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ABSTRACT 

This paper deals with automatic reconstruction of a digital multi-ray photogrammetric network, which comprises multiple nodes, 
each node indicating one object point and its corresponding multiple imaging rays. In the automatic reconstruction, a novel multi­
image matching (MIM) technique including consecutive consideration of all images as reference images is proposed. The MIM 
comprises three phases. The first is an establishment of the relationship between seed points in one image and multiple matching 
candidates in the overlapping images. This is carried out by a combined utilisation of epipolar curve chains, similarity measures and 
range constraints, and leads to the initial reconstruction of the multi-ray network. The second phase involves the creation of 
geometric relationships among compatible, neighbouring feature points in the same image via local consistency verification. These 
relationships contribute to a global matching quality control using a relaxation process. The global quality control in tum leads to a 
refined multi-ray network reconstruction which employs a check for correspondence ambiguities. The reported MIM technique is 
distinct from alternative matching approaches in pure image space or object space which have appeared in the literature. As opposed 
to least-squares matching where three dimensional coordinate vectors associated with many other parameters are combined via 
collinearity equations for repeatedly approaching the optimal points and especially for very high precision correlation, with this 
approach multi-ray triangulation residuals in object space are still employed, but only to remove ambiguities among multiple 
candidate feature points. In the proposed strategy, matching accuracy is enhanced by sub-pixel interest point extraction and multi-ray 
triangulation. The matching speed in the multi-ray network reconstruction in the case of four close-range images reaches 115 3D 
points per second on a Pentium-200 PC. The resulting accuracy approaches 0.1 pixels. 

1. INTRODUCTION 

Traditionally, aerial photogrammetric blocks of photography 
exhibit a regular 60% forward, and either 20-30% or 60% side 
overlap. With the recent application of high-resolution digital 
still video cameras to local area mapping, however, practical 
considerations and the desire to enhance accuracy and 
reliability in subsequent block triangulation have led to the 
introduction of multi-image coverage with a more irregular 
geometry (e.g. Maas, 1996). This irregular coverage is even 
more pronounced. in digital close-range photogrammetry and 
machine vision where convergent imaging configurations 
coupled with complex object shapes lead to inhomogenous 
distributions of multi-ray intersections. This paper discusses the 
subject of automatic object reconstruction from a multi-image 
network, where the imaging configurations can be either regular 
or irregular in terms of both 'overlap' and the number of rays 
intersecting at each object point. The network can be thought of 
as comprising multiple nodes, with each node indicating an 
object point and 2 to n imaging rays, where n is the total 
number of images. The multi-image matching (MIM) technique 
involves the reconstruction of the multi-ray network through 
the matching of extracted feature points and thus must be 
viewed in the context of a method of solution for the image 
point correspondence problem. It is a feature-based, rather than 
intensity-based approach, which considers all possible imaging 
rays to a particular feature point. 

Research into MIM has recently been active in aerial and close­
range photogrammetry, and in computer vision, since the 
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technique has the following favourable matching properties: 
robustness, occlusion avoidance and high accuracy. There are 
reported strategies for handling trinocular vision [ e.g. Chiou, 
Chen, Hung and Lee, 1995; Faugeras, Lustman and Toscani, 
1987; Ito and Ishii, 1986; Shibasaki and Murai, 1988; Wu and 
Murai, 1997] and an abundant number of techniques for 
undertaking motion sequences. The trinocular methods are 
much more stable than their binocular counterparts because of 
additional similarity measure constraints and extra epipolar 
geometric constraints from the third camera station, assuming 
the centers of the projection of the three camera stations are 
non-collinear. However, these algorithms can generally not be 
directly adapted for the case of more than three camera stations 
and hence they will not be further considered. Also, the 
matching techniques in motion sequences are based on tracking 
due to the presence of abundant sets of constraints. 

On the other hand, the determination of image correlation from 
a set of widely-spaced views is a challenging issue. A number 
of algorithms for MIM have been proposed in recent years [ e.g. 
Collins, 1996; Gruen and Baltsavias, 1988; Heipke, 1992; 
Maruya, Nemoto and Takashima, 1992; Okutomi and Kanade, 
1993; Maas, 1996], with each being motivated by one or more 
specific tasks which preclude general judgement as to whether 
they are "good" or "bad". The goal of designing a more general 
strategy for MIM, oriented to a broad range of applications, is 
pursued in this paper. 

The foundations of MIM with geometrical constraints were laid 
down by Gruen and Baltsavias (1988). In this technique the 



fundamental computational strategy is to employ least-squares 
estimation for the iterative determination of homologous points. 
The highlights of the approach are very high accuracy of 
correlation through the introduction of a variety of parameters, 
such as interior and exterior orientation elements, image feature 
parameters, model correction parameters, individual object 
space coordinates and a digital surface model, into the least­
squares model. In contrast to these beneficial characteristics, the 
well-known drawbacks are the need for more accurate initial 
values and the very high computational effort involved. The 
least-squares MIM approach is often too slow to warrant 
practical use. Heipke (1992) has also followed a least-squares 
approach for MIM, which emphasises correlation in object 
space. However, with this approach significant optimisation 
problems arise due to the large number of parameters carried 
and the requirement for accurate initial values. 

A common MIM problem is the selection of an image as a 
fixed "reference" image. Features and/or intensity templates are 
specified on the reference image, and then a search is made for 
correspondences on the other images via certain constraints. 
However, if important features are missing in the reference 
image due to mis-extraction or occlusion, the matching 
possibilities of these corresponding object points are lost. 
Although the problem can be solved by an extension that 
repeatedly captures another image as a reference, the significant 
computation time of the least-squares approach limits the 
practicability of this extension. 

An image to object back-projection mechanism has been 
proposed to simplify the matching procedure [Collins, 1996]. 
This approach assumes a known object volume constituting 
voxels, where the volume is represented by a 3D accumulator. 
The entire procedure contains three phases: Firstly, the volume 
is divided into plane cells along the Z axis. Then, each feature 
point back-projects through the voxels of the volume and the 
accumulator records them. Eventually, the number of rays 
through each voxel is checked and these rays also determine 
whether or not the voxel is the location of a 3D scene feature. It 
can be envisaged both that the performance requires enormous 
computer memory when more accurate localisation is needed, 
and the accuracy is adversely influenced if cameras are not well 
calibrated. 

Maas (1996) has offered a solution to the problem of a fixed 
reference image through repeatedly assigning one image as a 
reference, till all images have been so selected. Range 
constraints are employed to confine the quantity of candidates 
for matching. An accumulator is used to count the hits to the 
current point on one image by the epipolar lines derived from 
the other images, without using similarity measures or 
relationships between neighbouring feature points. The more 
hits a candidate has, the more reliable it is. Moreover, the more 
images overlapped and applied, the more robust are the results. 
At least five images needed to be overlapped to reduce gross 
errors in the reported test. Nevertheless, gross errors can still 
exist in the case of six overlapped images due to a lack of 
utilisation of global quality control measures. 

Applying multiple stations to cover a multi-image network has 
also been suggested by Maruya, Nemoto and Takashima 
(1992). They present a restricted system configuration 
consisting of multiple pairs of cameras. Each pair is processed 
independently, in association with a very good stereo 
environment. In fact, the scheme operates a two-image 
matching approach repeatedly to all pairs of images. Okutomi 
and Kanade (1993) have reported another approach to MIM. 

149 

This involves a multi-baseline stereo mounting with all cameras 
along one long line. The approach performs two-image 
matching on individual image pairs in the form of the sum of 
squared-difference (SSD) values and combines the sum of SSD 
values from all pairs. It is abundantly clear that these two 
methods for MIM are restricted to multi-image geometries 
which are not always practical. 

In this paper, the proposed automatic reconstruction of a multi­
ray network has the following features: I) triangulation errors 
are employed as one of the sources for the relaxation 
probabilities used in global quality control; 2) over­
parameterisation in object space matching is avoided and ad 
hoc object surface knowledge or range data (which is useful 
when available for 3D mensuration, e.g. El-Hakim and 
Beraldin, 1994) is not required; 3) a multi-image network in 
which images may not all be mutually overlapped, but are 
connected through other images and are simultaneously 
matched without a fixed reference image being applied; 4) the 
matching quality is controlled globally; 5) no approximate 
values for matching candidates and no interactive starting 
points are required, though a range constraint is desirable; and 
6) there are no configuration restrictions for the camera stations. 

To realise the promise of these features, three phases are 
conducted for the automatic construction of the multi-ray 
network: 1) similarity measures and epipolar curve chains are 
employed in conjunction with range constraints to establish 
initial connections between feature points and matching 
candidates; 2) points and their compatible neighbours construct 
relationships via local consistency; and 3) a multi-ray network 
reconstruction starts from the initial connections between 
feature points and matching candidates, and the relationship 
between neighbouring points, and then reaches an equilibrium 
state through a global quality controller, namely a relaxation 
processor. 

Various experimental applications of the proposed technique 
have been evaluated, of which two multi-ray object 
reconstructions are briefly summarised in the present paper. The 
fields of application have covered engineering measurement 
(reconstruction of a rock face and determining the surface 
topography of a load of sand in a truck to simulate volume 
determination in ore trucks), industrial objects (contour 
verification of a wing surface profile and reconstruction of the 
surface of a circuit board) and natural scenes. Further 
applications details are provided in Fraser and Shao (1998), 
where performance aspects are also discussed. The performance 
of the multi-image matching strategy, which reaches a matching 
speed of close to 120 points per second for a four-image 
configuration (using a Pentium-200 PC platform) of Kodak 
DCS420 images (1524 x 1012 pixels), is very promising, as is 
the accuracy which can approach 0.1 pixels in a strong 
geometric configuration. In the following sections the major 
components of the MIM strategy are described and a brief 
account of experimental results is presented. 

2. INITIAL RECONSTRUCTION OF A MULTI-RAY 
NETWORK 

It can be envisaged that the initial reconstruction of a multi-ray 
image network should satisfy the following conditions: I) 
homologous points should have one or more satisfied 
similarities; 2) the object space intersection of the homologous 
points must be bounded by a certain error range; 3) points to be 
matched in different images must lie on the corresponding 



epipolar curves; and 4) each image should be able to 
consecutively serve as a reference image. The latter two 
conditions are developed in the following sub-sections. 

2.1 Epipolar Curve Chains 

As is well known, the coplanarity condition for two camera 
projective centers and an object point A with ai(x1, y,) and ai(x2, 

y2) being the left and right image points, is defined by 

Bx By Bz 

0 (1) 

where Bx, Br, B2 are the baseline vectors on the X, Y, Z 
coordinate axes, respectively. U" V,, W1 are model coordinates 
of Point a, derived by a 3D coordinate transformation with a 
rotation matrix R which is the function of angular elements of 
the camera exterior orientation: 

Similarly with a rotation matrix R', U2 , V2 , W2 are model 
coordinates of Point a2• 

From the coplanarity formula I, a new equation is formed: 

( [Coo Co1 Caz] [x1,Y1,-f1f [R~o R~t R~2] + 

[c10 C11 C12] [x1,Y1,-f1f [R;o R;1 R;2] + 

[C20 C21 C22] [x1,Y1,-.fif [R;o R;t R;2] ) 

0 (2) 

where 

This formula is a linear epipolar line equation of the reciprocal 
function of either x, and y, or x2 and y2 , in the case of known 
exterior orientation. However, it should be understood that lens 
distortion for the off-the-shelf lenses used in modem cameras 
employed for computer vision and close-range photograrnmetry 
is unavoidable, and can reach 20 pixels or more towards the 
edges of the image format. Thus, x,, y 1, x2 and y2 need non­
linear correction [Fraser, 1997]. This leads to a pair of 
homologous points being located on an epipolar curve rather 
than on an epipolar line. Shown in Figure I is the situation of 
an epipolar curve versus a line. Elements C and R' in Eq. 2 are 
related to the exterior orientation of two camera stations and not 
to points of a stereo pair in image space. This decomposition is 
therefore very efficient for the computation of epipolar curves 
on a stereo pair of images without repetitive computation of 
many parameters. It should be noted that this equation can be 
used for epipolar curve generation for both left and right images 
and for the coplanarity constraint applied in image matching. 
However, Points (x,, y,) and (x2, yi) must be matched to 
elements C and R', respectively. If Points (x,, yi) and (x2 , y2) 

both are in the left image, then R' must be the rotation matrix of 
the left image. Otherwise, R' must be the rotation matrix of the 
right image. 

From the analysis above, we know that a 'right-image' point 
constructs a corresponding epipolar curve through a 'left­
image' point, and generally one image point in an image 
generates N-1 epipolar curves on the other N-1 overlapping 
images. So, N overlapped images generate a total of N x (N-1) 
epipolar curves for one object point. These epipolar curves 
constitute an epipolar curve chain. 

a. The epipolar line is re-imaged from the border of an image without lens distortion correction. 

b. The epipolar curve demonstrates where the homologous points should lie when radial lens distortion is considered. 

Fig. I: Epipolar lines and curve. 
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On the epipolar curve chain, one image point may have more 
than one candidate on the other images due to incompleteness 
of camera calibration and/or orientation, errors of feature point 
location [Foerstner, 1986] and repetition of point similarity. 
The first two concerns give rise to triangulation errors. These 
triangulation errors lead to discrepancy ambiguities which 
indicate that a point in one image matches to a number of points 
of a group on the other images. These group points, which of 
course also satisfy similarity criteria, are neighbours to a 
potentially homologous point. The repetition of point similarity 
causes repetition ambiguities indicating that there are points in 
other groups matching to the point a on the first image, because 
of the same similarity, and certainly also satisfying the 
triangulation error constraint. 

Shown in Figure 2 are two such types of ambiguities. In the 
figure, A1 is a true object point. A2, very close to A,, indicates 
the discrepancy ambiguity, while A3 , far away from A,, 
represents the repetition ambiguity. Obviously if a true object 
point is approximately known, the repetition ambiguity can be 
eliminated by using local consistency checks, whilst the 
discrepancy ambiguity is able to be removed through multi-ray 
triangulation residuals and similarities. However, in the absence 
of any object surface knowledge the elimination of the two 
ambiguities needs to be taken into account in combination. The 
details of this procedure will be explained in a later section. 

Fig. 2: One image point may have multiple nodes in the multi­
ray network. The node portrayed by solid circles is true. 
Indicated by open ellipses is a repetition ambiguity, while 
represented by triangles is a discrepancy ambiguity. 

2.2 Consecutive Consideration of All Images 

For the sake of simplicity, suppose there are four images to be 
matched and one point in the first image is known. The 
consecutive procedure of the network construction involves 
several phases. First of all, there is a search of all candidates on 
the epipolar curve in the second image. Then, three dimensional 
coordinates are computed between the point in Image 1 and the 
candidates in Image 2. Those which are out of the depth range 
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set up in a range constraint are then filtered out. One candidate 
among those remaining is then selected, and the three 
dimensional coordinates of the candidate are back-projected 
into the image planes of the remaining images through the 
collinearity equations. The image coordinates of points in the 
other images are then derived, and neighbourhoods are 
examined to find candidates according to the epipolar geometric 
and object space constraints. When all points in Image 1 are 
processed, points in the next image are considered and search 
candidates in the remaining images are selected. This ensures 
that every point in every image has the opportunity to seek 
candidates. When all points in the images are complete, those 
which have constructed the nodes of the multi-ray network are 
marked. 

Through an overall extension from an individual image point 
and its candidate image points and objects, as shown in Figure 
2, to all feature points in an entire multi-image block, an initial 
multi-ray network can be constructed as indicated in Figure 3. 
In this figure, one object point may have more than two 
imaging rays. Open circles and ellipses in the figure represent 
ambiguous image points and virtual object points, respectively. 
Virtual rays linking the open circles and ellipses are indicated 
by dashed Jines and the solid circles and ellipses are real 
homologous image and object points, which are connected by 
solid Jines. Some images are not overlapped, but are connected 
through other images . 

• • • 

Open circles: 
Solid circles: 
Open ellipses: 
Solid ellipses: 
Solid lines: 
Dashed lines: 

I I 
I I 
// 
II 
II 
II 
II 

II 
// 
// 

11 ,; 
ct> 

ambiguous image points 
homologous image points 
virtual object points 
real object points 
real rays 
virtual rays 

Fig. 3: An initial construction of a multi-ray network. 

Each feature point, as described above, may have several 
ambiguous points. To eliminate ambiguities, a relationship 
among neighbouring feature points in the same image, with 
their corresponding object points, is needed for a global quality 
control check. This aspect is described in the next section. 

3. Global Quality Control 

As has been discussed, there are two types of matching 
ambiguities. To eliminate the two ambiguities, two sets of 
compatibility functions in a relaxation process are introduced. 



This is a popular optimisation algorithm which has previously 
been adopted in a three-line CCD image matching method [Wu 
and Murai, 1997]. One set of functions is linked with the 
triangulation intersection errors of multiple rays, while the other 
is related to local consistency with neighbouring nodes. Then, 
two relaxation probabilities derived from the two sets of 
compatibility functions are combined together. Assuming a 
point al in image i and a candidate bl in image j are pre­
matched, the symbolic expression for the probability 
combination is 

(3) 

where P; and P; are two normalised discrete probabilities 

relevant to the first and second types of compatibility functions 
for Point al to Candidate bl, and 11. is a controllable scaling 
parameter governing the respective contributions of the two 
types of probabilities. Then an iteration, e.g. from the iteration 
number k to k+ 1 is applied as 

(4) 

where A and B are the coefficients controlling convergence 
speed. A multi-ray network node is then accepted only if all 
probabilities P,1 (i, j e N, i ~ j with N representing the number 

of overlapped images of the node in the multi-ray network) 
related to the points on this node reach a given threshold. 

3.1 Relaxation Probabilities for Discrepancy Ambiguities 

As mentioned above, the discrepancy ambiguities are linked 
with intersection errors of multiple rays. The intersections of 
any three points from the individual images are different. These 
intersections however lie in a certain range which may be 
estimated from experience or computed from the accuracies of 
exterior orientation and feature point location. In this case, a 
criterion for the rejection of a discrepancy ambiguity could be 
dependent on the intersection errors. However, due to 
incompleteness of camera calibration and errors of feature point 
location, the intersection errors of truly homologous points will 
not always be small. Also, a single criterion using the errors for 
a single point can cause matching disharmony between 
neighbouring pixels. 

A global technique employing both intersection errors and 
similarities is desirable. A relaxation approach is employed 
here, again through a probability iteration, which for Point al 
in image i and Candidate bl in image} is given as: 

with 

1 1 1 
f(ei) = exp(--), -- or --­

eii +c eii +c' F; +c 

and 

(5) 
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Here, P~ are the first type of probabilities against the 
discrepancy ambiguities and/( e") are the multiple options of 
the functions of the intersection errors e" derived from the 
current points in image i to}. Similarly f(e1,) are the functions 
of the intersection errors e1, derived from the related points in 
images j and k (k e N). These points must be in the same 
epipolar curve chain. Py_ is the total weighted probability 
supported from all P1' which are the probabilities of the points in 
the current iteration for image j to k, and c is a small constant 
for prevention of computational overflow. The ~. values in the 
first iteration are created from similarity measures. The physical 
meaning of P,; is that the smaller the triangulation errors from 
the other rays on the same epipolar curve chain, and the more 
imaging rays, the greater the support for the current candidate. 
This is a global network consideration for the determination of 
matching points. 

3.2 Relaxation Probabilities for Repetition Ambiguities 

As usual, the repetition ambiguities are removed through local 
consistency checks within a neighbourhood. Removal of 
ambiguities using alternative approaches has often been 
achieved in image space, where consistent disparity can be used 
for near standard binocular feature-based matching. In contrast, 
disambiguation in our strategy is realised in object space rather 
than in image space. This is due to the possibility that the 
optical axes of cameras will have large convergence angles and 
the images may have large rotation, both of which cause 
disparity differences in image space which cannot be easily 
compared. A local range consistency check is employed for the 
capture of compatible neighbours. Figure 4 illustrates the 
principle of local range consistency. Point al in Image LI has 
two candidates in Image L2: Points bO and bl. Its physical 
neighbours comprise Points a2, a3 and a4 whose candidates in 
Image L2 are Points b2, b3 and b4, respectively. According to 
the local range consistency in object space, only the separation 
of Point A2 from Point Al is within a range difference 
tolerance, while A3 and A4, in comparison with Al, are out of 
range. Therefore, Points al and a2 are compatible neighbours 
in terms of the candidate pairs al-bl and a2-b2. 

On the other hand, no point is compatible with Point AO, ie. no 
compatible neighbours exists for the candidate pair al-bO. This 
leads to a potential selection of the candidate pair al-bl as 
matched points. Also, A3 and A4 are mutually within a range 
difference tolerance. Points a3 and a4 are thus compatible 
neighbours in terms of candidate pairs a3-b3 and a4-b4. It 
should be noted that a physical neighbour may not be a 
compatible neighbour, but, a compatible neighbour must be a 
physical neighbour. Also, a compatible neighbour itself does 
not have any meaning. It is meaningful only in terms of certain 
candidate pairs, e.g. in Figure 4 Points al and a2 are 
compatible neighbours in terms of the candidate pairs al-bl 
and a2-b2. 

If the object surfaces being reconstructed are fairly smooth, 
local range consistency is replaced by local slope consistency 
for the check of compatible neighbours. This is due to the fact 
that the former tolerates a certain discontinuity of object 
surfaces, while the latter is able to control gross errors, though 
they may only be few in the multiple-ray case. Applying this 
principle to every feature point, a compatible relationship 
among neighbours is established, as illustrated in Figure 5. 



' 
Al ,' A2 
' ' ,. ,. 
AO 

Fig. 4: The circled points in the image plane Li are compatible 
neighbours obtained by a local range consistency check. 

Fig. 5: A relationship is woven among neighbouring feature 
points of the same image, through local consistency. Dots stand 
for objects and lines for linkages to the objects. 

From the compatibility relationship, local mutual consistency 
reinforces the repetition probabilities from compatible 
neighbouring points a: 

p: = I:Pu 
a ER 

where R is a local region, in which a satisfies the local 
consistency condition in image i to image j. For instance, again 
in Figure 4, for Point al on Image Li to Image L2 the 
relaxation probability for the repetition ambiguity is 
I:P,."' = P(a2- b2), which is the current probability of the 

candidate pair a2-b2 on Image Li to L2. The physical meaning 
of P; is that the more consistent neighbours and the high 

relaxation probabilities arising on the same image, the more 
support for the current candidate pair. 

4. EXPERIMENTS 

In order to ascertain the computation time and accuracy of the 
multi-ray network reconstruction, the proposed approach was 
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evaluated using a digital image network acquired with a Kodak 
DCS420 still video camera. The first object investigated 
comprised a car door with a random projected line pattern, as 
shown in Figure 6. The time and accuracy evaluations of the 
matching approach were carried out using a configuration of 
four convergent images. 

Fig. 6: Car door with a projected random line pattern. 

Given the impact of factors such as image content, image 
quality, the number of images and disparity differences, the 
achieved matching speed of 115 3D coordinate points per 
second should be viewed as indicative only. This performance 
was obtained in a Windows 95 environment of Microsoft C++, 
with the PC processor being a Pentium-200. Since the car door 
surface is rather smooth, the Z coordinate accuracy was of 
special concern. RMS 'height' errors were found to be 0.08 
mm, which is equivalent to 0.1 pixels when projected back to 
image coordinates. Shown in Figure 7 is a digital surface model 
(DSM) resulting from the multi-ray network, which indicates a 
smooth (accurate) surface reconstruction. 

Fig. 7: Derived DSM of the car door. 

A second application involved the reconstruction of a natural 
scene, namely a rock face. Shown in Figure 8 is the camera 
station configuration of the multi-ray network for the rock face 
survey. In the figure, the number of images, camera positions 
and camera convergence angles are indicative only. Actually, 
14 images with arbitrary convergence angles were employed. 
The 3D reconstruction map shown in Figure 9 proved to be of 
high accuracy, again around 0.1 pixels, which illustrated that 
the proposed technique can be usefully applied to natural 
scenes. Further testing of the method is ongoing, and additional 
experimental results are presented in Fraser and Shao (1998). 



Fig. 8: The indicative configuration of the multi-ray rock-face 
network. 

Fig. 9: The DSM of the measured rock face reconstructed via 
the multi-ray network. 

5. CONCLUSIONS 

This paper has described automatic reconstruction of a digital 
multi-ray photogrammetric network through use of a novel 
feature-based MIM technique in which consecutive 
consideration of all images as reference images is proposed. A 
combined utilisation of epipolar curve chains, similarity 
measures and range constraints leads to the initial 
reconstruction of the multi-ray network. A global matching 
quality control using a relaxation process finally produces a 
refined multi-ray network reconstruction which employs a 
check for correspondence ambiguities. In the check, the 
creation of geometric relationships among compatible, 
neighbouring feature points in the same image via local 
consistency is verified. The matching speed in the multi-ray 
network reconstruction in the case of four close-range images 
reaches 115 3D points per second on a Pentium-200 PC. The 
resulting accuracy reaches 0.1 pixels. This approach can thus be 
employed for both high accuracy vision metrology and accurate 
initial value acquisition in very precise least-squares matching 
applications. 
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