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ABSTRACT 

Quantitative analysis of dynamical processes requires a precise estimation of the optical flow field from image 
sequences. Most articles evaluating the performance of optical flow techniques focus on the initial formulation of 
the minimization problem to solve the ill posed brightness change constraint equation. Performance differences 
are attributed to slight differences in the formulation of the minimization and the numerical solution is taken 
for granted . It can be shown, however, that most differential techniques can be formulated in a generalized way 
and be solved by two major numerical estimation techniques: least squares and total least squares . We will 
conclude that the least squares technique does only vary two of three parameters of the spatiotemporal optical 
flow vector while the latter varies all three parameters which leads to a more precise solution. Total least squares 
estimation of optical flow is equivalent to a tensor representation of the spatiotemporal image structure. In 
addition to the optical flow, measures of certainty and type of motion, quantifying the presence of an aperture 
problem are directly obtained by analyzing the eigenvalues of the so called structure tensor. These measures 
give a unified perspective of common quality measures proposed by various techniques. Another crucial factor 
influencing the accuracy of any differential technique is the choice of appropriate differential kernels. With 
optimized differential filters, errors can be reduced by more than one order of magnitude. 

ZUSAMMENFASSUNG 

Die quantitative Analyse von dynamischen Prozessen erfordert eine priizise Schiitzung des optischen Flusses 
in Bildsequenzen. Die meisten vergleichenden Ubersichtsartikel zu verschiedenen Techniken beschriinken sich 
auf die Formulierung des Minimierungsproblems zur Li:isung der unterbestimmten Kontinuitiitsgleichung des 
optischen Flusses. Genauigkeitsunterschiede der Verfahren werden den leicht unterschiedlichen Formulierungen 
des Minimierungsproblems zugeschrieben und die numerische Li:isung des resultierenden Problems als gegeben 
hingenommen. Es zeigt sich jedoch, daB sich eine verallgemeinerte Formulierung der meisten differentiellen Ver­
fahren finden liiBt, die <lurch zwei grundlegende numerische Tedmiken geli:ist werden kann: 'least squares' und 
'total least squares'. Wiihrend das Standard 'least squares' Verfahren nur zwei Parameter des raum-zeitlichen 
optischen Flusses variiert, werden beim 'total least squares' Verfahren alle drei Komponenten variiert, was zu 
einem priiziseren Ergebnis fiihrt . Eine 'total least squares' Schiitzung des optischen Flusses ist equivalent zu 
einer Tensor-Repriisentation der raum-zeitlichen Grauwertstruktur. Zusiitzlich zum optischen FluB liefert eine 
Analyse der Eigenwerte des sogenannten Strukturtensors MaBe der Zuverliissigkeit und der Ausgepriigtheit des 
Blendenproblems. Diese MaBe vereinheitlichen gebriiuchliche QualitiitsmaBe anderer Techniken. Ein weiterer 
kritischer Faktor, im Hinblick auf die Genauigkeit des Verfahrens, ist die Wahl geeigneter Ableitungsfilter. 
Durch optimierte Ableitungsfilter liiBt sich ein e Reduktion der Fehler in der Bewegungsschiitzung um mehr als 
eine Gri:iBenordnung erreichen. 
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1. INTRODUCTION 

Motion analysis remains one of the fundamental prob­
lems in image sequence processing. The only acces­
sible motion parameter from image sequences is the 
optical flow, an approximation of the two-dimensional 
motion field on the image sensor. The optical flow 
field can be used as input for a variety of subsequent 
processing steps including motion detection, motion 
compensation, three-dimensional surface reconstruc­
tion, autonomous navigation and the analysis of dy­
namical processes in scientific applications. As only 
the apparent motion in the sequence can be extracted, 
further a priori assumptions on the constancy of im­
age brightness and the relation between relative three 
dimensional scene motion and the projection onto the 
two-dimensional image sensor are necessary for quan­
titative scene analysis. 
In contrast to the more qualitative requirements of 
standard computer vision applications, such as motion 
detection or collision avoidance, quantitative measure­
ment tasks require precise and dense optical flow fields 
in order to reduce the propagation of errors in subse­
quent processing steps. In addition to the optical flow 
field, measures of confidence have to be provided to 
discard erroneous data points and quantify measure­
ment precision. 
Quantitative image sequence analysis requires the en­
tirety of quantitative visualization, geometric and ra­
diometric calibration and a quantitative error analy­
sis of the entire chain of image processing algorithms. 
The final results are only as precise as the least precise 
part of the system. Quantitative visualization of ob­
ject properties is up to the special requirements of ap­
plications and cannot be discussed in general. With­
out doubt, camera calibration is an important step 
towards quantitative image analysis and has been ex­
tensively investigated by the photogrammetric society. 
This article will focus on the algorithmic aspects of 
low-level motion estimation in terms of performance 
and error sensitivity of individual parts, given a cal­
ibrated image, eventually corrupted by sensor noise. 
It will be shown how a combination of radiometric 
uniformity correction, filter optimization and careful 
choice of numerical estimation t echniques can signif­
icantly improve the overall precision of low-level mo­
tion estimation. Starting with the brightness change 
constraint equation (Section 2), we will show how a lo­
cal estimate on optical flow can be obtained by using a 
weighted standard least squares estimation proposed 
by Lucas and Kanade (1981) (Section 3). This tech­
nique can be improved by using total least squares 
estimation instead of standard least squares. This 
directly leads to a tensor representation of the spa­
tiotemporal brightness distribution, such as the struc­
ture tensor technique (Haussecker and Jiihne, 1997, 
Haussecker, 1998) (Section4). In this section we will 
further detail how a fast and efficient implementation 
can be achieved by using standard image processing 
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Figure 1: Illustration of the constraint line defined by (1). 
The normal optical flow vector, f1., is pointing perpendic­
ular to the line and parallel to the local gradient v'g(x , t) . 

operators, which is an important requirement for dy­
namic analysis. Coherency and type measures are ob­
tained from the solution of the structure tensor tech­
nique in a straightforward way. They allow to quan­
tify the confidence of the optical flow estimation as 
well as the presence of an aperture problem. It will 
be shown how they compare to other measures , pre­
viously proposed by Barron et al. (1994) and Simon­
celli (1993) . In Sections 5 and 6 we will show how 
optimization of derivative filters and uniformity cor­
rection significantly improve the performance of any 
differential technique. We will conclude with results 
from both test patterns and application examples in 
Section 7 and a final discussion in Section 8. 

2. OPTICAL FLOW CONSTRAINT 

A common assumption on optical flow is that the im­
age brightness g(x, t) at a point x = [x, yf at time t 
should be conserved. Thus, the tot al temporal deriva­
tive, dg/ dt, needs to equal zero, which directly yields 
the well known brightness change constraint equation, 
BCCE (Horn and Schunk, 1981) : 

dg T 
dt = Cv'xg) r + gt= o, (1) 

where f = [Ji , h]T is the optical flow, V xg defines 
the spatial gradient, and 9t denotes the partial t ime 
derivative fJg / at. 
This relation poses a single local constraint on the 
optical flow at a certain point in the image. It is, 
however, ill posed as (1) constitutes only one equa­
tion of two unknowns. This problem is commonly 
referred to as the aperture pmblem of motion estima­
tion, illustrated in Figure l. All vectors along the 
constraint line defined by ( 1) are likely to be the real 
optical flow f . Without further assumptions only the 
flow f_1_ perpendicular to the constraint line can be 
estimated. In order to solve this problem a variety 
of approaches have been proposed that try to min­
imize an objective function pooling constraints over 
a small finite area. An excellent overview of opt ical 
flow techniques is given by Barron et al. (1994). They 



conclude that differential techniques, such as the local 
weighted least squares method proposed by Lucas and 
Kanade (1981) perform best in terms of efficiency and 
accuracy. Phase-based methods (Fleet and Jepson, 
1990) show slightly better accuracy but are less effi­
cient in implementation and lack a single useful con­
fidence measure. Bainbridge-Smith and Lane (1997) 
come to the same conclusion comparing the perfor­
mance of differential methods. Performing analytical 
studies of various motion estimation techniques, Jahne 
(1993, 1997) showed that the three-dimensional struc­
ture tensor technique yields best results with respect 
to systematic errors and noise sensitivity. This could 
be verified by Jahne et al. (1998), analyzing a cal­
ibrated image sequence with ground truth data pro­
vided by Otte and Nagel (1994). 

3. LOCAL WEIGHTED LEAST SQUARES 

Lucas and Kanade (1981) propose a local weighted 
least squares estimate of the constraint (1) on indi­
vidual pixels within a local spatial neighborhood U 
by minimizing: 

00 J h(x - x') (C'vxgf f + 9t/ dx' (2) 
-oo 

with a weighting function h(x). In practical imple­
mentations the weighting is realized by a Gaussian 
smoothing kernel. Minimizing (2) with respect to the 
two components Ji and h of the optical flow f yields 
the standard least squares solution 

[ (gx 9x) 
(9x 9y) ] [ j~ ] = - [ ~:: ::~ ] ' _________ ....__,,__, ~ 

A f b 

with the abbreviation 

00 

(a)= J h(x - x') adx' . 

-oo 

(3) 

(4) 

The solution of (3) is given by f = A-lb, provided 
the inverse of A exists. If all gradient vectors within 
U are pointing into the same direction, A gets singu­
lar and the aperture problem remains within the local 
neighborhood . These cases can be identified by ana­
lyzing the eigenvalues of the symmetric matrix A prior 
to inversion (Barron et al., 1994, Simoncelli, 1993) 
and only the normal flow fj_ is computed from (1) by 
fj_ = -gt/JJ'vgJJ. It is, however, a critical issue to 
obtain information about the presence of an aperture 
problem from the numerical instability of the solution. 
Thresholds on the eigenvalues proposed by Barron et 
al. (1994) and Simoncelli (1993) have to be adapted 
to the image content which prevents a versatile imple­
mentation. 
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Figure 2: Illustration of the spatiotemporal brightness 
distribution of moving patterns. The sequence shows in­
frared images of the ocean surface moving mainly in posi­
tive x-direction. 

Jahne (1997) shows that an extension of the integra­
tion in (2) into the temporal domain yields a bet­
ter local regularization if the optical flow is modeled 
constant within the spatiotemporal neighborhood U. 
This does, however, not change the minimization pro­
cedure and results in the same linear equation system 
(3) with spatiotemporal integration of the individual 
components (a). 
From a probabilistic point of view, the minimization of 
(2) corresponds to a maximum likelihood estimation 
of the optical flow, given Gaussian distributed errors 
at individual pixels. Black and Anandan (1996) show 
that the Gaussian assumption does not hold for mo­
tion discontinuities and transparent motions. By re­
placing the least squares estimation with robust statis­
tics they come up with an iterative estimation of mul­
tiple motions. 

4. STRUCTURE TENSOR APPROACH 

The displacement of gray value structures within con­
secutive images of a sequence yields inclined structures 
with respect to the temporal axis of spatiotemporal 
images (Figure 2). 
The orientation of iso-grey-value lines within a 
tree-dimensional spatiotemporal neighborhood U can 
mathematically be formulated as the direction r = 
[ri, r 2 , r 3 f being as much perpendicular to all grey 
value gradients V g in U as possible. The direction r 
and the optical flow f are related by f = r 31 [ri, r 2f. 
With the definition of r, (1) can be formulated as: 

where V xt9 denotes the spatiotemporal gradient vec­
tor 'vxt9 = [9x,9y,9tV- It is important to note that 
(1) and (5) are mathematically equivalent formula­
tions and no constraint is added by extending the 
formulation of the brightness change constraint into 
three-dimensional space. 



The direction r can be found by minimizing 

00 

r32 J h(x - x') (C'vxtgf r) 2 dx', (6) 
-oo 

which is mathematically equivalent to (2). Solving the 
quadratic terms, (6) can be written as matrix equation 

rT Jr -. minimum, 

with the three-dimensional structure tensor 

[ 
(gx 9x) 

J = (gx 9y) 
(gx 9t) 

(gx gy) 
(gy gy) 
(gy 9t) 

The components of J are given by 

00 

(gx 9t) l 
(gy 9t) · 
(gt 9t) 

Jpq = (gp gq) = J h(x - x') gpgq dx'. 

-oo 

(7) 

(8) 

(9) 

Again, the spatial integration can be extended into the 
time domain for local regularization without changing 
the results of the following minimization procedure 
( J iihne, 1997). 
In order to avoid the trivial solution of (7) the con­
straint llrll2 = 1 has to be imposed on r. Solving (7) 
by the method of Lagrangian multiplicators gives the 
solution that the minimum of (7) is reached, if the 
vector r is given by the eigenvector of the tensor J to 
the minimum eigenvalue. This method is known as 
orthogonal 1 2 approximation and can be shown to be 
mathematically equivalent to total least squares esti­
mation. 
It is important to note that the difference between the 
least squares method of Lucas and Kanade (1981) and 
the structure tensor formulation is neither imposed by 
the formulation of the minimization nor by the exten­
sion into the temporal domain but rather by the min­
imization procedure. While least squares estimation 
only varies the objective function with respect to the 
two components off, the total least squares technique 
varies all three components of the spatiotemporal vec­
tor r under the constraint llrll2 = l. 

4.1 Computing the structure tensor 

The implementation of the tensor components can be 
carried out very efficiently by standard image process­
ing operators. Identifying the convolution in (9) with 
a three-dimensional spatiotemporal smoothing of the 
product of partial derivatives, each component of the 
structure tensor can be computed as 

(10) 

with the 3D spatio-temporal smoothing operator B 
and the differential operator Dp in the direction of the 
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coordinate Xp. Using a binomial operator the smooth­
ing can be performed very. A more critical point is 
the choice of an appropriate differential operator. It 
can be shown that derivative filters optimized for a 
minimum deviation from the correct direction of the 
gradient vector reduce the error by more than an or­
der of magnitude as compared to standard differential 
operators (Section 5). 

4.2 Eigenvalue analysis 

A standard procedure in numerical eigenvalue analysis 
is the Jacobi transformation (Press et al., 1992). The 
Jacobi method is absolutely foolproof for all real sym­
metric matrices. This is very advantageous, because 
it does not depend on the image content. In order 
to speed up the whole eigenvalue analysis, a major 
decrease in computation time can be achieved by pre­
selecting interesting image regions by thresholding the 
trace of the matrix, trace (J) = Jxx + Jyy + Jtt, for 
each point before starting the Jacobi transformation. 

4.3 Computing displacements 

Different classes of 3D spatio-temporal structures can 
be identified without explicitly solving the eigenvalue 
problem. The structure tensor contains the entire 
information on the first-order structure of the grey 
value function in a local neighborhood. By analyzing 
the rank of the matrix four different cases of spatio­
temporal structures can be distinguished (Table 1). 
The two extreme cases of rank (J) = 0 and rank (J) = 
3 represent no apparent linear motion. 
In the case of rank ( J) = 1 an already oriented im­
age structure moves with a constant velocity. This 
is the well known aperture problem in optical flow 
computation. Only one of the three eigenvectors 
has an eigenvalue larger than zero. This eigenvec­
tor ez = ( e1 ,x, e1,y, e1,t) points normal to the plane 
of constant grey value in 3D space and can be used to 
compute the normal optical flow f J_: 

h= (11) 

For rank (J) = 2 an isotropic grey value structure 
moves with a constant velocity. No aperture problem 
is present in the spatio-temporal neighborhood. The 
orientation of the 3D iso-grey-value line yields the two 
components Ji and h of the optical flow. The eigen­
vector e8 = ( es,x, es,y, es,t ) to the smallest eigenvalue 
pointing into the direction of the line corresponds to 
the initially defined vector r, and f can be computed 
as: 

(12) 
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Figure 3: Illustration of the coherency and type measures 
for a moving grid on a linear positioning table. 

4.4 Coherency and type measures 

Although the rank of the structure tensor proves to 
contain all information necessary to distinguish differ­
ent types of motion it can not be used for practical 
implementations because it does not constitute a nor­
malized measure of certainty. Additionally it is only 
defined for integer values 0, ... , 3. In real sequences 
usually mixtures between the types of motion occur. 
In this section we will introduce two normalized mea­
sures to quantify the confidence and type of motion 
which are suited for practical implementations. In 
contrast to the rank they yield multivalued numbers 
between 0.0 and 1.0. 
Coherency ( coh) : In order to quantify the overall 
certainty of displacement estimation we define the nor­
malized coherency measure 

coh = ( Al - As. ) 2 

At+ As 
(13) 

with At and As denoting the largest and smallest eigen­
value of the structure tensor, respectively. Table 1 
shows the values of coh for different cases of motion. 
For both types of apparent motion, i. e. aperture prob­
lem and no aperture problem, coh is equal one. If 
no displacement can be computed it is identical zero. 
With increasing noise level coh approaches zero for all 
different types of motion. 
Edge measure (edge): While the coherency coh 
gives a normalized estimate for the certainty of the 
computation it does not allow to identify areas of ap­
parent aperture problem. In order to quantify the 
presence of an aperture problem we define the edge 
measure 

At -Am ( )
2 

edge= At+ Am (14) 

where Am denotes the medium eigenvalue of the struc­
ture tensor. Table 1 shows the values of edge for dif­
ferent cases of motion. Only if an aperture problem is 
present edge reaches its maximum value of coh. For all 
other types of motion it is equal zero. Note that the 
edge measure is normalized between 0.0 and coh since 
it is not possible to detect the presence of an aperture 
problem more reliably than the overall certainty. 

motion type coh edge rank 
homogeneous brightness 0 0 0 
aperture problem 1 1 1 
no aperture problem 1 0 2 
no coherent motion 0 0 3 

Table 1: Rank, coherency and edge measure for dif­
ferent types of motion. 

Corner measure (corner): From the two indepen­
dent measures coh, and edge, a corner measure can 
be computed by corner = coh - edge. It constitutes 
the counterpart of edge, quantifying the absence of 
an aperture problem, i. e. selecting points where both 
components Ji and h of the optical flow f can be 
reliably computed. 
Figure 3 illustrates the coherency and type measures 
for a moving calibration target on a linear positioning 
table. The coherency measure shows the entire grid 
without regions of homogeneous brightness. These ar­
eas split up into the edges and crossing points of the 
grid for the edge and corner measure, respectively. 
The importance of coherency and type measures for 
quantitative analysis are illustrated in Figure 4. The 
optical flow field of a moving ring pattern shows ran­
dom flow vectors in homogeneous regions with addi­
tive noise. With the coherency measure these regions 
can be identified. Further knowledge about the pres­
ence of an aperture problem allows to reconstruct the 
real flow field using the local regularization technique 
proposed in (Haussecker and Jiihne, 1997). 
Confidence measures for the local least squares ap­
proach have also been defined by Barron et al. (1994) 
and Simoncelli (1993). Both try to quantify the singu­
larity of the matrix A in ( 3) by analyzing the eigenval­
ues of A . While Simoncelli (1993) proposes to thresh­
old the sum of eigenvalues, Barron et al. (1994) ar­
gue that the smallest eigenvalue proved to be more 
reliable in practical implementations. The matrix A 
constitutes the structure tensor of a two-dimensional 
subspace of the spatiotemporal neighborhood and rep­
resents local orientation in two-dimensional images 
(Bigiin and Granlund, 1987, Knutsson, 1998). The 
two-dimensional equivalent to the three-dimensional 
coherency measure is the difference of the two eigen­
values, normalized to the sum of the eigenvalues 
(Jiihne, 1993, 1997). Rather than thresholding parts 
of the information, this measure quantifies the con-
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Figure 4: Illustration of the importance of confidence 
and type measures for a ring pattern moving with 
(1,1) pixels/frame towards the upper left corner (with ad­
ditive noise O'n = 1). Upper row: One frame of the mov­
ing ring pattern (left), optical flow computed for any image 
point without confidence and type measures (right). Lower 
row: Optical flow masked by the confidence measure (left), 
local regularization incorporating confidence and knowl­
edge about the presence of an aperture problem (right). 

fidence of local orientation and therefore the pres­
ence of an aperture problem. It also approaches zero 
for homogeneous brightness. The three-dimensional 
coherency constitutes a generalization of the two­
dimensional case. It also includes information on the 
coherency of motion and identifies isotropic noise pat­
terns. 

5. FILTER OPTIMIZATION 

A crucial factor in optical flow computation is the dis­
cretization of the partial derivative operators. Figure 
5 illustrates this basic fact with a simple numerical 
study. With the standard symmetric difference filter 
1 /2 [1 0 -1], large deviations from the correct displace­
ments of more than 0.1 pixels/frame occur. With an 
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Figure 5: Systematic error in the velocity estimate as a 
function of the interframe displacement of a moving ran­
dom pattern. Derivatives computed with the symmetric 
difference filter 0.5 [1 0 - 1] (left) and an optimized Sobel 
filter (right) given by (Scharr et al., 1997). 
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Figure 6: Demonstration of the influence of spatial sensi­
tivity variations of the CCD sensor on motion estimation: 
Top row: One image of the elephant sequence (left), con­
trast enhanced relative responsivity (right). Middle row: 
Velocity component in x direction (left), smallest eigen­
value of the structure tensor (right). Bottom row: Velocity 
component in x direction for the corrected sequence (left), 
smallest eigenvalue of the structure tensor for a sequence 
corrected for the spatial responsivity changes (right). 

optimized 3x3 Sobel-type filter (Scharr et al., 1997), 
the error is well below 0.005 pixels/frame. 
Analyzing the impact of noise on differential least­
squares techniques, Bainbridge-Smith and Lane 
(1997) report the same results for the errors as in the 
left image in Figure 5. This error can be identified 
as discretization error of the differential operators. In 
order to reduce these errors they use a combination of 
smoothing and derivative kernels for local regulariza­
tion in one dimension. 
We used a new class of regularized separable first­
order derivative filters with a transfer function 

(15) 

for a filter in the direction p. A similar approach has 
been used by (Simoncelli, 1993) . While Simoncelli 
(1993) applied a linear error functional, a nonlinear 
one has been used by (Scharr et al., 1997) minimizing 
the angle error of the gradient vector. 

6. SENSOR UNIFORMITY CORRECTION 

Errors of motion analysis with real sensor data are sig­
nificantly higher than those obtained with computer 
generated sequences. The higher errors are related to 
imperfections of the CCD sensor/camera system. A 
radiometric calibration study showed that standard 
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Figure 7: Systematic error in the velocity estimate of a 
moving random pattern using the least squares differential 
method (left) of (Lucas and Kanade, 1981) and the total 
least squares (tensor method) of (Haussecker and Jahne, 
1997). Signal to noise ratio is one. 

CCD cameras show significant large-scale and small­
scale spatial variations in the order of about 1 %, which 
cannot be neglected and may show quite different spa­
tial variations for different cameras. Since these pat­
terns are static, they are superimposed to the real mo­
tion in the sequence. In parts of the sequence where 
the local contrast is low, the static patterns dominate 
the structure and thus a lower or even zero velocity is 
measured. 
The influence of such static patterns can nicely be 
demonstrated for moving objects with low contrast 
such as the slightly textured elephant in 6. Dirt on 
the glass window of the CCD sensor causes spatial 
variations in the responsivity of the sensor. At the 
edges of the speckles, the smallest eigenvalue of the 
structure tensor shows high values indicating motion 
discontinuities. The motion field indeed shows drops 
at the positions of the speckles. If a simple two-point 
calibration is performed using the measured respon­
sivity and an image with a dark pattern, the influence 
of the speckles is no longer visible both in the smallest 
eigenvalues and the motion field. 

7. RESULTS 

Figure 7 shows a comparison of the least squares ap­
proach of Lucas and Kanade (1981) and the total least 
squares ( structure tensor) technique. \Vhile the least 
squares technique shows a bias for increasing veloci­
ties, the total least squares technique does not show a 
bias and performs better for all velocities within the 
range of the temporal sampling theorem. 
In order to prove the theoretical error limits of the 
technique in real sequences, accuracy tests have been 
performed. Defining the local noise portion (LNP) 
as the ratio between the noise variance u;, and the 
local variance vara(9n) = B(gn) 2 -(Bgn )2 of the noisy 
image 9n 

2 ~2 
Li.VP= Un vn (16) 

vara(gn) - vara(g) + u~' 

we get a normalized measure quantifying the presence 
of noise ·within a local neighborhood. A value of Ll\'P 
= 0.5 means that the noise variance lies in the same 
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Figure 8: Subpixel accuracy of the tensor method. A si­
nusoidal pattern with a wavelength of 20 pixels has been 
shifted from 0.01 pixels/frame up to the theoretical limit 
of lOpixels/frame given by the temporal sampling theo­
rem. The contribution of noise to the signal within the 
spatiotemporal region of support of the filters is quantified 
by the local noise portion, LNP. The dashed lines indicate 
relative errors of ±5 %. 

order as the local variance var6 (g) of the noise-free 
pattern g. 

Figure 8 shows the results of the averaged optical flow 
for a sinusoidal test pattern with additive noise of dif­
ferent LNPs. The result exhibits the high subpixel 
accuracy of the structure tensor technique. The struc­
ture tensor technique was applied to a variety of appli­
cation examples from oceanography (IR ocean surface 
images), botany (growth processes) and traffic scenes. 
It proved to work well without any adaption to the 
image content. Figure 9 shows examples of such se­
quences. As a nice detail the pedestrian in figure 9 is 
about to lift his right leg which is clearly visible in the 
optical flow field. 

8. CONCLUSIONS 

The structure tensor technique allows to compute 
dense displacement vector fields from extended im­
age sequences with high subpixel accuracy. Addition­
ally, it yields a measure of certainty as well as a mea­
sure for the type of motion quantifying the presence of 
an aperture problem. The structure tensor technique 
proved to work well for a variety of applications. The 
measures of coherency and aperture problem allow 
the technique to automatically adapt to local spatio­
temporal image structures without additional param­
eters. 
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Figure 9: Application examples. From top to bottom: IR 
image of a pedestrian, Hamburg Taxi Scene, IR image of 
the ocean surface, Growing leaf of a castor-oil plant. The 
intensity of the arrows quantifies the coherency coh. A 
black arrow symbolizes high certainty. 
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