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ABSTRACT

This paper presents classification results using neural networks based on INSAR coherence imagery data for evaluation of
the damage of Kobe earthquake in 1995. Coherence derived from multi-temporal SAR data before and after an earthquake
presents a temporal decorrelation in disturbed regions. As L-band SAR data is more robust than C-band SAR data for
spatial and temporal decorrelation, we used multi-source and temporal SAR coherence images derived from interferomet-
ric pairs of JERS-1 and ERS-1 single look complex images (SLCs). Hazard areas can be estimated by classifying two
categories defined as the damaged regions and otherwise using set of the coherence images. A neural classifier was used
because of requiring no assumption for probability distribution function of each category. A competitive neural network
trained by the learning vector quantization (LVQ) was adopted to the neural classifier in consideration of generalization
ability and convergence. Total five coherence images were produced using effective interferometric pairs derived from
two JERS-1 and four ERS-1 SLCs. The average coherence of JERS-1 is higher and has significantly higher contrast than
that of ERS-1 even though the spatial decorrelation and the temporal separation are nearly equal. A hazard survey map
was used for assessing extraction results. The LVQ method generated 23% higher kappa coefficient by adding the JERS-1
coherence and produced better results than the maximum likelihood method from the view point of balance of the number
of the correctly classified pixels.

1 INTRODUCTION

It is an important research topic to identify regions damaged by an earthquake. Synthetic aperture radar (SAR) data, in
particular, is a valuable information source to define and classify damaged regions as it is not affected by cloud cover and
contains the phase information highly sensitive to surface change. A strong earthquake can cause tremendous destruction
in an urban area such as structure collapse and liquefaction. Furthermore, a conflagration can burn many buildings in
urban circumstances. Land surface of a damaged region can be dramatically changed by the earthquake.

Coherence derived from multi-temporal SAR data before and after the earthquake presents temporal decorrelation. An
antenna pattern depending on SAR instrument and water vapor in the atmosphere does not affect the coherence. Coherence
can thus be utilized to detect changes caused by the earthquake and to identify the damaged regions (Yonezawa and
Takeuchi, 1999). Coherence as a local correlation can be affected by temporal, spatial and thermal decorrelation factors
(Zebker and Villasenor, 1992). The theoretical spatial decorrelation is a function of SAR system parameters and a target
location such as wavelength, radar bandwidth, slant range, perpendicular baseline and local terrain slope (Lee and Liu,
1999). L-band SAR data is more robust than C-band SAR data for the spatial decorrelation because the wavelength of
L-band (23:53cm) is much longer than that of C-band (5:66cm). An L-band coherence image is more useful in a case of
an interferometric pair with long temporal separation (Fujisawa and Rosen, 1998). Unfortunately, JERS-1 was terminated
on 11th October 1998. There are only limited interferometric image pairs available as the result of poorer orbit control
than ERS.

Hazard areas can be estimated by discriminating two categories defined as damaged regions and otherwise, using coher-
ence images. In general, it is difficult to assume a probability distribution function (PDF) of the coherence values in each
category since these categories are determined based on land survey results and include various objects on the surface. It
is thus effective to employ a non-parametric classifier that does not require any assumption for the PDF (Ito and Omatu,
1997).

Yosuke Ito



157International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B1. Amsterdam 2000.

Table 1: Summary of JERS-1 and ERS-1 data acquisition

Acquisition Precipitation SLC
Satellite date (mm) name

JERS-1 9 Sep. 1992 0.0 J1
(L-band) 6 Feb. 1995 0.0 J2

1 Nov. 1992 1.5 E1
ERS-1 12 Sep. 1993 0.0 E2

(C-band) 27 Feb. 1996 0.0 E3
7 May 1996 0.0 E4

Table 2: Interferometric pairs of SAR data

SLC name Temporal Perpendicular Spatial Coherence
Satellite Master Slave separation (days) baseline (m) decorrelation name

JERS-1 J1 J2 881 225 0.96 JC1-2
E1 E2 315 140 0.84 EC1-2

E3 1283 107 0.88 EC1-3
ERS-1 E4 1353 44 0.95 EC1-4

E2 E3 898 33 0.96 EC2-3
E4 968 96 0.89 EC2-4

In this paper, we propose an approach of neural network (NN) classification for extracting the damaged regions using
multi-source and temporal SAR coherence images. Among several known NN structures, we employed the learning
vector quantization (LVQ) as the NN for its merits of generalization ability, learning efficiency and good convergence
(Kohonen, 1997).

2 SAR DATA DESCRIPTION

The study area is densely inhabited districts in Kobe, Japan. The Hyogoken Nanbu earthquake, 7.2 magnitude, hit this
area on 17th January 1995. About 200,000 structures collapsed in the study area and 5.2% of the collapsed area was
burned. In a reclaimed land, subsidence caused by liquefaction resulted in destabilised structures and deformed roads.

Table 1 is a summary of JERS-1 and ERS-1 SAR data acquisition. Single look complex images (SLC) were produced
by compressing SAR raw data. To generate the precision SLCs of JERS-1, we applied low pass filtering to eliminate
microwave interference from ground radar systems and compensated the sensitivity time control and the automatic gain
control. The path number of both SAR scenes is 72. The row numbers are 242 for JERS-1 and 243 for ERS-1. All
scenes were acquired in a descending mode. Total six scenes of the multi-temporal JERS-1 and ERS-1 were used in the
experiment of methodology. Figure 1 shows the study area in a three look amplitude image of J1 where mountain and
sea areas are masked off. There is a densely built-up area in the central part of figure 1. Several dark lines indicate major
roads. Port-Island is one of the reclaimed lands. We choose the SAR data such that the earthquake event is included
within temporal separation of an interferometric pair which has an adequate baseline to produce a coherence image. The
scenes acquired before the earthquake are J1, E1 and E2 and after the earthquake are J2, E3 and E4. Daily precipitation
on the dates of data acquisition shown in table 1 were observed by the Kobe marine meteorological observatory.

Table 2 shows temporal separation (D), perpendicular baseline (B?) and theoretical spatial decorrelation (�s) for all the
interferometric pairs. Here, the spatial decorrelation �s is calculated as

�s = 1�

c

� � r � Bw

B?j cot(�0 � �)j (1)

where �0 is the nominal incidence angle of the radar on the ellipsoidal earth, � the local terrain slope, � the radar
wavelength, r the slant range, Bw the frequency bandwidth of the transmitted chirp signal, and c the velocity of light (Lee
and Liu, 1999). As the study area is almost flat, we assume � = 0

Æ. JC1-2 is the coherence image derived from J1 and J2.
Similarly, EC1-2, EC1-3, etc., denote the coherence images derived from the relevant ERS-1 SLC pairs. The �s of JC1-2
is higher than that of EC1-4 despite JC1-2 has longer B?. The coherence images that contain information of the damage
caused by th earthquake are JC1-2, EC1-3, EC1-4, EC2-3 and EC2-4. EC1-2 is the coherence image derived from before
event pair.
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Figure 1: Three look amplitude image of J1 in Kobe, Japan

3 COHERENCE IN DAMAGED REGIONS

Coherence at each pixel is estimated by

 =
jhE1E

�

2
ij

p
hjE1j2i

p
hjE2j2i

(2)

where E1 and E2 are SLC values, � and h�i denote complex conjugation and ensemble averaging, respectively. After
applying the earth flattening to an initial interferogram,  was computed between master and slave SLCs based on 16
pixels taken in the azimuth direction and 4 pixels in the range direction in consideration of the standard deviation (SD)
required for the classification. All coherence pixels were resampled to approximately 30m squared area after being
converted from slant range to ground range geometrically. The coherence can be modelled as

 = �n � �t � �s (3)

where �n is the thermal noise of the SAR system and �t the temporal decorrelation (Zebker and Villasenor, 1992). We
can assume �n = 1 since the signal-to-noise ratios for both SAR systems are high enough for this study. If the coherence
image is derived from a SLC pair across the earthquake event, �t is affected by the changes caused by the earthquake and
other temporal effects and therefore becomes lower in the damaged regions than in the undamaged regions.

The SLCs of two interferometric pairs: J1 and J2; E2 and E3, were acquired under almost the same weather and time
conditions except B? and SAR system parameters. Figures 2 (a) and (b) show the coherence images of JC1-2 and EC2-3
for comparison of radar wavelength effects. Histograms of JC1-2 and EC2-3 are presented in figure 3. The coherence of
JC1-2 is considerably higher and has significantly higher contrast than that of EC2-3 as shown in figures 2 and 3 even
though they have nearly equal �s and D. Robustness for L-band SAR coherency is thus convincingly demonstrated.

On the other hand, as EC1-2 (figure5 (a)) is derived from two SLCs before the earthquake, it has no relation to the earth-
quake and includes land use information only. As shown in figure 5 (b), the histogram of EC1-2 indicates higher coherence
than those of JC1-2 and EC2-3. The extraction approach using the decorrelation by surface change can essentially apply
to regions with the high coherence only. This will eliminate the areas subject to temporal decorrelation not relevant to the
earthquake. Hence, the study area is reduced such that  � 0:6 in EC1-2.

Figure 4 shows a hazard map surveyed by Ministry of Construction and Architectural Institute of Japan in 1995. The map
was rasterised to 30m � 30m to correspond to the coherence images in pixel by pixel. Black dots in the map indicate
burned or completely collapsed structures. These black dots are expressed as the damaged category (!1) and the others
are defined as category (!2) in the map. The coherence of the damaged regions tends to fall down in figures 2 (a) and
(b). The surface changes caused by the earthquake evidently bring about this phenomenon. To assess the distribution
for !1 and !2 in all the coherence images, mean values and SDs of the coherence value for each category are calculated
as illustrated in figure 6. Here, j denotes the mean value and the both side ranges are �SD. All coherence images have
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(a) JC1-2 (L-band, D = 881days and B? = 225m) (b) EC2-3 (C-band, D = 898days and B? = 33m)
Figure 2: Coherence images with decorrelation cause by earthquake
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Figure 3: Histograms of JC1-2 and EC2-3 Figure 4: Hazard survey map

a similar distribution, that is, the mean value of !1 is lower than that of !2. Divergence between !1 and !2 for JC1-2
is more evident than those for the ERS-1 coherence images even though the distributions are considerably overlapped.
This tendency is also shown in figure 2. It is interesting to notice for EC1-2 that the distribution of !1 and !2 are largely
overlapped and !1 has slightly higher average than !2. This hints that the damaged areas are mostly build-up areas which
are temporally stable without the earthquake. As a result of the coherence distribution shown in figure 6, a possibility of
detecting the damaged regions using the multi-source coherence is suggested.

4 EXTRACTION METHOD

The neural classifier for the extraction method is outlined in figure 7. It generally has a higher ability for classification
of remote sensing data, although its structure and learning algorithm are simpler than the back-propagation method for
well-known NNs. Coherence value [0:0; 1:0] is applied to each neuron as an input vector x = [x1; : : : ; xN ]

t where N
denotes the number of neurons at the input layer. The number of output neurons M is a constant value multiplied by
the number of categories (L = 2). Input signals are exposed to the input layer and each signal is transmitted to all of
the neurons in the competitive layer through their connection weights. After competing with each other in the Euclidean
distance between the input vector and neuron weight, a winner is found and output as one and the other outputs are equal
to zero. Each neuron in the competitive layer is assigned to one of the predetermined categories !k; k = 1; : : : ; L. The
category must be assigned to a relevant number of neurons since it includes various objects with individual decorrelation.
A category !k is thus represented by using a set of neuron weights. The competitive NN is trained by the LVQ method.
The LVQ cyclically update the weight vectors so as to reward correct classification and punish incorrect ones.

Kohonen (1997) proposed that LVQ1, LVQ2.1 and OLVQ1 algorithms for the LVQ method. After preliminary experi-
ments, we employ the following training approach;

(1) Move the weight vectors roughly by the LVQ1.
(2) Tune up the weight vectors in category boundaries by the LVQ2.1, where window parameter w = 0:3.
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(a) Coherence image
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Figure 5: EC1-2 derived from before event pair
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Figure 6: Coherence distribution for categories !1 and !2
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Figure 7: Structure of competitive neural network

The LVQ2.1 behaves effectively when the PDFs are overlapped each other. In both procedures, the initial learning rate
is set to 0:03 and the weight vectors are repeatedly updated 40000 times. The extraction method exposes the coherence
images with unknown category to the trained NN and classifies it as the category to which the winner neuron belongs.

To find out the effectiveness of the multi-source coherence images for extracting the damaged regions, we defined two
types of coherence sets: C1 = fEC1-3, EC1-4, EC2-3, EC2-4g; C2 = C1 + fJC1-2g. The number of coherence images
corresponds to the number of input neurons N .

In the experiments, the training and test data (table 3) were chosen from the area covered by either the burned or the
completely collapsed structures based on the hazard surveying map in figure 4. The training data of !1 and !2 are 5� 5
and 10 � 10 resampled scenes from the test data, respectively. The LVQ method was compared with the maximum
likelihood (ML) method. All classification methods employed the same training and test data for a fair comparison.

5 RESULTS AND DISCUSSION

Extraction results of damaged regions were assessed with regard to an kappa coefficient (Richards, 1993) and distribution
of the extracted regions in the classified image. Confusion matrix A = [aij ]; i; j = 1; : : : ; L is produced for each
classification result where aij denotes the number of pixels classified !i into !j . The kappa coefficient (�) is defined by

� =

a++

LP

k=1

akk �
LP

k=1

ak+a+k

a
2
++ �

LP

k=1

ak+a+k

(4)

where a++ =
LP

i=1

LP

j=1

aij , ai+ =
LP

j=1

aij and a+j =
LP

i=1

aij .

Figure 8 shows the comparisons between C1 and C2 for the LVQ and ML methods in term of � where the number of
neurons M in the competitive layer varies from 2 to 20 to find out an optimum NN. For C1 and C2 when Ms are equal
to 4 and 6, the NNs produce the maximum accuracy. The changes of � with the number of neurons M are small for C1
since the distributions of !1 and !2 in the coherence images of C1 are similar as shown in figure 6. However, � for C2 is
sensitive to the number of neurons M since the distributions of JC1-2 and the other ERS coherence images are different.
The � of the LVQ using the optimum NN is higher than that of the ML for both coherence sets.

To assess the classification accuracy for all combinations about the classifiers and the coherence sets, the kappa coefficient
(�) is shown in table 4. The � is improved 23% (0.035) in the LVQ and 34% (0.039) in the ML methods by adding JC1-2.
It is also improved 31% (0.035) in C1 and 20% (0.031) in C2 by applying the LVQ method. Table 5 shows the confusion
matrices using C2. The LVQ method produces better results than the ML method from the view point of balance of the
number of the correctly classified pixels, that is, a11 of the LVQ decreases 418 and a22 increases 2198 compared with the
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Figure 8: Comparison with kappa coefficient (�) using LVQ and ML methods

Table 3: Training and test data

Category Training data Test data
!1 131 2994
!2 150 16221

Total 281 19215
(pixels)

Table 4: Assessment of kappa coefficient

Coherence set Classifier �

C1 LVQ (M = 4) 0.149
ML 0.114

C2 LVQ (M = 6) 0.184
ML 0.153

ML. As a result of using the ML, the test data tend to be classified into !1. These results mean that the non-parametric
approach is more significant when the PDFs are unknown.

Finally, we show the classification images using C2 in figures 9 (a) and (b) which are generated by the LVQ with M = 6
and the ML methods, respectively. As the extracted pixels using the ML are too many (table 5 (b)), the extraction regions
of the LVQ result in figure 9 (a) is more similar to the hazard map (figure 4) than those of the ML result in figure 9 (b).
It is experimentally shown that the classification results can be improved using the multi-source coherence image and the
neural classifier.

6 CONCLUSIONS

We have produced and assessed classified images for extraction of damaged regions by using multi-source and temporal
coherence images and classification methods. It is suggested that extraction accuracies can be improved by using the
multi-source coherence images and the neural classifier on an experimental basis. In comparison with the parametric
method, the LVQ produces higher classification accuracy in term of the kappa coefficient. For future study, we will
consider an extraction method which can classify the coherence images into more detailed categories according to degree
of collapse. To enhance the detection accuracy, it is desirable that the damaged regions are roughly specified based on
coseismic crustal deformation using differential interferogram.

Table 5: Confusion matrices using C2

(a) LVQ with M = 6
Result

[aij ] !1 !2 Total
Test !1 1978 1016 2994
data !2 5799 10422 16221

Total 7777 11438 19215
(pixels)

(b) ML
Result

[aij ] !1 !2 Total
Test !1 2396 598 2994
data !2 7997 8224 16221

Total 10393 8822 19215
(pixels)

Yosuke Ito



163International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B1. Amsterdam 2000.

(a) LVQ withM = 6 (b) ML
Figure 9: Classification images using C2
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