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ABSTRACT 

This paper presents a study on real-time photogrammetry for token tracking in three dimensions. 

We have a sequence of stereo frames from which we will compute,using the algorithms of stereo 

vision, a sequence of three-dimensional frames. To be concrete, these three-dimensional frames 

will consist of sets of three-dimensional line segments. By tracking we mean the ability to follow 

the motion of a given segment and to estimate its kinenatecs, Since much more information is 

available than in the two-dimensional, we may expect to be able to solve much more difficult 

problems, Indeed ,we will directly estimate the three-dimensional kinematics of the line segments 

and will be able to cope with the problem of multiple-boject motion. We choose the state and 

determine the plant and the measurement equations, 

l. A BIT OF KINEMATICS 

We know from elementery kinematics that the 

motions of the points of a moving rigid body 

are conveniently described by a six-dimensio­

nal entity called a screw, which is defind at 

every point p of space and noted S(P)= 

UJ, V (P )). Q is called the angular velocity, 

and V (P) is the velocity of the point of the 

solid in motion coinciding with P. The 

kinematic screw at one point entirely describes 

the motion of the solid since, at every point 

M , the velocity of the point of the solid 

coinciding with M is given by 

V(M) = V(P) + [J /\ PM (l) 
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Letting P be at the origin O of our coordinate 

system, we write V (P) =V ,OM=M, V (M) = 
M and rewrite equation (1) as 

M=V-fJ/\M (2) 

If we assume that V and [J are known 

functions of time, then equation (2) appears as 

a first-order linear differential equation in M. 

No closed form solution, in general, exists for 

this equation ,except when [J is not a function 

of time ( motion with constant angular 

velocity), in which case the solution is given 

by 

M(t) = eC•-•ol"i:iAf(to) + r· eC•-•)i}V(s)ds (3) 
J 'o 

where [J is the antisymmetric matrix 

representing the cross-product with Q(Qx ={J 



/\ x ). eCt--to)l:i and e<t-s)l:i are rotation matrices. 

We can obtain slightly more detailed 

results that are useful in practice by making 

assumptions about the functional form of 

V (s), For example, we may assume that it is a 

polynomial in s: . 
V (s) = ~V,i 

i=O 

Using Rodrigues' equation we can write 

(t.-,)l:i_ I+ sin((t - s) II Q II),=, 
e - II D II ·~ 

+ 1 - cos c Ct - s) 11 D 11 ) g2 
II D 11 2 

From this it is clear that ,in order to compute 

the integral J' e<t-,)l:iV (s) ds, which appears in 
'o 

equation(3) ,we need to compute the integrals 

L 1 = f' s'sin((t - s) II Q II )ds 
'o 

M1 = f' s'cos((t - s) II Q II )ds 
'o 

It is simple to show that can be done in closed 

form, For the. special cases n = 0, l (constant 

velocity and constant acceleration) we have 

the following result: 

proposition 

when V (s) =V +sA , the trajectory of the point 

M is given by 

M(t) = U 0M(t0 ) - U 1V + U 2A (4) 

with the following values for the matrices U,, i 

=0,1,2 

+ sin((t-to) II [J II)-+ 1-cos((t-to) II Q II)= 
u O = 1 11 [J 11 [J II [J II 2 [.) 

U -/( _ )-1-cos((t-to)ll[JII),,, 
1 - t to - II [J II 2 .., 

+ (/. - to) II [J II - sin ( (t - to) II [J II ) I'.j2 

II [J II a 
(t - to) 2 + (t - to) II [J II - sin((t - to) II [J II)_ 

u 2 = 1 --2- 11 [J 11 a [J 

+ ((t - to) II [J II )2 - 2(1 - cos((t - to) II [J II ))I'.j2 

211 [J 11 4 

2. CHOOSING A REPRESENTATION OF 
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THREE-DIMENSIONAL 

LINE SEGMENTS 

we know a representation of 3-D lines by four 

numbers (a ,b, p and q) such that the equations 

of the line are (x = a z + p , y = bz - q) in the 

first map ff>i, with the two other maps 

obtained by exchanging the roles played by x , 

y , and z. In f/>i lines perpendicular to the z-axis 

cannot be represented, while in fi>l, and ff>o it is 

the lines perpendicular to the x -and y-axis , 

respectively, that cannot be represented. From 

this representation, it is not too difficult to 

compute the weight (covariance) matrix of the 

endpoints M 1 and M 2 of a line segment ,a 6 X 6 

matrix, 

One possible representation of a line 

segment is therefore the six-dimensional 

vector [ Mf, M[ JT. Just as in the two­

dimensional case, this assumes that segments 

are oriented, If they are .not, we can use the 

representation of direction, midpoint and 

length which is the vector [a ,b ,MT ,lJT ,where 

M is the representation of the midpoint and l 

is the length of the segment. Of course, weight 

(covariance )matrices for these representations 

can be computed up to first order. In what 

follows, we will denote by r the representation 

vector. and we will let C be the corresponding 

covariance matrix~ 

3. THE PLANT AND MEASUREMENT 

EQUATIONS 

Contrary to the two-dimensional case, the 

state of the segment is directly related to the 

kinematic screw of the solid to which we 

assume it is attached, we define it to be the 

vector 

Q 

V 

a = V (l) 

V (n) 

(5) 



which is a 3 (n - 2 )-dimensional vector in 

which V represents the ith order time 

derivative of V. In practice, n = 1 or 0. The 

plant equation is then 

a, = lli,,,_1a,_1 - W, 

This assumes that the angular velocity is 

constant. We could use more elaborate 

models, but we would lose the closed-form 

expressions of proposition 

Matrix lli,,,-1, in the case where n = 1, is 

given by 

lli,,,-1 

A measurement is the identification of a 

segment 8 1 at time t,_ 1 with a segment 8 2 at 

time t,. Assuming that 8 1 is represented by r 1 

and 8 2 by r 2 , the measurement vector is x = 

(rr21) and the measurement equation is 

i ;;:,, 1 

where D ,,,-I represents the effect on the 

representation vector r 1 of the rigid motion 

between t,_1 and t, and is a function of the state 

a, which we will now describe. 

3. 1 Transforming the direction 

Let u 1 be the dircetion of 8 1 and suppose, for 

simplicity, but without loss of generality, that 

it can be represented in the map CJ'-! in which u 2 , 

the direction of 8 2 , can also be represented. 

Accorking to our constant angular velocity 

model, the direction of 8 1 at time t, will be 

U 0u 1 ,and we must have 

i=l,2,3 (6) 

More precisely ,suppose that i = 1. If (a 1 ,b 1) is 

the representation of the direction of 8 1 and 

(a 2 ,b 2 ) is that for 8 2 ,we have 

b2 - 0 

1 

(7) 

858 

which expresses the fact that the directions 

are the same. Nate that this is equivalent to 

two scalar equations. This is the first piece of 

the measurement equation, which concerns the 

directions. 

3. 2 Transforming the midpoint 

Let M 1 the midpoint of 8 1, In the constant 

acceleration model ,at time t1 it becomes U 0M 1 

+u 1V +u 2A ,and we must have 

U 0M 1 + U IV + U 2A = M 2 (8) 

This is the second piece of the measurement 

equation, which concerns the midpoints. 

3. 3 Transforming the length 

The length of the segment is invariant, and 

therefore the measurement equation is 

(9) 

4. RUNNING THE PROCESS 

We are now ready to put all this together in 

order to track a line segment in a sequence of 

three-dimensional frames. The situation is 

some what similar to that of section 3 except 

for the fact the measurement equations (6)­

(9) are nonlinear. 

4. 1 Initialization 

At time O, let us consider a segment 8 

represented by the vector r 0 with covariance 

matrix 0 0• Let b0 be our initial estimate of its 

state, and let Mo be its weight matrix, If we 

have no a priori information. we assume that 

b0 = 0, i, e, , we consider that 8 is not moving 

and that M O diagonal. If 8, is ith segment at 

time 1 represented by (ri ,OD ,we consider the 

"possible" measurement equations 

ft(x~,b 0 ) = 0 

where xt= [r~ ,rf]T has weight matrix 

R~ = (:o :J 
From equations (6)-(8) we can compute the 

covariance matrices as foll9ws: 



where each partial derivative is evaluated at 

( xt, bo ). We then compute the Mahalanobis 

distances 

dt = ft(xt,bo)T(/\t)-1ft(xt,bo) 

for all segments in the 3-D frame at time l. 

Those segments with distances smaller than a 

fixed threshold are kept as matches. 

Each match defines a token, and we 

update the state as follows: 

at= b0 + Kt(xt - Htb 0 ) 

in which 

and 

Kt= M 0Ht(HtM 0Hf + Rt)-1 

The whight on at is the matrix Pt= (Mo1 + 
Hf (Ro)-1Ht)-1 

4. 2 Continuous processing 

Just as in the two-dimensional case, we do the 

reasoning at time 2, but the generalization to 

an arbitrary stage follows. Let S be a token at 

time 1 represented by (r1' 01) with state ao 
and with weight P 0• We make a prediction by 

computing the state ai' = (1)1,ollo and its weight 

P 1'. We then determine the candidate 

segments at time 2. If S, is the ith segment at 

time 2 represented by (rt, CD, we consider the 

"possible"measurement equations 

fi(xi,ai') = 0 

where x\=[rf,rt'JT has weight matrix 

Ri = (:1 :t) 
and a; has weight matrix p 1' Just as in the 

previous section, we select matches based on 
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the Mahalanobis distance and update the 

state. We have 

ai =a/+ Ki(xi - Hiai') 
in which 

and 

Ki= Pi'Hf(H\P 11Hf + Ri)-1 

The weight of the new state ai is the matrix 

Pi =P 11 -K\H 11 Pi'· 

5. CONCLUSION 

The problem of tracking tokens in sequences 

of images or in sequences of stereo frames has 

received considerable attention in the last few 

years, and the use of the Kalman or extended 

~alrrian filters or equivalently of recursive 

least-squares estimation theory has now 

become standc:trd. The applications of these 

methods to the 2D-2D and 3D-3D tracking 

problems described in sections 3 and 4 have 

not been as numerous as their applications to 

the 2D-3D tracking problem in which the 

observations are made in the image and the 

tracking is done in three dimensions. 
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