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ABSTRACT

The increasing amount of remotely sensed imagery from multiple platforms requires efficient analysis techniques. The
presented image interpretation system tries to automate the analysis of multisensor and multitemporal images by the use
of structural, topological, and temporal knowledge about the objects expected in the scene. The knowledge base is formu-
lated by a semantic net. Temporal knowledge about object states and their transitions is represented in a state transition
graph which is integrated within the semantic net. The analysis of multitemporal images is improved by the prediction
of possible object states derived from the knowledge base. During analysis the system has to deal with uncertainty and
imprecision.  Competing interpretations have to be judged to succeed with the most promising alternative. For this reason
the measured object properties are compared to the expected ones. A probabilistic judgement calculus based on Bayesian
networks is presented which uses the rules of belief updating and propagation. The approach integrates the probabilities
of object states and their transitions within the judgement procedure. Hence it is well suited for a multitemporal image
interpretation.  For an example dealing with the detection of an industrial fairground from a set of aerial images the proba-
bilistic judgement is compared with an existing possibilistic approach. It is shown, that the use of Bayesian networks in-
creases the efficiency of the interpretation process.

1 INTRODUCTION

The recognition of complex patterns and the understanding of complex scenes from aerial images is a main issue of remote
sensing. Applications like the monitoring of land–use or the update of maps and geoinformation systems (GIS) ask for
efficient and automatic analysis techniques. The results of data–driven image processing algorithms (e.g. for segmenta-
tion or classification) are in most cases insufficient to distinguish the object classes used in GIS or maps. Hence modern
systems for image understanding should use – like a human operator – additional knowledge to support the interpretation.

First of all additional images from different sensors can be used as supplementary knowledge sources. Furthermore GIS
data and general prior knowledge about the expected scene objects is suitable to support the image interpretation. For
special applications, like the detection of environmental changes, the exploration of images from multiple acquisition
times is needed. On the one hand the use of multiple data and knowledge sources represents a great potential to improve
the interpretation results significantly. On the other hand it raises the question of sensor fusion, which is a difficult task.
Parameters like different platform locations, spectral bands, sensing geometries, spatial resolutions, and acquisition times
have to be considered.

Various approaches to image interpretation and sensor fusion have been presented in the literature. The well known sys-
tems SPAM (McKeown at al., 1985), SIGMA (Matsuyama and Hwang, 1990), and MESSIE (Clement et al., 1993) repre-
sent the first generation of knowledge based systems for the interpretation of aerial images. The use of rules as knowledge
representation scheme is widely spread. In the BPI–system (Stilla and Michaelsen, 1997) the rule base is structured in
a network describing a part–of–hierarchy of the scene components. Mees and Perneel (1998) suggest the distinction of
strategy, global, and sensor–dependent knowledge and represent it in AND/OR–trees, fuzzy production rules, and attrib-
uted prototypes with local image processing operators respectively. In ERNEST (Sagerer and Niemann, 1997) the knowl-
edge base is formulated by a semantic net which describes the scene objects and their relations. A well defined network
syntax facilitates the automatic reasoning. The MOSES system (Quint, 1997) extends the ERNEST approach to extract
man–made objects from aerial images using hints from a map.

Most systems concentrate on the analysis of a single aerial image, some of them are able to exploit two or more images
simultaneously, where in most cases a uniform sensor platform is assumed. Only few approaches address the problem of
different sensor platforms and multiple acquisition times. The presented system AIDA (Tönjes et al., 1999) tries to formal-
ize the representation of objects, sensors and time. It uses semantic nets to formulate the structural, topological, sensor–de-
pendent, and temporal knowledge about the scene objects. The knowledge base is exploited to generate a symbolic de-
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scription of the scene observed in one or more images, sometimes from different sensors. Information about object states
and its possible changes over time can be integrated within the semantic net in form of a state transition graph. This tempo-
ral knowledge is used for the interpretation of multitemporal images to improve the explanation of land–use changes or
to detect complex patterns due to a typical behaviour over time observed in the data set.

The image analysis is controlled by a rule–based inference engine, which documents competing scene interpretations in
the leaf nodes of a search tree. To optimize the path through this search tree the alternatives are judged and the most prom-
ising one is investigated first. For the comparison of the intermediate interpretation results a common judgement calculus
is needed which evaluates to which degree the measured object properties match to the expectations derived from the
knowledge base.

In this contribution a probabilistic judgement calculus for the AIDA system is presented which is based on Bayesian net-
works. For the interpretation of multitemporal images it is shown that the approach causes a more efficient search
compared to an existing judgement approach, if additional information about the probabilities of events is provided. The
paper is organized as follows: After a brief introduction in the AIDA system the representation and use of temporal knowl-
edge is described. Thereafter a short excursion into the theory of Bayesian networks is given followed by a discussion
how it is used to judge a scene interpretation represented by a semantic net. Finally results are shown for the detection
of an industrial fairground from a set of multitemporal images.

2 SYSTEM OVERVIEW

The architecture of the knowledge based image interpretation system AIDA has already been described in numerous pub-
lications (e.g. (Tönjes et al., 1999), (Tönjes, 1999b), (Liedtke et al., 1997)). For this reason only a short introduction is
given here. The knowledge about expected scene objects is defined prior to the analysis in a separate knowledge base.
By exchanging the knowledge base the system can easily be adapted to varying application tasks without modifying the
interpretation  module itself. This flexibility is the main advantage of a knowledge based approach. From the prior knowl-
edge, hypotheses about the appearance of the scene objects are generated which are verified in the sensor data. Additional
domain specific knowledge like GIS data (geographic information system) can be used to strengthen the interpretation
process. An image processing module extracts features that meet the constraints given by the expectations. It returns the
found primitives  – like line segments – to the interpretation module which assigns a semantic meaning to them, e.g. road
or river. The system finally generates a symbolic description of the observed scene. In the following, the knowledge repre-
sentation and the control scheme of AIDA is described briefly.

2.1 Knowledge Representation

The knowledge base is formulated by a semantic net. The nodes of the net, called concepts, represent generic prototypes
of the expected scene objects, like roads, rivers or buildings. Realizations of the concepts detected in the scene during
analysis are documented in the semantic net by new nodes called instances. The process of their generation is named
instantiation . While an object is modelled by only one concept in the knowledge base, there might exist several instances
of this object in the scene. During interpretation four different states of object recognition are distinguished: hypotheses,
partial instances, complete instances and missing instances. The object properties are described by attributes attached
to the concepts. Attributes possess a value derived from measurements in the data and an expected range of values which
mirrors the expert knowledge. The expectations are restricted consecutively during analysis due to the current intermedi-
ate results. Computation functions are used to determine the attribute values and ranges from the sensor data or other
instances at run–time.

The nodes are connected by edges to form a semantic network. The edges represent the structural, topological and tempo-
ral relations between the objects. The specialization of objects is described by the is–a relation along which the more spe-
cial concept inherits all properties of the more general one. The decomposition of objects in their components is repre-
sented by the part–of link. Via the concrete–of link (abbreviated con–of) an abstract description is transformed into its
more concrete representation in the data. For example the symbolic term “road” is connected to the primitive “line” to
define its geometrical appearance in the image. The concrete–of relation structures the knowledge base into different con-
ceptual layers like for example a symbolic layer, a geometry layer, and a material layer. Topological relations provide
information about the kind and the properties of neighbouring objects. Therefore, the class of attributed relations (attr–
rel) is introduced. In contrast to other relations, this one may possess attributes, which are used to constrain the properties
of the connected nodes. For example, a topological relation close–to can be generated which restricts the position of an
object to its immediate neighbourhood. The initial concepts which can be extracted directly from the data are connected
via the data–of link to the primitives segmented by image processing algorithms. Especially for the representation of tem-
poral knowledge the temporal relation  is introduced which describes temporal changes of objects. In Chapter 3 the analy-
sis of multitemporal images is discussed in detail.

For the efficient representation of multiple relations, the minimum and maximum number of edges can be defined for
a relation. The minimum quantity describes the number of obligatory relations and the difference to the maximum quanti-
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ty represents the number of optional relations between objects. In this way, it can be easily modelled that for example
a crossroad consists of three up to five intersecting roads. An example for a concept net representing a knowledge base
is given later.

2.2 Control of the Analysis

To make use of the knowledge represented in the semantic net control knowledge is required that states how and in which
order scene analysis has to proceed. The control knowledge is represented explicitly by a set of rules. The rules for
instantiation for example change the state of an instance from hypothesis via partial instance to complete instance, if all
subnodes, which are defined as obligatory in the concept net, have been instantiated completely. If an obligatory subnode
could not be detected, the parent node becomes a missing instance. Other rules generate hypotheses in a model–driven
or data–driven way.

An inference engine determines the sequence of rule execution according to a given strategy. A strategy contains a set
of rules out of the rule base. For each valid rule a priority is defined to determine in which order the rules are tested. The
first matching rule is fired. The user can modify the interpretation strategy by changing the priorities and by removing
or inserting rules to the current strategy. The default strategy prefers a model–driven interpretation with a data–driven
verification of hypotheses: Starting at the root node of the concept net, the system generates model–driven hypotheses
for scene objects and verifies them consecutively in the data. Expectations about scene objects are translated into expected
properties of the corresponding image primitives to be extracted from the sensor data. Suitable image processing algo-
rithms are activated and the semantic net assigns a semantic meaning to the returned primitives in a data–driven way.
Interpretation stops, if a given goal concept is instantiated completely or no further rule of the current strategy can be fired.

Whenever ambiguous interpretations occur, for example if more than one suitable image primitive is found for a hypothe-
sis, they are treated as competing alternatives and are stored in a search tree. Each node of the search tree (called search
node) represents a consistent symbolic scene description in form of an instantiated semantic net. To avoid a full search
a graph search algorithm (here: a modified A* algorithm (Tönjes et al., 1999)) is used which optimizes the search path
through the tree. The algorithm decides in which order the competing alternatives are investigated. Therefore a quality
measure is needed that describes the degree of compatibility between the measured object properties and the expectations.
Tönjes suggests a possibilistic approach for the judgement of a scene description which considers uncertainty and impreci-
sion of measurements and expectations.

2.2.1 Possibilistic Judgement Calculus. A hypothesis that has not yet been tested in the sensor data is neither right
nor wrong. To model this ignorance a proposition e is judged by two measures of belief: the necessity N(e) describes a
pessimistic estimation of the belief while the possibility P(e) represents the optimistic value which can be computed from
the necessity of the contrary proposition N(�e) by Eq. (1). The difference between possibility and necessity is called the
ignorance �(e) (Eq. (2)). In the beginning the ignorance is 1, it is reduced consecutively during the interpretation process.

Figure  1: Necessity N(e) and Possibility P(e)

10
P(e) � 1 � N(�e) (1)

�(e)N(e) N(�e)
P(e)P(e) � N(e) � �(e) (2)

Imprecision of a proposition, like an imprecise specification of a road width, is modelled by fuzzy sets. Both, the expected
range of an attribute value, called the hypothesis H, and the imprecise measurement itself, called the evidence E, are repre-
sented by trapezoidal membership functions pH and pE respectively as depicted in Fig. 2. In order to judge the compatibil-
ity of hypothesis and evidence, the possibility and necessity are determined according to the combination rules defined
for fuzzy sets (visualized in Fig. 2). Each attribute of the semantic net is valued in this way.

P(H|E)

pH pE

x x

N(H|E)

pH 1–pE

Figure  2: Computation of possibility P and necessity N given the hypothesis H and the evidence E

1 1

The judgement of a node, i.e. an instance, is derived by fusing the judgements of its attributes and its current subnodes.
The necessity and possibility values of complementary information, like attributes and object parts, are combined by a
weighted geometric mean. Redundant information, like evidence from multiple sensors regarding the same object, are
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fused using Dempster’s rule of combination. For a more detailed description see (Tönjes, 1999 and 1999b). All node
judgements of the semantic net are subsumed to an overall judgement of the scene description represented by the current
node of the search tree. The possibility of such a search node defines an optimistic estimation of the interpretation quality.
It is used by the system control to decide which alternative is investigated next.

The possibilistic approach supports the integration of uncertainty and imprecision within the interpretation process. The
evidence found in the sensor data is aggregated strictly bottom–up to a final judgement of the scene description. Conse-
quently a set of competing interpretations, that differ solely in model–driven hypotheses and possess therefore the same
evidence, obtain identical values of merit. Hence, the candidate for the further interpretation has to be selected randomly.
But in many cases an expert has prior knowledge which alternative is more probable. A plausible strategy would be to
prefer the most probable alternative. For this reason in Chapter 4 a new judgement calculus based on Bayesian networks
is presented which considers those prior known probabilities.

3 MULTITEMPORAL ANALYSIS

Applications like environmental monitoring and change detection require the evaluation of images from different acquisi-
tion times. Multitemporal images are also needed for the recognition of complex patterns, that are characterized by a typi-
cal temporal behaviour. Change detection can be carried out at pixel or at object level. Approaches that detect differences
at pixel level require a perfect co–registration of the data sets. Furthermore they are limited to the comparison of images
from the same sensor platform and they are very sensitive to variations in illumination, weather conditions, and perspec-
tive of view. Here, the recognition of changed object semantics is aspired. The scene description derived from the preced-
ing image is used as prior knowledge for the interpretation of the current image. The easiest way to generate a prediction
for the current image from an existing scene interpretation is to assume, that nothing has changed during the elapsed time.
The awarenesses of the last interpretation are transformed unchanged into model–driven hypotheses to guide the analysis
of the current image. But in many cases more reliable hypotheses can be generated, if additional temporal knowledge is
used. Assuming biannual observations, a construction site as an example will probably not be observed at the same loca-
tion again, because the construction has been finished meanwhile. To take advantage of temporal knowledge, it has to
be represented appropriately in the knowledge base so that it can be exploited automatically during analysis.

3.1 Representation of Temporal Knowledge

In this scope temporal knowledge is understood as the knowledge about possible (or probable) transitions between differ-
ent object classes over time. It is represented in a state transition graph which is integrated seamlessly within the semantic
net. The states itself are modelled by concept nodes, the state transitions are defined by a new relation called temporal
relation, which describes the temporal order of the states. For each state si both, a relative duration di and an absolute
starting date t0i

 can be specified. To consider the uncertainty of the knowledge, time intervals are used for all temporal

declarations.  It is possible to define a prior probability P(si) for each state, which represents the relative frequency of its
occurrence. By default the probabilities are postulated to be equally distributed. For each state transition connecting two
states si and sj its duration dij and its conditional probability P(sj|si) can be defined also. Temporal relations are established
exclusively between objects with a symbolic meaning, because no general statements about temporal changes of geomet-
ric objects, for example, can be made. In contrast to hierarchical relations like part–of and con–of, the start and end node
of a temporal relation may be identical – forming a loop – to represent that the state stays unchanged over time. The men-
tioned representation scheme combines aspects of classical state transition graphs and markov chains known from the
system theory, temporal constraint networks (Dechter et al., 1991) used in AI, and planning or activity networks known
from the operations research field.

Figure 3 shows a semantic net for the detection of an industrial fairground. From a single aerial image a number of halls
and parking lots can be recognized, sufficient to classify the site as an industrial area. For the decision, whether it is a
fairground or not, a complete cycle of inactivity, construction of booths, fair activity, and dismantling of booths has to
be observed in a sequence of multitemporal images. The mentioned cycle is represented in the semantic net. Each of the
four states can be recognized by specific features. During the construction and dismantling phase the parking lots are
empty, but there are a lot of trucks next to the halls, that keep the equipment for the booths. During a fair the fairground
itself is free of cars, but the parking lots are crowded. If the image resolution is high enough, visitors can be detected walk-
ing on the fairground. If no fair takes place, there are few or even no cars neither on the parking lots nor on the fairground.
Typical durations are defined for the states: The inactivity might last the whole year represented by the interval [1, 365].
For the other phases durations of 2 to 10 days are assumed. Absolute starting dates are not defined, because there are no
seasonal restrictions for fairs. The state transitions in this example can occur from one day to the next. Hence their dura-
tions are specified by one day. For the states and state transitions prior probabilities are estimated due to general experi-
ences. The inactivity state is the most probable of the four. The conditional probabilities express that this state is stable,
while the others are more or less transient. An absolute precision of the probabilities is not necessary (even not possible).
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Parking Lots

d: [1, 1]
P: 0.1

Industrial Fairground

FairInactivity

d: [1, 365]
t0: [0, �]
P: 0.49

d: [1, 1]
P: 0.3

d: [1, 1]
P: 0.7

d: [1, 1]
P: 0.1

d: [5, 10]
t0: [0, �]
P: 0.16

FairConstruction

d: [1, 1]
P: 0.9

d: [1, 1]
P: 0.2

d: [5, 8]
t0: [0, �]
P: 0.19

FairActivity

d: [1, 1]
P: 0.8

FairDismantling

d: [1, 1]
P: 0.9

No Trucks
near Halls

Persons on
Fairground

d: [2, 5]
t0: [0, �]
P: 0.16

Figure  3: Semantic net for the detection of an industrial fairground with integrated state transition graph.

part–of con–of is–a temp–rel

Empty
Parking Lots

Trucks
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Industrial Area

Hall Parking Lot

Time specifications in days

[3,�] [2,�]

The relative proportions are sufficient to enable the system to favour the more probable solutions during analysis (see
Chapter 4). For a consistent network it has to be considered, that all state probabilities and the transition probabilities of
each state sum up to 1.

3.2 Use of Temporal Knowledge

During interpretation the temporal knowledge is used to predict successor states for already detected objects. Knowing
the amount of elapsed time �t � t2 � t1 between two consecutive images the state transition diagram is exploited to
determine possible states of an object in t2 based on its state in t1. To avoid, that a possible candidate is omitted accidently,
the prediction is done in an optimistic way. Starting in the state si detected for the time–stamp t1 possible successor states
�sj
� are determined according to the defined transitions. For each candidate sj the earliest start tmin

sj
 is calculated from the

minimum transition time dmin
ij  (Eq. (3)). The latest end tmax

ej
 is defined by the maximum remaining time drest

i  of state si ,

the maximum transition time dmax
ij , and the maximum duration dmax

j  of state sj. (Eq. (4)). State sj is a possible successor
of si, if the current time–stamp t2 lies inside the interval [tmin

sj
tmax

ej
] and additionally inside [tmin

0j
tmax

0j
+dmax

j ], i.e. the inter-

val of the permitted occurrence of sj. The cases, that a state stays the same or a possible successor is skipped due to a large
time difference, is considered also.

tmin
sj

� t1 � dmin
ij (3)

tmax
ej

� t1 � drest
i � dmax

ij � dmax
j (4)

Assuming, that for example the state FairInactivity  was detected for a region in an image dated March 1, possible succes-
sor states for this region at March 10 are (according to the temporal knowledge in Figure 3): FairInactivity, if the state
stays unchanged, FairConstruction , due to its maximum duration of 10 days, and FairActivity, if the construction phase
was shorter than 8 days and therefore not observed. The state FairDismantling can not be reached within 9 days. The sys-
tem AIDA generates hypotheses for each alternative and tries to verify them in a model–driven manner. For the decision,
which solution is investigated first, the competing hypotheses have to be judged and compared. As mentioned in Chapter
2.2.1 the evidence introduced at this stage of interpretation is equal for all alternatives, they differ in new model–driven
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hypotheses only. A judgement calculus that considers exclusively the evidence, like the possibilistic one described earlier,
produces identical judgements for all solutions. Based on the conditional probabilities of the state transitions it would be
most promising, for the given example, to prefer the successor state FairInactivity  because it is the most probable one.
In order to integrate prior probabilities of object states and their transitions within the judgement of a scene description,
a probabilistic approach is suggested, which is described in the following.

4 PROBABILISTIC JUDGEMENT CALCULUS

The developed probabilistic judgement approach transforms the semantic net, i.e. the scene interpretation, into a Bayesian
network, from which a measure of belief is derived. This value is used to select the best alternative for further investiga-
tions. After a short theoretical excursion to Bayesian networks their use for the judgement of semantic nets is described.

4.1 Theory of Bayesian Networks

Bayesian networks are directed acyclic graphs where each node represents a random variable and the edges in between
are quantified by conditional probabilities. The structure of a Bayesian network encodes the dependency relations be-
tween the variables in the network. As the edges are established through causal relations pointing from cause to effect,
the network provides an intuitive tool to model multiple interdependencies. Bayesian networks have become popular over
the last years because it is not only possible to reason from measurements in a bottom–up fashion towards the most likely
interpretation  of the observed data, but also top–down from a hypothesis towards measurements to be expected. The
theory of Bayesian networks is described in detail in (Pearl, 1988).

Each node of a Bayesian network models a discrete random variable with a finite number of different values. Initially
the belief of each node is assumed to be equally distributed, i.e. each value of the underlying random variable is given
the same probability. As soon as evidence is introduced into the net, for example by a certain observation in the data, the
belief of the corresponding random variable changes. The probability of the observed value becomes 1 while the probabil-
ities of the other values are reduced to 0. According to the causal dependencies the beliefs of related nodes are influenced,
too. The evidence is propagated through the whole network according to a dedicated algorithm distinguishing messages
from inferior and superior nodes. This propagation process is also known as belief update. The belief BEL(x) of a node
X is given by Eq. (5), where �(x) denotes the diagnostic support from the m child nodes and �(x) the causal support from
the n parent nodes (Fig. 4a). The term � normalizes the vector, so that the sum of the components, i.e. the probabilities
of the individual values, becomes 1. Starting at the leaf nodes of the net the belief and subsequently the �– and �–messages
sent to the neighbouring nodes are computed recursively until an equilibrium is reached. Special techniques exist to cope
with loops in the Bayesian network, for example the method of conditioning (Pearl, 1988).

BEL(x) � � � �(x) � �(x)

�(x) � �
u1,			,un


P(x|u1, 			 , un) �
i

�X(ui)� with : ui parent nodes of X

�(x) ��
j

�Yj
(x) with : Yj child nodes of X

(5)

In Figure 4b a propagation for a simple Bayesian network is illustrated. The evidence introduced in node E is distributed
bottom–up and top–down until all nodes are up–to–date. An increasing number of observations reduces the ignorance
represented by equally distributed probabilities. Finally the focussed node values are used for classification or decision
making.

Figure  4: a) Diagnostic and causal support in Bayesian networks. b) Propagation of evidence introduced in node E.
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4.2 Judgement of Competing Scene Interpretations

In order to use Bayesian networks for the judgement of a semantic net, a transformation between both types has to be
defined that states how the nodes, attributes, and edges of the semantic net are mapped to Bayes nodes and edges. In the
presented approach all instances and hypotheses of the semantic net are interpreted as Bayes nodes. Each Bayes node X
models a binary random variable and thus possesses a two dimensional belief vector BEL(X) � (P(x), P(�x)) represent-
ing the probabilities for the verification and falsification of the event X. The node attributes of the semantic net, which
mainly introduce the evidence, are transformed to special nodes of the Bayesian net that send exclusively �–messages
and are not influenced by �–messages of their parent nodes. Part–of– and con–of relations are mapped to Bayes links
inverting the direction of the edge, because the concretizations and parts are understood as diagnostic support for their
parents. Temporal relations are mapped unchanged to an edge of the Bayesian network. Attributed relations are not mod-
elled by a Bayes link, but the contained attributes are considered as normal node attributes during the propagation process.

After mapping the semantic net to a Bayesian network, the root nodes are initialized by a top–down �–message, which
is the ignorance vector (0.5, 0.5) by default. If a prior probability is known for the node, like for example for object states
as part of the temporal knowledge, this value is used instead. Consequently a predefined belief is assigned to these nodes
from the beginning, which is an important way to prefer more probable hypotheses during the analysis. After initialization
the evidence, represented by the attribute values measured so far, is introduced into the Bayesian network and propagated
according to the mentioned algorithm. Similar to the possibilistic judgement approach the degree of compatibility be-
tween attribute value and range is determined and used as �–message of the Bayes node representing the attribute. Hence,
the two corresponding fuzzy sets �E and �H are superimposed and the normalized ratio of intersecting and total area is
calculated (s. Eq. (6)). If a node possesses multiple attributes, the individual �–values are combined by a weighted geo-
metric mean according to Eq. (7).

x

Figure  5: Computation of the diagnostic support �(x) from attribute values (��) and attribute ranges ��H).

1
�H �E

A2

A1

�i(x) �  A1

A1 � A2
,

A2

A1 � A2

� (6)

�(x) � �
I

i�1

�i(x)
wi
WI� with : W � 1

I
�

I

i�1

wi (7)

The evidence is propagated through the Bayesian network considering the conditional probabilities attached to the Bayes
links. Here, the state transition probabilities of the temporal knowledge are taken into account. The nodes of the semantic
layer are used to derive an overall judgement of the scene description. Their belief values are again combined by a geomet-
ric mean. The essential differences to the possibilistic approach mentioned in Chapter 2.2.1 are: The information is propa-
gated both, bottom–up and top–down through the network. Therefore the belief of an object part, for example, influences
the belief of the remaining parts and vice versa. Prior probabilities of objects, like temporal states, are considered within
the judgement procedure via a corresponding �–message. This enables the system to prefer the more probable solution,
even if the evidence is identical for all alternatives. The same effect cause the defined conditional probabilities of the
temporal state transitions. The benefit of the Bayesian approach is illustrated in the following example.

5 RESULTS: EXTRACTION OF AN INDUSTRIAL FAIRGROUND

To validate the capabilities to a multitemporal image analysis of the AIDA system the mentioned example of the industrial
fairground was chosen. The knowledge base illustrated in Fig. 3 was implemented including the necessary image process-
ing algorithms to extract halls and parking lots. The application was tested for a set of aerial images of the Hannover fair-
ground. The images, dated from 1995 to 1998, cover all states of the site (inactivity, activity, and construction/disman-
tling). Unfortunately, no continuous image sequence exists which depicts all phases of a single fair, but the given images
are suitable to simulate the whole cycle by manipulating the time–stamps accordingly.

The analysis starts with the first image of the sequence looking for an industrial fairground. The system searches for the
obligatory parts Hall and ParkingLot. Halls are recognized by right–angled polygons in elevation data, which is derived
by stereo or is given by a DEM including buildings and vegetation. A hall candidate is accepted, if the region meets prede-
fined expectations about shape, area, compactness, and neighbourhood to other halls. Parking lots are characterized by
clusters of parallel lines representing the individual lanes. Only those clusters are selected to represent a parking lot that
lie outside the fairground area surrounded by the halls. After the detection of at least three halls and two parking lots the
IndustrialArea is instantiated completely. As the interpretation goal is to find a fairground, the system proceeds and tries
to replace the IndustrialFairground by a more special concept. There are four possible specializations (FairInactivity  to
FairDismantling) and the search tree splits into five leaf nodes which are judged individually. The possibilistic judgement
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b) Number of activated inference rules during analysis using the possibilistic and probabilistic judge-
ment approach respectively.
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approach yields identical values, while the probabilistic approach favours the solution containing the most probable state
FairInactivity. The hypothesis is tested in the data by verifying, whether the parking lots are empty and whether no trucks
can be found next to the halls. For this purpose, regions of interest are derived from the already detected parking lots and
halls respectively. Inside these regions vehicles, represented by small rectangular spots of a predefined size and lumi-
nance, are counted. The number of detected vehicles decides about emptiness and fullness. Finally for the first image the
state FairInactivity  can be verified. In order to instantiate the concept Fairground the other states are still missing. Thus,
the system continues with the second image dated five days later. Hypotheses for the successor state of the site are gener-
ated according to the temporal knowledge. Within five days only FairInactivity  and FairConstruction  can be reached in
the state transition diagram. The hypotheses are tested consecutively in the image data until the latter is instantiated be-
cause of the detection of trucks near the halls. The process repeats for the third and fourth image and the states FairActivity
and FairDismantling are verified. As all necessary states were detected in the image sequence the concept Fairground
can be instantiated completely. The goal is reached and the analysis stops. The whole interpretation process is illustrated
in Fig. 6a. The constructed search tree consists of 13 search nodes, the final scene description contains 888 instances de-
scribing all the halls and parking lots detected in the four given images. The use of the temporal knowledge and the predic-
tion of possible successor states restricts the search space, so that the analysis becomes more efficient.

5.1 Possibilistic vs. Probabilistic Judgement

In order to compare the two presented judgement approaches the described image interpretation process was performed
using both methods. The strict separation of knowledge representation and system control permits the exchange of the
judgement calculus without any modifications of the knowledge base.

In both cases the correct interpretation result has been reached after having generated 13 search nodes, but the efficiency
differs considerably. Fig. 6b shows the accumulated number of inference steps, each represented by the number of activa-
tions of inference rules, needed for the detection of the Fairground. The possibilistic approach does not use the prior proba-
bilities of states and state transitions. Hence, the search node to be investigated is chosen by random, whenever the evi-
dence of the alternatives and therefore their judgement is identical. The randomness causes the total number of activated
rules to vary between 2028 and 2766 rules. In contrast the probabilistic approach is deterministic and requires constantly
1793 rule activations, a reduction by up to 35%. For the interpretation of the first image (FairInactivity ) both methods
need roughly 300 rule activations. During the analysis of the second image, the Bayesian approach favours the more prob-
able solution of an unchanged state, and therefore follows erroneously the path to search node n7 until the observations
made in the image cause the rejection of this hypothesis. The correct state FairConstruction  (search node n8) is found
after 943 rule activations. If the possibilistic approach selects the correct search node n8 by random search, only 622 rule
activations are needed to reach this intermediate result. During the analysis of the third image the probabilistic method
focuses immediately on the correct node n10, so that 493 additional inference steps are sufficient (total 1436) to verify
the state FairActivity. The other method needs between 469 and 921 rules (accumulated 1091 to 2766 rules) dependent
on the order of investigated search nodes. For the interpretation of the final image the possibilistic approach fires 623 to
937 rules compared to 357 rules using the Bayesian network, which again prefers the most probable state transition from
FairActivity  to FairDismantling.

For the given example, the presented probabilistic judgement calculus takes advantage from the temporal knowledge
introducing additional information about the probabilities of object states and their transitions. In the absence of such
probabilities the judgement using Bayesian networks produces results comparable to the possibilistic method at higher
computational  costs due to the more complex propagation algorithm. In such cases the more robust and simple possibilis-
tic judgement should be chosen.
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6 CONCLUSIONS

In this contribution the use of the knowledge based image interpretation system AIDA for the analysis of multitemporal
remote sensing images was presented. General knowledge about scene objects, their structure, and their appearance in
the sensor data is stored in a semantic net. Additional temporal information about object states, their duration, their proba-
bility of occurrence, and knowledge about possible state transitions is represented by a state transition graph integrated
within the semantic net. The system exploits the temporal knowledge to predict possible successor states of scene objects
for the current image based on the object’s state in the preceding image of the multitemporal sequence. Thus, the search
space is reduced which accelerates the interpretation process.

A probabilistic judgement calculus was suggested in order to compare competing scene descriptions and to select the most
promising alternative. The semantic net of instances is transformed to a Bayesian network and the measurements in the
sensor data are introduced and propagated through the network. An overall judgement is derived from the belief values
of the topmost Bayes nodes. An advantage of the approach is the capability to consider the prior probabilities given by
the temporal knowledge. In cases, where the evidence is identical for several alternatives, the most probable solution is
judged best and therefore preferred in the ongoing analysis.

The system was tested successfully for the detection of an industrial fairground in a set of four multitemporal aerial imag-
es. The fairground can be recognized, because the cycle of inactivity, construction, activity, and dismantling was observed
consecutively in the set of images. For the given example the probabilistic judgement approach was compared to an exist-
ing possibilistic method. It was shown, that the exploitation of prior probabilities increases the efficiency of the interpreta-
tion process. The number of necessary inference steps is reduced by up to 35%.
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