. a small circle, that does not cover their whole area.

� Large parks, cemeteries, and sports grounds do not have the
same appearance as built-up areas in the satellite image, but
may appear as built-up areas in the GIS, if they are located
inside a city.
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Figure 6: Populated places (black) from a small-scale GIS.

Figure 7: Training sites (black) for built-up areas derived from Fig.
6 by morphological erosion.

From the GIS data (Fig. 6) we generate two sets of training sites,
one for the built-up areas and one for the non-built-up areas. The
training sites for the built-up areas are produced from the popu-
lated places stored in the GIS, but they are reduced in size, i.e.
a margin along their outline is deleted (Fig. 7). The width of the
margin depends on the size of the geometric distortions of the GIS
data. This shrinking operation can be done in an image process-
ing system by using morphological filters, or in a GIS system by
a buffer function. To generate the training sites for the non-built-
up areas the populated places stored in the GIS are expanded to
ensure that the enlarged sites cover the area influenced by geo-
metric distortions and by the growth of the built-up areas since the
last data revision. This enlargement must be done for populated
places that are stored by a symbol only, too (Fig. 8). Again, the
tools used are morphological filters or a buffer function. All sites
that are not covered by the enlarged populated places taken from
the GIS serve as training sites for the non-built-up areas (Fig. 9).

The size of the enlargement or shrinking depends on several pa-
rameters, e.g. the geometric accuracy of the GIS or map, the ex-
pected rate of change since the last revision of the data, and map
standards. The objective of the creation of the training sets is to
obtain training sets that represent one class only and that are in-
fluenced as little as possible by the other class.

3.2 Estimation of the Threshold

The distributions or histograms of the feature densities for both
types of training sites are analyzed to select an optimal thresh-
old. Fig. 10 shows examples of such histograms obtained from the

Figure 8: Symbols (black) for small towns and villages from a
small-scale GIS.

Figure 9: Training sites (black) for non-built-up areas derived from
Figs. 6 and 8 by morphological dilation and inversion of the result-
ing binary image.
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Figure 10: Feature density histograms for built-up and non-built-up
areas derived from SPOT data and training sites.

SPOT data of Fig. 11 and the training sites from Figs. 7 and 9. It
is possible to use the actual pixel counts without normalizing them,
which will provide an optimal threshold for just that set of training
sites. Normalization of the histograms supplies distributions which
will yield thresholds that are independent of the ratio of the areas
covered by both training sites. For estimating the threshold we can
use on the one hand the point of intersection of the histograms or
distributions, or on the other hand the point where the cumulative
histograms or distributions intersect.

3.3 Post-Processing

The results obtained by the method so far can be improved by
some steps of post-processing, which are connected to the stan-
dards for the production of the particular GIS data or map. So we
eliminate blobs of detected built-up areas that are too small to be
represented in the GIS or map. Accordingly, small holes within re-
gions of detected built-up areas are filled. The maximal size of the
filled or eliminated regions depends on the scale and type of the
GIS or map. Another optional step to simplify the results is the
approximation of the borders of the extracted regions by straight
lines. This may be interpreted as a simple cartographic general-
ization step.

4 EXAMPLES

4.1 SPOT Data

The data of this example come from a SPOT HRV scene of Febru-
ary 22, 1992, with 10m�10m pixels. Fig. 11 shows the part of the
scene that covers our test site. The training sites for built-up and
non-built-up areas are depicted in Figs. 7 and 9. From the SPOT
data we have extracted edges and then deleted those of a length of
more than 3 pixels. We have determined the density of the remain-
ing short edges using a window size of 15�15 pixels. The result of
applying 36 as a threshold, which has been obtained from Fig. 10,
is documented by Fig. 12. Eliminating small regions and the filling
of small holes up to a size of 2000 pixels leads to Fig. 13. In Fig.
14 the result is compared to the GIS data. It demonstrates that all
populated places have been detected. There is only one dot from
the GIS data at the left margin the corresponding region of which
has been eliminated due to its small size which is caused by the
fact that it has been truncated by the border of the image. Large
regions at the airport in the lower left quadrant of the image have
been correctly detected as built-up areas. But they are not stored
in the GIS as populated places, which is correct, too. Hence, this
discrepancy is a consequence of the different definitions of popu-
lated places as stored in the GIS and built-up areas as extracted
by our method. A detail of the result is given by Fig. 15. It illus-
trates the accuracy of the method and its suitability for GIS update.

Figure 11: Part of a SPOT scene (2500�2000 pixels) showing a
site close to of Frankfurt am Main.

Figure 12: Result of applying a threshold to an edge density image.

The horizontal boundaries of the detected built-up areas appear,
because the detail is located at the lower margin of the image.

4.2 IRS-1C Data

For this example we have processed data of the Indian satellite
IRS-1C, namely panchromatic data of 5.8m�5.8m ground resolu-
tion recorded on April 24, 1997 (Fig. 16). Again, we have used
Figs. 6–9 for training and reference. We have extracted points
(Fig. 17), where the parameter f from Eq. (8) has been set to 0.1.
A point density image has been derived based on a 25�25 pixel
window. The histograms of Fig. 18 visualize the rate of misclas-
sification to be expected, and the selection of the threshold which
is 59. Fig. 19 shows the overall results after the filling of small
holes and the elimination of small regions. A detail of the results
underlaid with the image data is depicted in Fig. 20.

5 CONCLUSIONS AND OUTLOOK

The results of this paper demonstrate that the comparatively simple
approach of using feature densities and a threshold for detecting
built-up areas works very promisingly. The results are better than
the demands on small-scale GIS or maps, so that they are suitable
for medium-scale applications, too. The main advantages of our
method consist in the estimation of the threshold and the prediction
of the quality of the results by means of the histograms for built-up
and non-built-up areas.
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Figure 13: Result after the filling of small holes and the elimination
of small regions.

Figure 14: Detected built-up areas (grey) obtained from Fig. 13
and the GIS data (black).

Figure 15: Detail of Fig. 11 with detected built-up areas (white)
and GIS data (black).

Figure 16: Part of an IRS-1C scene (2500�2500 pixels) showing
a site close to of Frankfurt am Main.

Figure 17: Significant points extracted from Fig. 16.
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Figure 18: Feature density histograms for built-up and non-built-up
areas derived from IRS data and training sites.
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Figure 19: Detected built-up areas (grey) obtained from Fig. 16
and the GIS data (black).

Figure 20: Detail of Fig. 16 with detected built-up areas (white)
and GIS data (black).

Future work will concern the use of more than one feature, the cor-
relation of densities of several features, decisions based on more
than one thresholded feature image, and the contribution of fea-
ture density images to a texture classification jointly with other
texture features. Another important goal is the development of a
knowledge-based system by the incorporation of more information
from the GIS to distinguish, e.g. populated places and built-up ar-
eas.
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Images (II). Birkhäuser Verlag, Basel.

Hanke, P. and Proß, E., 1994. Zur Fortführung von ATKIS 200 un-
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