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ABSTRACT 

Seven institutes of the University of Stuttgart have applied successfully for the funding of a special research field to set 
up and investigate a multi-sensor measurement robot for industrial close range inspection. The application was preceded 
by the work of a research group which has shown the feasibility of the approach by setting up a measurement cell which 
uses optical sensors and actors to identify and gauge industrial objects located in the measurement volume. This paper 
describes the results that have been obtained so far and were demonstrated during a test run in 1997. It then focuses on 
our latest developments concerning 3D data acquisition, registration, segmentation, model generation from CAD data and 
object recognition. 

1 INTRODUCTION 

In the last 20 years we have seen dramatic changes in pro­
duction methods for industrial goods. The advent of general 
purpose industrial robots made it feasible to have the same 
robot for different tasks or across different products. It be­
came evident that, whereever practical, it is more econom­
ical to have non-specialized production units. This way, the 
cost of change can be kept small after a product has been 
redesigned. Nowadays, the situation is characterized by 
two contrary developments: part complexity increases and 
production lot size decreases. Time-to-market is more im­
portant than ever before. For an example, just take a look at 
the ever-decreasing development cycles in the automobile 
industry. 

Apart from the changes in production, all other steps of the 
product cycle are affected as well. Considering product de­
sign, parts are modeled using feature based and paramet­
ric CAD systems, which allow rapid changes. Part design is 
evaluated at early stages for technical soundness by sim­
ulation methods. Aesthetic quality is judged by the early 
fabrication of models that look almost like the final product, 
which has become feasible using rapid prototyping tech­
niques such as stereolithography and vacuum moulding. 

However, looking at quality assurance, we find that changes 
have not been as dramatic as in other areas. Still, in many 
cases part geometry is checked against the specification by 
individually prepared gauges or specialized measuring sys­
tems. Sometimes, random samples are drawn and mea­
sured by coordinate measurement machines (CMM). Fac­
ing the trend towards a 100% quality control, it is obvious 
that those techniques are too expensive and provide not 
enough flexibility. 

Optical measurement techniques, on the other hand, have 
several properties which make them ideally suited for flexi­
ble gauging and inspection tasks: they are able to measure 
thousands of points in a matter of seconds; they are appli­
cable to a wide range of materials, including deformable ob­
jects; and they can yield very accurate results when used in 
conjunction with proper calibration techniques. Moreover, 
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optical techniques can capture other important object fea­
tures like transparency, color and surface gloss. And, since 
the object is captured anyways, some simple vision tasks 
like reading a barcode on the object or checking for com­
pleteness can be done without the expense of additional 
sensors. 

Despite their advantages, optical measurement techniques 
are not very well accepted in industry (Grun, 1994). One 
reason for this is that traditional measurement techniques, 
like CMM's, are well established whilst optical systems 
with comparable performance have not been commercially 
available until recently. Also, properties like surface rough­
ness today are defined in terms of CMM measurement re­
sults, which necessitates the definition of an "optical equiv­
alent" before market acceptance can be expected. An­
other drawback is that optical techniques are considered 
to be too complicated to operate under factory conditions. 
Furthermore, optical measurements often give accuracies 
which depend on the specific object. In unfavourable cases, 
for example if an object's surface is soiled, measurement 
may become impossible using fixed sensor and lighting po­
sitions. But changing these conditions (e.g. by changing the 
sensor, lighting or object positions) usually requires some 
skilled person familiar with that particular measuring sys­
tem. Therefore, the measurement systems that have made 
their way into industrial applications usually use very sta­
ble features such as retroreflective targets (Beyer, 1995) or 
very well controlled environments (Bosemann and Sinnre­
ich, 1994). 

However, in our opinion, the slow industry acceptance of 
optical 3D measurement techniques is not a vote against 
those techniques but rather reflects the standard learning 
process in industry. Unfortunately, heavy competition and 
outsourcing of product development to supplier companies 
often limit the research horizon to one or two years. On 
the other hand, we see a parallel to vision systems used in 
2D inspection such as number recognition and complete­
ness tests. Due to technical progress in the fields of cam­
era (CCD and CMOS high dynamic range technology, "in­
telligent" cameras with integrated processing) and software 
technology (standardized image processing modules, re-



liable implementations), nowadays vision applications can 
be developed fast (i.e. cheap). Consequently, we can see 
a growing number of manufacturers and installations for 2D 
vision systems. 

(a) (b) (c) 

Figure 2: (a) Laser projector. (b) Multi-parametric camera. 
(c) Stereo camera. 

To develop techniques in the area of 3D inspection and 
measurement, a research group has been funded by the 
German Research Foundation for a period of three years. 
Five institutes of the University of Stuttgart were involved, 
including mechanical and optical engineering, photogram­
metry and computer science. As a result of this work, re­
search goals have now been extended and a special re­
search field was initiated in January, 1998. Now, seven in­
stitutes will continue this long term research for an expected 
duration of nine years. 

2 EXPERIMENTAL CONCEPT VALIDATION 

In order to validate the concepts on 3D inspection devel­
oped by the research group, an experimental measuring 
system has been set up. It will be adapted continuously to 
the needs of the group. However, during a test run in 1997, 
the group was already able to demonstrate that handling 
of such a complex system is feasible. The demonstration 
included the tasks of calibration, object identification and 
localization, and measurement. 

The experimental measurement system currently consists 
of the following sensors (Figs. 1, 2): 

1. a laser projector which is used to obtain height maps 
via the coded light approach 

2. a multi-parametric 3-chip CCD camera which has the 
ability to change parameters like focus, focal length, 
aperture and several electronic parameters, based on 
the interpretation of the image 

3. a stereo camera which employs two standard CCD 
cameras 

4. a wide angle CCD camera used for capturing the entire 
measurement volume. 

The size of the measuring volume is about 1000 x 1000 x 
700mm3 • Lighting is provided by four light source arrays 
with 16 individually controllable lights each. All sensors (ex­
cept the overview camera) were mounted on actor modules 
with 3 (laser projector) or 5 axes (multiparametric camera, 
stereo camera), totalling 13 axes. The actor modules are 
held magnetically at the ceiling of the measurement vol­
ume. An air cushion is formed between the ceiling and 
the modules; they are horizontally moved according to the 
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Sawyer motor principle where the ceiling forms the stator. 
This linear stepping motor design allows for a very precise 
positioning. All axes are controlled by a VME-bus system 
which in turn is connected to a PC that receives position­
ing requests via the parallel virtual machine (PVM) proto­
col. The entire setup consisted of about 1 O computers of 
different platforms (PC, Silicon Graphics, Sun). Data and 
control information is transferred using a standard ethernet 
network and the PVM communication protocol. 

The demonstration incorporated the following steps which 
were performed by the system automatically: 

1. The coarse location of the object using an overview 
camera. With a focal length of about 4 mm, this cam­
era was able to capture almost the entire measure­
ment volume. Images were first corrected for lens 
distortion (Fig. 3(a-b)). Then, they were rectified (us­
ing four point correspondences determined after sys­
tem setup). Using image processing, the object was 
segmented from the background formed by the white 
ground plate of the measurement volume. Based on 
this segmentation and the known field of view, three 
positions and orientations for the stereo camera were 
generated (Fig. 3(c)). 

2. Calibration of the ground plate coordinate system. In 
order to position the stereo camera at those positions, 
the transformation between the machine coordinate 
system and the ground plate coordinate system has 
to be established. To this end, the ground plate con­
tained several testfields. These fields consist of a 
specially striped pattern which allows the fully auto­
matic determination of point numbers and subpixel ac­
curate point location of a large number of points (Fig. 
4). The reference positions of all testfield points were 
determined in advance by bundle calibration. During 
the demonstraion run, the camera moved over four 
testfields (given by approximate machine coordinates) 
and the resulting images were evaluated. Then, the 
transformation between the machine coordinate sys­
tem and the ground plate system was computed. 

3. (More precise) object location. Using the stereo cam­
era, images were taken based on the positions and 
orientations generated from the coarse location step. 
Those images were merged by image processing to 
obtain a single synthetic image (Fig. 5). Again, image 
segmentation was used to separate the object from the 
background (Fig. 6(a)). 

4. Object recognition. This step was done using a 
hypothesize-and-test approach. Based on the scene 
segmentation (Fig. 6(a)) and an object model which 
contained a polygonal description of the object's 
edges, hypotheses were generated for the possible ob­
ject location and orientation (Fig. 6(b)). All hypotheses 
were refined using a iterative closest point algorithm 
similar to the method described in (Besl and McKay, 
1992). In our case, however, a projective transform 
was estimated rather than a 3D transformation. Af­
ter refinement, the solutions were compared against 
the image segmentation and the best solution was se­
lected (Fig. 6(c)). The transformation defined by this 
solution was used to render a synthetic view of the 
scene consisting of the targets on the ground plate 
(which define the world coordinate system) and the ob­
ject model transformed into the world coordinate sys­
tem (Fig. 6(d)). 



Figure 1: View of the experimental measuring platform during a test run. Foreground: several general purpose computers 
used for sensor specific processing, image processing, system and machine control. Background: control cabinet (left} 
and measuring platform (right}. 

(a) (b} (c) 

Figure 3: (a) Original image taken with the overview camera. (b) The same image after correction of lens distortion. 
(c) Again, the same image after rectification. Each image pixel now corresponds directly to a certain metric area on the 
ground plate. The object is segmented and three locations for the stereo camera are generated. 

5. Measurement tasks. After the object had been located, 
dedicated measurements took place at measurement 
locations which were defined in advance relative to the 
object model. One of them was the measurement of a 
drilling hole using the light array to minimize shadows. 
The other was to acquire a dense height model of a 
certain part of the object using the coded light sensor. 
Those tasks will not be described in more detail here. 

3 OBJECT RECOGNITION USING 3D CAD MODELS 

The demonstration described above was an important step 
for us, since it showed that a complex measurement plat­
form can be realized - albeit it was no "industrial strength" 
setup. Also, basic concepts were realized such as a 
coarse-to-fine strategy (overview to detailed image) and 
an object recognition based on a hypothesize-and-test ap­
proach. However, many of the solutions that were used 
rely on 2D information rather than on 3D information. For 
example, the overview image is rectified which might not 
work reliably for objects with larger heights. As another ex­
ample, object recognition was based on the polygonal de­
scription of the object's outline, which, of course, cannot 
be regarded as a general solution. Another problem is that 
since no CAD model was available for the complex metal 
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sheet object used for our experiments, the object model 
was constructed by photogrammetric techniques. Ideally, it 
should be derived automatically from the CAD model. 

3.1 General remarks on object recognition 

The typical approach of object recognition systems is de­
picted in figure 7 (Bhanu and Ho, 1987, Flynn and Jain, 
1991 ). From this, we can determine the following tasks 
which have to be addressed: 

1. The definition of object models which are useful for ob­
ject recognition 

2. Scene segmentation and feature extraction 

3. Matching the model and the scene. 

The importance of the modelling step has often been un­
derrated. In the context of industrial parts, one can use 
specific models, so the problems associated with paramet­
ric or generic models can be avoided. Still, there are many 
possible choices for the features and attributes which can 
be used. 

Using global object properties such as volume, roundness 
or higher order moments, objects can be described by a 



(a) (b) 

Figure 4: (a) View of the measuring volume. The overview camera is in the top right corner. On the ground plate, four 
small and four large testfields can be seen. Between them, the metal sheet object to be measured. (b) Result of automatic 
testfield evaluation. This image shows the rectified image overlaid by the detected target areas and measured target 
centroids. · 

(a) 

(d) 

(c) 

Figure 5: (a)-(c) Single images taken by the stereo camera. (d) Synthetic image obtained by merging images (a)-(c) using 
the known exterior orientations. 

single parameter vector. Matching objects to models then 
reduces to a comparison of parameter vectors using some 
measure for similarity. Although these global approaches 
are used frequently for simple vision tasks, they are gener­
ally not considered to be robust enough, particularly in the 
presence of occlusion and clutter (Grimson, 1990). 

Thus, the approach used by many researchers uses ge­
ometric primitives, like points, contours, surfaces and vol­
umes. Matching is accomplished by establishing a number 
of feature correspondences between an object model and 
the scene. Non-global features and feature properties en­
sure that a match is still possible even when parts of the 
object are occluded or are not present in the scene at all. 

The selection of useful features is another important topic. 
Since the complexity level of features can be chosen, one is 
free to adopt either sensor-specific or model-specific, low­
level or high-level features. Sensor specific and low-level 
features might produce features that are easily detectable 
in the scene; however it is their low information content 
and abundancy which makes subsequent matching steps 
computationally expensive. Model specific and high-level 
features can be derived easily from the model and their 
rareness guarantees a low complexity of the matching al-
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gorithm; on the other hand, their extraction from the scene 
might be hard or impossible. For example, it is so far not 
possible to use a CAD representation directly for matching, 
because automatic extraction of the high-level CAD objects 
from sensor data is not feasible. 

Since it is nevertheless desirable to obtain object models 
automatically and a growing number of industrial parts to­
day is manufactured using CAD/CAM technology, several 
researchers have used CAD data as a basis for object 
models (Bolles and Horaud, 1986, Hansen and Henderson, 
1989, Flynn and Jain, 1991 ). This way, CAD data is not 
used directly but rather an intermediate processing step is 
used to "enrich" CAD data and derive explicit descriptions 
for what is given implicitly in the CAD data. 

3.2 Object recognition by feature matching 

We will now turn to task 3 from the above list. Let us sup­
pose we are given a set of features S = Ji, h, ... , fn de­
scribing the scene and a second set M = Fi, A, .. . FN 
describing the model. The task of the object recognition 
step is to find a global correspondence, i.e. a set of scene­
model pairings (Ji, Fm 1 ), (/2, Fm2 ), • •• where each feature 
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Figure 6: (a) Segmentation of the synthetic image. Note how the segmentation is erroneous due to bright (glossy) areas 
on the metal surface. (b) Four hypotheses are generated for the possible object location and orientation. (c) The best 
hypothesis is selected (which is the correct solution). (d) Synthetic view of the object model transformed into the scene. 
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1, 

jmodeldescri~) 
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segmentation, 
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feature clustering 

Figure 7: Typical object recognition system. The left part of the diagram can be solved in advance (off-line) whereas the 
right part has to be solved each time a new object is to be recognized (on-line). 

in the scene is listed with its corresponding feature from 
the model. Theoretically, there are O(Nn) different pos­
sibilities of such pairings. Of course, only a fraction of 
those constitute valid solutions. In order to limit combinato­
rial explosion, researchers have used different techniques 
like generalized Hough transform, graph matching, maxi­
mal cliques, relaxation labeling and constrained tree search 
(Faugeras, 1993). 

To verify the correctness of a global correspondence we 
can compute one rigid body transformation from all pairings 
and check whether each single scene feature is correctly 
transformed onto its corresponding model feature. To check 
the consistency of a local correspondence we can apply so 
called geometric constraints. Unary constraints are fulfilled 
if a scene-model pairing is locally consistent. Examples are 
line length, circle radius, curvature, c ircumference, bound-
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ing box dimensions, area and volume. Binary constraints 
check whether a pairing is mutually consistent with all other 
pairings established at that point. The angel and the dis­
tance between two patches of the scene compared to the 
same relations of the corresponding features in the model 
can be used as binary constraints (Grimson, 1990). 

In our first experiments, we used graph matching, which 
is one popular way used in conjunction with region oriented 
segmentation. The result of the segmentation step is stored 
in a region adjacency graph (RAG), where each vertex rep­
resents one region. Two vertices are connected by an arc 
if the corresponding regions are adjacent. The model in­
formation is stored in the same manner. We now search 
for a projection of the vertices of the one RAG onto the 
other which preserves the topology of the graph, i.e. two 
vertices (not) connected by an arc in the one RAG should 



(not) be connected in the other. In other words, we are look­
ing for a subgraph isomorphism. Of course, since we are 
dealing with sensor data we can not expect to find an ideal 
match of all vertices, therefore we have to allow for some er­
ror correction such as the addition and removal of vertices 
and edges. Vertices as well as edges can carry attributes 
to further reduce the search space by applying geometric 
constraints. However, since only adjacent regions are con­
nected by arcs only they will be considered for the binary 
constraints. Therefore not all of the geometrical informa­
tion available is used. One problem of graph matching is 
the computational cost. Since the problem is NP-complete, 
the time generally grows exponentially with the number of 
vertices and edges. One way to reduce this cost is to par­
tition the set of vertices into distinct subsets, also known 
as labeling. This can drastically reduce the search space 
and thereby save time. We have used graph matching in 
previous studies (Bohm, 1997), but have found it difficult 
to cope with computational cost. Because it is hard to find 
any sensible labeling of the vertices if all features are of the 
same kind (e.g. planes) we sometimes experienced worst 
case behavior. We were only able to match very small sub­
graphs (less than 10 vertices). Furthermore, adjacency is 
not a very stable characteristic in 3D segmentation. Prob­
lems in the alignment process and shortcomings in the seg­
mentation both contribute to this. 

Because of this experience, we decided to follow the con­
strained tree search approach in this work. Considering 
the notation as introduced above, we first start with one 
scene-model feature pair (f;, Fm,). For each possible pair­
ing we find, search goes on to the next level, where a cor­
respondence for the second feature is sought. This leads 
to the matching path (f;, Fm.), (Ii, Fm;). This search pro­
ceeds in a recursive manner. It is well-known as depth-first 
search. Again, the computational cost grows exponentially 
with the number of features. The key for finding a solution 
in a reasonable amount of time is the choice of the con­
straints used to bound the branching in the tree. For each 
scene feature only a subset of model features is selected 
as possible matches using unary constraints. At each stage 
of the search process we check the binary constraints of 
the current pairing with all pairings along the path to the 
root. In our experiments, we found that the circumference 
and the area of a surface patch are not ideal candidates 
for determining local consistency. The circumference of a 
segmented patch in sensor data tends to be much larger 
than that of an CAD model. In contrast, due to holes in the 
sensor data and segmentation, the area tends to be much 
smaller. The attributes (width and height) of the canonical 
bounding box and the maximum distance within a region 
provide excellent means to reduce the number of possible 
pairings. In the experiments conducted so far, we were 
not confronted with cluttered scenes or partial occlusion. 
What we do have are slight deviations of the manufactured 
part from the CAD model. Therefore, we can not expect 
to find a correspondence for all model features and vice 
versa. This problem is increased by the difficulties in the 
segmentation stage where a great number of small "sliver 
regions" is produced which do not correspond to any model 
feature. To deal with this situation in the context of compu­
tation time, we first sort the scene features by size (area) 
and then prune the set of features to the size of the set of 
model features. During the search, we allow the skipping 
of features, i.e. if no correspondence can be found for a 
certain scene feature we remove this feature for the current 
matching path and continue with the next. 
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4 EXPERIMENTAL RESULTS 

We found it surprisingly difficult to get hold of a CAD 
data set of an existing part for which we also have the 
real, manufactured object. Thus, we decided to construct 
and build an object ourselves. We used the CAD system 
Pro/ENGINEER to construct a fictitious object "bearing 1" 
with dimensions 75 x 70 x 50mm3 (Fig. 8(a)). The ob­
ject was then manufactured directly from CAD data using 
a rapid prototyping machine from Stratasys, Inc. This ma­
chine builds the object layer by layer, applying in each layer 
a thin stream of ABS material pressed through a nozzle 
(Fig. 9(a)). This technique is called fused deposition mod­
eling; accuracies down to 0.1 mm can be obtained. 

Using an ABW structured light projector with 320 lines 
(Stahs and Wahl, 1990), 13 range images of the manufac­
tured part were taken (Fig. 9(b)). The images were aligned 
(Fig. 9{c)) and merged using the POLYWORKS package 
from lnnovMetric Software Inc. (Bergevin et al., 1996, 
Soucy, 1997). 

As the common domain for model and scene representa­
tion, we chose a surface description based on planar faces. 
This description consists of the following information for 
each face: plane equation, normal vector, 3D boundary 
polygon, 3D center of canonical bounding rectangle, trans­
formation into 2D, 2D boundary polygon, 2D bounding rect­
angle, area, circumference, maximum distance in region, 
and bounding box width and height. From the CAD system, 
triangulated surfaces are exported with triangles grouped 
to faces, which means that no segmentation information is 
lost. The triangles are then merged into entire faces and 
the above features are computed. On the scene side, the 
merged model is segmented into planar regions by a region 
growing algorithm which operates on triangulated surfaces 
(Fig. 10). The segmentation algorithm utilizes the triangle's 
normal vector and the distance of the triangle vertices to 
the estimated plane to determine the homogeneity of the 
planar patch. The plane parameters are estimated using 
principal components analysis. Segmentation time is less 
than two minutes for 34,000 triangles on a standard 200 
MHz Pentium PC. Again, the features for these regions are 
computed. Figure 11 shows examples for corresponding 
faces in the model and the scene and table 1 lists some of 
the attribute values. 

feature m-0 s-0 m-1 s-1 
area 1417 1072 1525 1261 
maxDist 66 64 82 78 
bBox-w 60 60 75 73 
bBox-h 43 43 41 40 
circumference 205 244 300 327 

Table 1: Numerical values for some attributes of the 
two faces shown in figure 11. Abbreviations: m=model, 
s=scene, maxDist=maximum distance in region, bBox-w, 
bBox-h=bounding box width and height. 

Matching is done using constrained tree search. After sev­
eral faces are matched, the "best" (in least square sense) 
rigid body transformation between scene and model is es­
timated using a non-iterative approach described by Sanso 
(Sanso, 1973). As a measure for the quality of the match, 
both the standard deviation of the parameter estimation and 
the deviation of scene points from the object's surface can 
be used (Table 2). Figure 12 shows the superposition of 
scene and model when the transformation computed by the 
matching is applied. 



(a) (b) (c) 

Figure 8: (a) Object "bearing 1" as constructed using the CAD system Pro/ENGINEER. (b) Object "bearing 2" constructed 
with minor changes. (c) Object "bearing 3" with major changes . 

.. 

(a) (b) (c) 

Figure 9: (a) View of the object "bearing 1", manufactured by a rapid prototyping machine. (b) Example of a range (depth) 
image obtained with an ABW structured light projector. The missing part of the object on the left hand side is a typical 
artefact and results from shadowing. (c) 3D view of the alignment of three range images (light gray, dark gray, black). 

Figure 10: Segmented surface description obtained from 
the CAD model (above) and result of segmentation of the 
merged sensor data into planar faces (below). 

We also conducted experiments with different CAD mod­
els. One model is a slight modification of the original object 
"bearing 1 ", while the other is drastically different ("bear-
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Figure 11: Example for two faces as they appear in the 
model (left) and as segmentation result obtained from the 
scene (right). 

ing 2" and "bearing 3", see Fig. 8). The matching also yields 
good results in terms of RMS error for the modified model, 
since only the RMS error of corresponding features is com­
puted. For "bearing 3" we were only able to get a match 
when we set matching thresholds to unreasonably high val­
ues. However, RMS values for this case differ clearly from 
the other two cases (Table 2). 



(a) (b) 

Figure 12: Superposition of model and scene, with applied transformation fro~ the matc~i~g. (a) for object "bearing 1". 
(b) for object "bearing 2". The deviation between the object and the CAD model rs clearly vrsrble. 

match RMS-1 RMS-2 
scene-bearing 1 1.006 1.162 
scene-bearing 2 1.006 1.164 
scene-bearing 3 5.138 6.994 

Table 2: Assessment of matching quality. RMS-1 is the 
RMS difference of the features that were used for matching. 
RMS-2 is the RMS difference for all scene points. 

5 CONCLUSION 

We have reported on the ongoing work on a measurement 
system for inspection and gauging of industrial parts. We 
have shown the results on system integration which were 
demonstrated during a test run in 1997. We also reported 
on recent results regarding model generation from CAD 
data, segmentation and object recognition. 

In the future, we will concentrate on more complex mod­
els involving free-form surfaces, the integration of grayvalue 
and color data, and new matching approaches. 
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