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ABSTRACT 

Photogrammetric methods will increasingly be used for real-time applications. For example, in a manufacturing environment the 
position of components must be located quickly and accurately for many assembly tasks. The computational effort should be 
minimal and if possible completely predictable. The conventional bundle adjustment method is unlikely to be used in this context 
because of the speed requirement while the direct linear transform method has modelling deficiencies for high precision 
measurement, furthermore, direct intersection with prior camera calibration does not allow for the dynamic situation found in 
industrial environments. The paper will describe a methodology for solving collinearity equations. Unlike the traditional bundle 
adjustment which solves for the unknown spatial co-ordinates of targets and camera parameters simultaneously, a separate solution 
for least squares estimation is developed which divides the parameters into two different groups, one for camera parameters, and the 
other for the co-ordinates of object points. With camera parameters fixed the 3-D co-ordinates of any spatial target can be located by 
spatial intersection of lines, and with spatial targets fixed the camera parameters can be determined by spatial resection. This process 
is repeated for both sets of parameters which are gradually refined. The final result can be proven to be statistically the same as 
would be achieved using the bundle adjustment but with a considerable time and memory saving. This separate adjustment method 
is found very successful to deal with close range photogrammetric measurements (CRPM), especial for a multistation convergent 
network. 

1. SIMULTANEOUS LEAST SQUARES ADJUSTMENT 

In surveying and close range photogrammetry, redundant 
measurements are always necessary for high precision, 
reliability and statistics (Mikhail & Gracie 1981, Cooper 1987). 
This means that the number of observation is more than the 
minimum for a unique solution of the unknown parameters. 
This section will briefly discuss the simultaneous least squares 
estimation for redundant measurements. Let the functional 
model be expressed as 

f(x) = I (1.1) 

where x is a vector of the unknown parameters and l is a vector 
of the observations. The linearized observation equations may 
be expressed as 

Alix= b+v : W (1.2) 

where A = if is a Jacobi matrix, v is a vector of residuals for 
, & 

the observations and W is the weight matrix of the observations. 
There are obviously many possible values for vi to fit the 
functional model. Several methods exist to give a minimum 
value for the combinations of residuals (Kuang 1996). The least 
squares criterion is the most popular which minimises the sum 
of the weighted squares of the residuals. When all the unknown 
parameters are considered simultaneously the least squares 
estimation gives the following solution 

(1.3) 
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The cofactor matrix of the estimated parameters is given by 

(1.4) 

2. BUNDLE ADJUSTMENT OF CRPM 

In close range photogrammetry, when m cameras are used to 
measure n object points, x will be a vector with (3n+6m) 
unknown parameters and l will be a vector with 2mn image 
observations. The unknown parameters x can be divided into 
two groups, x 1 for 3D coordinates .of the object points and x2 

for the camera parameters. 

Therefore in equation ( 1.2) A and L1x become 

The unknown parameters x1 and x2 may be solved 
simultaneously as follows 

A12J-1[A(W]b 
A22 A~W 

=N-1[A(W]b 
A~W 

(2.1) 



in which Aii = AfWAi . The matrix to be inverted here has a 

dimension of (3n+6m)x(3n+6m). If four cameras are used to 
measure 100 object points, 3n+6m=324. The inverse of such a 
large matrix is computationally expensive and may not be 
achieved in real time without special measures. 

One of the methods that might be used is inversion by 
partitioning (Frank Ayres 1962, Brown 1976, Granshaw 1980), 
which gives 

in which 

and 

IB 11 = A,-/ +A;-i1A12 K-1A21 A1~1 

B12 = -Ai11A12 K - 1 

B12 = B~, 

B22 = K-' 

(2.2) 

(2.3) 

(2.4) 

Since A 11 is a block diagonal matrix, its inverse can be 
computed by inverting n 3x3 small matrices, which provides a 
big saving of time and memory . Matrix K is generally full with 
a size of 6mx6m . Therefore the inverse of K becomes the main 
cost of processing the matrices. An alternative to calculating the 
inverse of N is to calculate the B matrices by 

and 

(2.6) 

This time the inverse of A 22 can easily be obtained by 
computing the inverse of a series of 6x6 small matrices. 
However the size of K is 3nx3n and it is generally full, hence 
the inverse of K could be expensive to calculate since 3n is 
normally much larger than 6m in close range photogrammetry. 
But it could be possible that 6m is larger than 3n in some 
special cases such as when hundreds of images are taken to 
measure only a few object points. In this case Eq (2.5) and (2.6) 
are more suitable for calculating the inverse of N. 

In real 3D measurement applications, the coordinates of the 
object points x, are more important than the camera parameters 
x2. The corrections of x, can be obtained by 

~, = [B 11 B12 ][ ~nW,b 
(2.7) 

= (B 11 A{ + B12 A~ )W1b 
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and the cofactor matrix of the estimated coordinates is given by 

Qx, = (B 11 A{ + B12 A~ )W,Qb ((B11 A{ + B12 A~ )W1 ) 1 

= (B 11 A{ + B12 A1)W1(A1B11 + A2 B21 ) 

= B 11 A11 B 11 + B 11A12 B21 +B12A21 B 11 + B 12A22 B21 

(2.8) 

The computational complexity of the last three terms is directly 
proportional to 6mx(3n)2 provided that the right order is 
applied when products of matrices are calculated. The 
computational complexity of the first term is directly 
proportional to (3n)3 if the products of the matrices are 
calculated directly. This is normally too expensive. The 
complexity can be reduced to 6mx(3n)2 when B 11 is replaced 
by Eq (2.3) and the right order is considered. 

The foregoing discussion of the bundle adjustment is based on 
the assumption that the coefficient matrix N is non-singular. 
However, photogrammetric observations are obtained from 
images which do not include any information in the object 
space to define a datum. If control points are involved in the 
bundle adjustment the datum problem may be solved. 
Otherwise constraints must be applied to remove the rank 
defects of N to make it possible to estimate the unknown 
parameters. Inner constraints are often used for the unbiased 
free network adjustment, which can be applied to the object 
points or to the camera exterior parameters, or to both. 

Inner constraints can be applied in the bundle adjustment to 
remove the rank defects of the design matrix, so the unknown 
parameters can be estimated. The datum is defined by the 
starting values. Because the starting values are arbitrary, the 
estimated results are in an arbitrary datum. Different starting 
values lead to different results. But they are equivalent in the 
sense of least squares and the shape of the object remains 
unchanged. 

With the additional seven constraint equations, the total number 
of equations used for the (3n+6m) parameters is (2mn+7) . The 
following conditions must be satisfied to enable the bundle 
adjustment to work, i.e., 

2mn + 7 ~ 3n + 6m 

which gives 

and 

2 
n~3+---

2m-3 

1 
m~ 1.5+-­

n-3 

(2.9) 

(2 .1 Oa) 

(2.10b) 

This means that a minimum of four object points are required 
generally (when m~3) and a minimum of five object points are 
needed if only two photographs are used. A minimum of two 
cameras are required generally (when n~5) and a minimum of 
three cameras are needed if only four object points are 
involved. But actually three object points are enough to 
determine the camera parameters (exterior parameters) provided 
that they all appear on the camera image plane and two cameras 
are adequate to solve the 3D coordinates of the object points. 
That implies enough information has been given to determine 



the unknown parameters with three object points and two 
cameras. But this does not apply to the situation of the inner 
constrained bundle adjustment. When inner constraints are 
applied, the special structure of A 11 or A 22 is spoiled. This 
makes the computation of the inverse of the coefficient matrix 
N more complicated. 

3. SEPARATE LSE 

The bundle adjustment is based on the simultaneous least 
squares methods. These methods have been widely used in 
surveying and photogrammetry for various purposes. However 
as far as speed is concern these methods are not ideal for real­
time applications in close range photogrammetry. In this section 
an alternative method of least square estimation - separate least 
squares estimation - is introduced. 

For a linear system, the functional model may be expressed as 

Ax=b (3.1) 

in which 
x = (x 1, x2, .. . , xu)t is a vector of the unknown parameters, 
A is a mxu coefficient matrix (m>u), and 
bis a mxl vector of the measured elements (observations). 

To estimate the unknown parameters separately, x may be 
divided into k groups, i.e., x = (X1, X2, ... , Xk) and A into A = 
(A 1, A2, ... , Ak) accordingly. Therefore Eq (3.1) becomes 

(3.2) 

Suppose there are q parameters in Xi, so Ai will be a mxq 
matrix. When estimating Xi, other parameters are considered as 
constants and the corresponding terms are moved to the right 
hand side ofEq (3.2), i.e., 

in which 

and 

b; = b-A.,X., 

k 

A,x, = "A.x. . . L, J J 
i=l 
.I""' 

(3.3) 

(3.4) 

(3.5) 

Since A1X1 is non-stochastic, so Wb, = Wb . By the linear least 

square estimation Xi is solved as 

in which 

and 

X; = (AfWbA; )-1 AfWbb; 

=C;+D;X.1 
(3.6) 

(3.7) 

(3.8) 
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The size of Af WnA; is qxq, much smaller than that of 

A1WhA, which is mxm for the simultaneous LSE. This is why 

time and memory are saved. After Xi is solved, it is considered 
constant and used to solve the other parameters. The constants 
assigned to the unknown parameters may be starting values or 
the least squares estimates from previous iterations. Based on 
these constants the least squares estimation of the current 
iteration may not be the final results unless several iterations 
have been applied. The iterative process stops when the 
corrections for all the parameters are less than a given 
significant value. It is noticed that Ci and Di will remain 
unchanged during the iterative process in the linear case. Once 
computed for the first iteration, they can be used repeatedly to 
calculate the unknown parameters. 

By the general law of propagation of covariance, the cofactor 
matrix of the estimated parameters Xi is obtained by 

When estimating Xi, other parameters are considered as non­
stochastic constants. But their stochastic models are introduced 
after the first iteration since their results can be estimated by the 
least squares process. From Eq (3.4) we have 

(3.10) 

in which 

A =[A A . .. A j 
J l 2 k withoutA; (3.11) 

and 

] 
(3.12) 

Qx, withoutQ,. 

Replacing Qbi in Eq (3. 9) from Eq (3 .10) and expressing 
(Aitw~i)-1 by Ni gives 

(3.13) 

After each iteration the estimated results (the solution and the 
cofactor matrix) for all the unknown parameters will be 
updated. The results will finally converge to the same solutions 
obtained from the simultaneous LSE. 

It is noticed that the full cofactor (covariance) matrix is not 
available with separate LSE. The cofactor matrix of the 
estimated parameters is given by 

(3.14) 

The correlations between the parameters which are not in the 
same group are not obtained. 



If the separate LSE is compared with the iterative LSE 
(Hageman & Young 1981, Kok 1984, Phillips & Cornelius 
I 986) it is found that the solution given by the separate LSE is 
identical to that given by the Jacobi iteration or Gauss-Seidel 
iteration (Harley I 997). To show the equivalence of the two 
solutions, Eq ( 4. I) may be written as 

(3 . I 5) 

i.e., 
Nx=d (3. 16) 

where 

and 

In this case the solution of Eq (3.1) will be a least squares 
estimation. Dividing x into k groups as in Eq (3 .2) and Eq (3.3), 
N and d become 

[

A{WhA1 

N = AI~~AI 

Af,WhA1 

A{WbAkj 
A1WbAk 

Af,WhAk 

(3 . I 7) 

and 

[
A{Whbj 

d = AI~hb 

Af,Wbb 

(3. I 8) 

If a Jacobi iteration is used, the solution of linear equations will 
be given by 

k 

xfk+I] = (AJWhA;f1(AJWhb- I,AJWbAjxf1) (3.19) 
j=I 
j.ci 

This solution is identical to that given by Eq (3 .6). 

Since matrix (AfWA) is symmetric and positive definite, this 
iterative process will always converge (Phillips & Cornelius 
1986). 

The separate LSE is an iterative process which estimates the 
unknown parameters iteratively and separately. But the 
iterations used here are different from the iterations used in the 
simultaneous LSE which are caused by the non-linear 
functional model. Even with a linear functional model iterations 
are still required by the separate LSE but not by the 
simultaneous method. The number of iterations required for the 
separate LSE is normally more than the simultaneous solution. 
But the total processing effort is small by comparison, 
especially in close range photogrammetry. 

4. SEPARATE ADJUSTMENT OF CRPM 

As discussed in the previous sections the separate least squares 
estimation is a technique of division, which divides the 
unknown parameters into groups. In photogrammetry, the 
unknown parameters are naturally divided into two groups, the 
coordinates of the object points and the camera parameters. The 
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coordinates of the object points are the main requirement, while 
output of the camera parameters may not be necessary but have 
to be included as unknown parameters in the observation 
equations. The term separate adjustment can be used to 
describe the photogrammetric use of the separate LSE method 
(e.g. as the bundle adjustment is commonly used instead of the 
simultaneous LSE and the sequential adjustment instead of the 
sequential LSE). 

4.1 Free network separate adjustment 

A free network adjustment means no constraints are involved in 
the adjustment process. The precision of the estimated results 
will be determined by the image observations only. Constraints 
are not necessary with the separate adjustment, but are normally 
required by the simultaneous bundle adjustment. 

The separate adjustment is based on the same functional model 
used by the bundle adjustment, the collinearity equations. The 
linearized form is expressed as 

(4.1) 

where x 1 denotes the coordinates of the object points and x2 the 
camera parameters. A 1 and A 2 are design matrices and have the 
same formats as described in section 2. The structures of matrix 
A 11 and A 22 are very special as illustrated in Figure 4-1. 

A= 

·~············· ·· ··-:-·······1 ... ···-----..J 
(a) 

(b) (c) 

Figure 4-1 (a) The structure of the design matrix A (A 1 andA2) 

(b) The structure of A 11 

(c) ThestructureofA22 



The principle of the separate adjustment is to treat the unknown 
parameters x 1 and x2 separately. The theory has been given in 
the previous section. In the separate adjustment process, only a 
part (group) of the parameters is adjusted in each step, either x 1 

or x2. The adjustment iterates between the two steps and the 
results will be the same as those given by the simultaneous 
bundle adjustment. 

4.1.1 Adjusting the object points 

When adjusting the object points, the camera parameters are 

considered as constants. So L1x2 = 0. Therefore the observation 
equations for estimating the coordinates of the object points 
become 

(4.2) 

By least squares, the corrections of the 3D coordinates are 
estimated by 

Ax:1 = (Ai'W,A1 )-1 Ai'W1b 

= A1~
1Ai'W1b 

(4.3) 

Since A 11 is a block diagonal matrix, the inverse of A 11 can be 
calculated by inverting a series of 3x3 matrices. The matrices 
A 1 and A 11 can be stored compactly as illustrated in Figure 4-1 
and the products of the matrices are simplified. Each small 
block in A 1 is a 2x3 sub matrix and each small block in A 11 is a 
3x3 submatrix (n is the number of the object points and mis the 
number of the cameras). 

-.·.···· 
............ ·-............ -(2mnx3n 

(3nx3n) 
• 

• I 
• 
iiiii --(2mnx3) 

----+ I 
• 

(3nx3) 

Figure 4-2 The structures of the matrices A 1 and A 11 

Since the object points are independent of each other when the 
camera parameters are treated as constants, they can be adjusted 
separately. So the memory required can be reduced further. For 
the ith object point, the size of Ali is 2mx3 and the size of A 11 ; 

is 3x3. The corrections of the 3D coordinates for the ith object 
point are given by 

(4.4) 
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Matrix A 11 ; can be calculated by a further partitioning according 
to the cameras, i.e. , 

m 

=IAi'ijWl!Aij 
j=I 

m 

=IA11ij 
j = I 

(4.5) 

where A 1;i is a 2x3 matrix and Wiij is a 2x2 matrix, which are 
produced by the ith point on the jth camera. Similarly, 

Ai';W1;h; can also be calculated by partitioning, i.e., 

m 

Ai';Wuh; = LAi'iiW1iibii 
j=I 

(4.6) 

where b;i is a 2x I matrix attributed to the ith point on the jth 
camera. In this case, the maximum size of the matrix required to 
obtain the corrections for the 3D coordinates of the object point 
is 3x3. 

The computational time is directly proportional to the number 
of the object points. The minimum number of the cameras 
required is two. 

4.1.2 Adjusting the cameras 

When adjusting the camera parameters, the coordinates of the 
object points are considered as constants. So Ax:1 = 0. Therefore 
the observation equations for estimating the camera parameters 
become 

(4.7) 

A2= 
_,. 

I I 
(2mnx6) (2mnx6) 

A22= .. ---+ I 
I 

(6mx6m) (6mx6) 

Figure 4-3 The structures of the matrices A 2 and A22 

By least squares, the corrections of the camera parameters are 
estimated by 



= A2iA~W,b 
(4.8) 

where A22 is a block diagonal matrix, the inverse of A 22 is 
calculated by inverting a series of 6x6 matrices. Because of 
their special structures, the matrices A 2 and A22 can be stored 
compactly as illustrated in Figure 4-2 and the products of the 
matrices are simplified. Each small block in A2 is a 2nx6 
submatrix and each small block in A22 is a 6x6 submatrix. 

Since the cameras are independent of each other, when the 
object points are fixed, the parameters of each individual 
camera can be adjusted separately. So the memory required can 
be reduced further. For the jth camera, the size of A 2i is 2nx6 
and the size of A 22i is 6x6. The corrections of the parameters for 
thejth camera are given by 

(4.9) 

Matrix A22i can be calculated by a further partitioning according 
to the object points, i.e., 

n 

= L,A~jiW!i;A2ji 
i = l 

n 

= L,A22ji 
i= l 

( 4.10) 

where A 2ii is a 2x6 matrix and Wiii is a 2x2 matrix, which are 
produced by the ith point on the jth camera. Similarly, 

A~jW,jbj can also be calculated by partitioning, i.e., 

n 

ALWljb_; = I,A~jiw,jibji ( 4.11) 
i=l 

where bii is a 2x 1 matrix attributed to the ith point on the jth 
camera. So the maximum size of the matrix required to obtain 
the corrections of the camera parameters is 6x6. 

The computational time is directly proportional to the number 
of cameras. The minimum number of object points required is 
three. 

4.1.3 Iteration between the two steps 

The separate adjustment is an iterative process which is carried 
out between the two steps described above. After each iteration, 
the 3D coordinates and the camera parameters are refined. The 
iterative process terminates when the stop criterion (e.g. the 
maximum adjustment of the 3D coordinates is less than a given 
value) is met. 

4.2 Datum definition 

A datum must be defined in the simultaneous bundle 
adjustment to remove the column rank defects of the design 
matrix so the unknown parameters can be estimated. However 
the pre-definition of the datum is generally not necessary in the 
separate adjustment. No constraints are required to make the 
unknown parameters estimable when the separate adjustment is 
applied. The datum is held either by the camera exterior 
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parameters when the coordinates of the object points are 
adjusted or by the object points when the camera parameters are 
adjusted. Since both the coordinates of the object points and the 
camera exterior parameters are related to the same coordinate 
system, the datum is actually determined by the starting values 
of the parameters. If the coordinates of the object points are 
adjusted first, the datum will be determined by the starting 
values of the camera parameters, otherwise it will be 
determined by the starting values of the object points. 

Because of the uncertainty of the starting values, the results 
from the separate adjustment are in an arbitrary coordinate 
system if spatial controls are not applied. The results from the 
separate adjustment may not be numerically identical with that 
obtained from the traditional bundle adjustment due to the 
different datum definition. However the shape of the measured 
object is the same from both methods. So their results are 
equivalent. This can be verified by a rigid coordinate 
transformation of the object. 

4.3 Precision estimation 

The covariance (cofactor) matrix is a by-product which is 
normally produced directly by the simultaneous bundle 
adjustment at the same time when the unknown parameters are 
estimated. The square roots of the diagonal elements of the 
covariance matrix give the standard deviations to the 
corresponding parameters which are used to evaluate the 
precision of the measurement system. However, the full 
covariance matrix is not available directly from the separate 
adjustment. It can be calculated when it is required from the 
design matrix and the computation is very expensive in terms of 
time and memory. In many cases the full covariance matrix is 
not necessary for the purpose of the standard deviations of the 
estimated parameters. 

From the separate adjustment, the cofactor matrix of the 
coordinates of the object points is given approximately by 

(4.12) 

For each object point a 3x3 cofactor matrix is given by 

( 4.13) 

and the covariance matrix the 3D coordinates is 

( 4.14) 

The cofactor matrix of the camera parameters is given 
approximately by 

( 4.15) 

For each camera a 6x6 cofactor matrix is given by 

( 4.16) 

and the covariance matrix of the camera parameters is 

( 4.17) 



For each object point the 3x3 covariance matrix ex,; is 

adequate to evaluate the precision of the estimated 3D 
coordinates and the error ellipsoid for each object point. For 
each camera the covariance matrix Cx2 j is also available to 

analyse the precision and the correlations between the camera 
parameters. 

The approximations are caused by the neglect of the variances 
of the camera parameters and the 3D coordinates of the object 
points when calculating Cxu and Cx2j respectively. These 

approximations can be compensated for by including the 
variances into the iterative process, but with more 
computational effort. 

Simulation tests have shown that the approximations are quite 
acceptable for a multi-camera strong network especially in close 
range photogrammetry. The differences caused by the 
approximations were normally Jess than one percent. 

4.4 Number of iterations 

The number of iterations required for the separate adjustment 
process depends on the closeness of the starting values to their 
final results. However, more iterations are generally required 
for the separate adjustment than for the bundle adjustment. 
Normally four iterations are enough to give satisfactory results 
for the bundle adjustment with reasonable starting values, while 
for the separate adjustment ten or a few tens are required. Table 
4-1 shows the maximum adjustment of the coordinates and the 
sum of squares of the residuals (rp = vfWv) after each iteration 
for a close range photogrammetric measurement network with 
I 00 object points and 4 cameras. 

Table 4-1 The adjusted results by the bundle adjustment and 
the separate adjustment 

Bundle adjustment Separate adjustment 
No. of Max. rp = vfWv Max. rp = vfWv 

Iteration adjustment (mm2) adjustment (mm2) 
(mm) (mm) 

I 19.7646 0.80576482 13.8760 1.24956487 
2 0.338 I 0.00375875 1.0679 0.12538475 
3 0.0128 0.00011768 0.2812 0.02086453 
4 0.0001 0.00011342 0.0778 0.00484658 
5 0.0259 0.00103845 
6 0.0125 0.00026584 
7 0.0071 0.00011747 
8 0.0042 0.00011375 
9 0.0025 0.00011347 
JO 0.0014 0.00011344 
11 0.0008 0.00011342 
12 0.0005 0.00011342 
13 0.0003 0.00011342 
14 0.0001 0.00011342 

4.5 Consistency with the bundle solution 

The separate adjustment is based on the same functional model 
as the bundle adjustment. The target functions of the least 
squares from the two methods are also same, which are the 
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sums of the weighted squares of residuals on the image planes. 
Simulation tests and practical tests show that the two methods 
always arrive at the same minimisation. Each individual 
residual for all the observations has also been checked and 
found to be the same for both methods. This means that their 
results are equivalent. The coordinates of their solution may not 
be numerically identical because of different datum definitions, 
but the shapes of the measured object from the two methods are 
always same. This has been verified by the rigid coordinate 
transformation and by including control points in the 
adjustment process. 

4.6 Computational complexity 

Least squares adjustment is an expensive computational 
process. Inverting the coefficient matrix AIWA is the main cost 
in terms of speed and memory. In the simultaneous bundle 
adjustment, AIWA is a symmetric positive definite matrix. Fast 
algorithms (for example, Cholesky) can be used to compute the 
inverse of A1WA. However even then the computational 
complexity is still high. If the size of AIWA is uxu, the time 
required for computing the inverse of AIWA is directly 
proportional to u3 and the memory needed is directly 
proportional to u2. 

Suppose m images are used to measure n object points in a 
close range photogrammetric measurement system. If the 
bundle adjustment with inner constraints on the object points is 
used, the size of the coefficient matrix AIWA is 
(3n+6m)x(3n+6m). So the computational complexity for one 
iteration is ( T = time, M = memory, 8 = bundle adjustment) 

and 
T(B) oc (3n+6m)3 
M(B) oc (3n+6m)2 

( 4.18) 
( 4.19) 

With the separate adjustment, the computational complexity of 
time for one iteration is ( S = separate adjustment) 

T(S) oc m·n (4.20) 

and the maximum memory required is a 6x6 unit no matter how 
many object points and cameras are involved. The time required 
for the separate adjustment can be expressed as 

ts= Cs· m·n·l ( 4.21) 

where m is the number of the cameras, n is the number of the 
object points and I is the number of iterations. Cs is a 
coefficient which may vary according to the computers. It is 
found to be 2 I 5 µs for a SUN Spare Classic and 42 µs for a I 20 
MHz Pentium. 

5. CONCLUSIONS 

Close range photogrammetry has been widely used in the areas 
where 3D coordinates are required. Least squares estimation 
methods have been successfully used to deal with redundant 
measurements from image observations. Conventionally, all the 
unknown parameters are estimated simultaneously in the least 
squares process. This leads to the bundle adjustment in close 
range photogrammetry, which is very expensive in terms of 
computation time and memory requirements. Methods such as 



sequential adjustment, unified bundle adjustment and Block 
Successive Over Relaxation can be use in some cases to 
improve the conventional bundle adjustment. But none of these 
methods is ideal for real-time measurement. Based on the 
theory of the separate least squares estimation, an alternative 
method, named separate adjustment, was developed and 
successfully used in close range photogrammetry to replace the 
conventional bundle adjustment. The number of iterations 
required for the separate adjustment may be more than that for 
the bundle adjustment. However, due to the simple computation 
and the linear computational complexity, the speed of 
convergence of the separate adjustment is much faster than that 
of the bundle adjustment, especially for large data sets from a 
convergent measurement network. The maximum memory 
required by the separate adjustment is limited to a 6x6 ( or 
l 4x 14 when camera interior parameters are considered) unit no 
matter how many cameras and object points are involved. 
Because of the high speed and low memory requirements, the 
separate adjustment can be recommended for use in the real­
time measurement. 
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