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ABSTRACT 

Layered feed-forward neural networks (LNN) have been broadly applied to classification, prediction and other modeling 

problems. There have been so far, however, few studies that have provided a theoretical interpretation for the 

application of LNN. Most of the conventional studies have been empirical and the LNNs have been applied just like 

"black box" machines. This paper discusses the application of LNN to image or remotely sensed data classification. We 

provide a theoretical interpretation for the LNN classifier in comparison with the conventional classification or 

discriminant methods. The most distinguished part is the derivation of a generalized form of LNN classifier based on the 

maximum entropy principle. According to the generalized form, we discuss the relationship between the familiar type of 

LNN classifier employing the sigmoidal activation function and the other types of discriminant models such as the 

Multinomial Legit Model. 

1. INTRODUCTION 

Layered feed-forward neural networks (LNN) have been 

broadly applied into prediction, simulation, classification, 

pattern recognition and other modeling problems. Hill et 

al. (1994) gave a review of studies comparing LNNs with 

conventional statistical models. There have been so far, 

however, few studies that have provided a theoretical 

interpretation for the application of LNN except for 

comparisons with regression analysis. Most of the 

conventional studies have been empirical and LNNs have 

been applied just like "black box" estimation machines. 

This paper discusses the applications of LNN to 

classification and pattern recognition problems which 

have been often attempted in the fields of remote sensing 

and digital image analysis . We provide a theoretical 

interpretation for the LNN based classifier mainly in 

comparison with Bayesian classifier and Multinomial Legit 

Model. 
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2. BASIC FORMULATION OF LNN CLASSIFIER 

Let x represent a feature vector which is to be classified . 

Let the possible classes be denoted by 
wJ j = l,2, .. ,J). Consider the discriminant function 

d J x) , then decision rule is 

xEwj, if dJx)"~dr(x) forallj';,oj. (1) 

A LNN is expected to be the 1/0 system corresponding to 

the discriminant function. 

We show a typical LNN architecture which has been 

applied to a variety of classification problems. Let us 

consider the multi-layered neural network. A feature 

vector is input to the input layer, that is, the number of the 

neurons in the input layer is corresponding to the 

dimension of the feature vectors. The output layer has 

the number of neurons as same as the classes. The 

output signal from the .ft:h neuron in the output layer is 

regarded as the discriminant value. Let the state of the 

.ft:h output neuron be represented by 



u j = g( x, w) (2) 

where w is the parameter vector included in the 

designed LNN. These parameters are mainly constituted 

by the connection weights (synaptic weights) between 

neurons. We are not concerned here with the formulation 

of g( x, w). The output of LNN, p j ( x, w), under 

presentation of x is 

pJx,w)=f(uj), (3) 

where f ( u j ) is the activation function. The following 

sigmoid function, which is a bounded, monotonic and 

increasing, is frequently used, 
1 

f(u.)=----
1 1 + exp( -u j ) 

(4) 

The feature vectors xk(k=l,2, .. ,K) for training the 

LNN are prepared. The classes which these feature 

vectors belong to are all known. Training data (target 

data) are given as follows; 

if XkEw; 

otherwise (5) 

The LNN is trained by minimizing a mean squared error; 

min. ff{Pj(xk,w)-d/xk)}2. (6) 
k=lj=l 

Training of the LNN is performed through the adjustment 

of connection weights. The most common method is so­

called 'back propagation' which is gradient descent in 

essence. After the completion of training, the LNN plays 

a role of the discriminant function. Let the output of 

trained LNN be denoted p j ( x, w). 

3. INTERPRETATION FOR LNN CLASSIFIER 

3.1 Relationship between LNN and Bayesian classifier 

Maximum likelihood classifier, in which a multivariate 

normal distribution is assumed, is frequently applied. 

How the LNN classifier is related to the Bayesian optimal 

classifier? This question has been already discussed by 

Wan (1990) and Ruck et al. (1990). The conclusion is 

that the output of the LNN, p /x, w), approximates the 

Bayesian posterior probability. According to Wan (1990), 

we show a short proof. Consider the training data given 

in the form of (5). Suppose that the training data are 

random variables and samples from the probability 
density function p(x,d j (x)), where 

;O if xEwj 
dj(x) =\ 1 otherwise 

(8) 

Since p j ( x, w) is the least squares estimate of d j ( x) , 

then p j ( x, w) is the conditional expectation of d j ( x) 

given x Therefore, 

p/x, w) = Eld/x) IX J 
= 2 d/x)·p(d/x)lx) 

di(x~o,1} 

=p(d/x)=Ilx) 

=p(wj Ix) 

(9) 

This means that p / x, w) , in the sense of minimizing a 

mean squared error, 

probability p( w j I x) . 
approximates the posterior 
This provides a theoretical 

interpretation for the LNN based classifier. It is proved 

that a three-layered neural network, when the appropriate 

number of neurons are set in the hidden layer and 

sigmoidal activation functions are used in the hidden 

layer, can approximate any continuous mapping (e.g. 

Gallant et al., 1988; Funahashi, 1989; Cybenko, 1989; 

Hornik et al., 1989). It is expected that LNN approximates 

accurately the posterior probability. 

Up to this point, however, the derivations have been for 

The Bayesian optimal decision rule, in the sense of an arbitrary mapping trained by d j ( x k) E { 0, 1} . The 

minimizing the probability of classification error, is to result is well-known in the field of statistics (Wan, 1990). 

choose the class which maximizes the posterior The above proof provides a theoretical justification for any 

probability; non-parametric discriminant function trained by the least 

I p(x I w j) · p(w j) squares criteria. The following section will discuss the p( W j X) = ----'------'--, (7) 
p(x) interpretation for the activation functions used in LNN. 

If the prior probabilities p( w j) are equal, then the 

conditional probability density function p( x I w j) 

corresponds to the optimal discriminant function. 
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3.2 Interpretation for activation functions 

Let the activation function, f (u j), be a monotonic 

increasing function. Then, the state of the output neuron, 

u j , and the posterior probability, p( w j I x) , have a one-

to-one mapping, and u j = g( x, w) becomes also an 

optimal discriminant function. 

The activation function should be a probability distribution 

given a certain level of state. This is analogous to the 

probability distribution of a particle being in a certain state 

given the energy level of each state in the statistical 

mechanics. In the statistical mechanics different 

probability distributions are derived from so-called 

maximum entropy principle. We derive the activation 

forms from maximum entropy principle. 

Consider the maximization of Kapur's generalized 

measure of entropy under the expected discriminant 

value (Kapur, 1986). 
J l J 

max. H (p) = -2, p j · ln p j + - 2, (l + ap j ) · In (l + ap j ), 
j-1 a j-1 

a~-l (10) 

J 

s.t. "'i,pjuj =U 
j 

(11) 

where H (p) is the Kapur's generalized entropy in which 

the constant term is omitted, p /j = l,2, .. ,J) is a 

probability distribution corresponding to p / x, w) , a is 

a parameter prescribing the type of entropy, that is, the 

type of probability distribution, and U is an expected 

discriminat value. Here, we do not explicitly give the 

constraint; 

{12) 

to the maximization problem, because p j approximates 

the posterior probability. 

From (10) and (11), we get 

1 
p= 

1 -a+exp(-f3uj) 
(13) 

where (3 is a Lagrange multiplier associated with (11). 

The parameter (3 is the so-called temperature 

parameter. When a is fixed and the LNN with the 
activation function (13) is trained, (3 is estimated being 

included in the connection weights in a training process, 
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since u j is generally defined by the linear function of the 

connection weights between the output neuron concerned 

and the hidden neuron. 

Now, assume that (3 is constant given, the probability 

distribution (13) is equivalent to an optimal solution of the 

following maximization (Brotchie, 1979); 
J l 

max. U =2,pju j +-H(p). (14) 
j=1 /3 

Therefore, the activation function form (13) is interpreted 

as the representation of the above expected discriminant 

value maximization taking into account the uncertainty 

shown as the Kapur's entropy. 

Now, let us return to the activation form (13) and discuss 

the meaning of the parameter a . For a =-1, (13) gives; 

1 
P· =---- (15) 

1 l + exp ( - f3 u J · 
This is just the sigmoid function (i.e., (4)) most frequently 
used in the applications of LNNs. In addition, if a =-1, it 

is well-known that (10) subject to (11) and (12) gives 
Fermi-Dirac (F-D) distribution. Note that p j ( x, w) 

approximates the posterior probability; thus the familiar 

sigmoid function is interpreted as the representation of 

the expected discriminant value maximization under the 

F-D type entropy. 

Similarly, for a =1, (13) is 

1 
p . =------

1 -1 + exp(- f3 u j )° 
(16) 

It is known that, for a =1, (10) subject to {11) and (12) 

gives Bose-Einstein (B-E) distribution. Thus (16) 

approximates the B-E Distribution. 

Next, consider the case of a =0, that is, 

1 
p.=----

1 exp(-(3u j )° 
(17) 

As a tends to zero, (10) approaches Shannon's measure 

of entropy. It is well-known that the maximization of the 

Shannon's entropy subject to (11) and (12) gives 

Maxwell-Boltzmann (M-B) probability distribution; 
exp(f3u j ) 

p = 
1 J,exp(f3urf 

1 

(18) 

Accordingly, (17) approximates the M-B distribution. In 

addition, (18) gives the structural similarity with so-called 

Multinomial Logit Model which is familiar in the field of the 



discrete choice behavioral modeling (Anas, 1983). Hence 

the LNN classifier with the activation function {17) is 

interpretated as the approximate of the Multinomial Logit 

Model. 

As mentioned above, the choice of a= -1, O and 1 leads 

to Fermi-Dirac (F-D), Maxwell-Boltzmann (M-8), and 

Bose-Einstein (B-E) probability distributions respectively 

in statistical mechanics. Let us compare the 

characteristics of the above representative distributions in 

statistical mechanics. These three distributions are all 

derived from Jaynes's maximum entropy principle (Kapur, 

1992). One distribution differs from another due to the 

constraints to Shannon's measure of entropy. In the M-8 

distribution, the expected energy of a particle in the 

system is only prescribed. The F-D and B-E distributions 

are derived by the constraints with respects to the 

expected energy of the system and the expected number 

of the particles in the system. In the F-D distribution the 

maximum number of the particles allowed in a certain 

state is assumed to be one, while in the B-E distribution 

the maximum number is assumed to be infinite. 

Thus, the parameter a is associated with the constraints 

to the maximization of the Shannon's entropy. This gives 

us an implication that, for a lying between -1 and 1, we 

can get the various types of probability distributions, 

though it may be difficult to provide the significant 

interpretation for the distributions in the framework of the 

statistical mechanics. We have a choice of infinite types 

of models corresponding to different values of a . A 

possible method is to choose the parameter a to get the 

best fit to the training data. Regardless as the selected 

parameter, we can provide the interpretation to the 

activation function as the representation of the expected 

discriminant value maximization under the Kapur's 

generalized entropy. 

4. CONCLUSION 

This paper has provided an interpretation for the LNN 

classifier. The output of the LNN under the completion of 

training approximates the Bayesian posterior probability. 

Therefore, if we assume the activation function of the 

output neuron to be monotonic increasing, the state of the 

output neuron is also Bayesian optimal discriminant 

function. From the maximum entropy principle, we can 

provide the interpretation for the activation function. The 
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familiar sigmoid function is approximate to the Fermi­

Dirac distribution. The LNN classifier using the activation 

function of the Maxwell-Boltzmann distribution 

approximates the Multinomial Logit Model. The 

maximization of Kapur's generalized measure of entropy 

gives the generalized form of the probability distributions 

including the Maxwell-Boltzmann, Fermi-Dirac, and Bose­

Einstein distributions. In the practical sense, it is 

proposed to apply the Kapur's generalized distribution 

into the generalized activation function and to fix the 

function form in the process of training. Regardless as 

the resulting selected function form, we can provide the 

interpretation for that as the representation of the 

maximization of the expected discriminant value under 

the Kapur's generalized entropy. 
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