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ABSTRACT

A parallel stereo matching algorithm is presented which is mainly thought for the processing of images from pushbroom
stereo cameras. The algorithm is designed for non-epipolar geometry, because of disturbances of flight attitude and
velocity. Existing epipolar algorithms can give a first estimation of disparities in epipolar (x-) direction, but the
recursive algorithm can also start with zero-disparity initial condition if the disparities are not too big. The algorithm
minimizes locally a certain least squares distance of a stereo image pair using the method of steepest descent leading to
a recursive disparity updating. To diminish ambiguities a pyramid with Gaussian image smoothing together with other
measures (e.g. exploiting the ordering constraint and applying edge preserving disparity smoothing) is used. The
presented matching algorithm is parallel in space and sequential in time. Therefore, when suitable parallel processing
hardware (with one processing element assigned to each pixel) will be available then real-time stereo processing
becomes possible. Some examples demonstrate the capabilities of the algorithm but also the remaining difficulties.

KURZFASSUNG

Ein paralleler Algorithmus zur Stereo-Bildzuordnung, der hauptsédchlich fiir die Verarbeitung von Bilddaten von
Pushbroom-Zeilenkameras gedacht ist, wird prisentiert. Der Algorithmus wurde wegen vorkommender Stérungen der
Fluglage und —geschwindigkeit fiir nicht-epipolare Geometrie konzipiert. Vorhandene epipolare Verfahren konnen fiir
eine erste Schitzung der Parallaxen in epipolarer (x- ) Richtung verwendet werden, aber der rekursive Algorithmus
erbeitet auch ohne derartige Schitzwerte, wenn die Parallaxen nicht zu grof3 sind. Der Algorithmus minimiert lokal
einen gewissen Abstand eines Stereo-Bildpaares durch Anwendung der Methode des steilsten Abstiegs. Dies fiihrt zu
einem rekursiven updating der Parallaxen. Zur Verminderung von Mehrdeutigkeiten wird eine Gauflsche Pyramide
zusammen mit anderen MaBBnahmen (Reihenfolgebeschrinkung — ordering constraint, kantenerhaltende Glittung von
Parallaxen) verwendet. Der Algorithmus ist raumlich parallel und zeitlich sequentiell und kann daher, wenn geeignete
Parallelverarbeitungs-Hardware (mit einem Prozessorelement pro Pixel) verfiigbar ist, Echtzeit-Stereoverarbeitung
gewihrleisten. Einige Beispiele zeigen die Fihigkeiten des Verfahrens und seine Méngel.

1 INTRODUCTION

The successful experiments with the digital stereo cameras HRSC (High Resolution Stereo Camera), WAOSS (Wide
Angle Optoelectronic Stereo Scanner), WAAC (Wide Angle Airborne Camera) and with a prototype of the first
commercial digital aerial camera ADC (Airborne Digital Camera) performed at the Institute of Space Sensor Systems
and Planetary Exploration of the German Aerospace Center (DLR) have shown that high quality stereo reconstruction
with pushbroom cameras is possible.

To generate cost efficient and high quality 3D data products the key problem continues to be the matching of two or
more image stripes. One needs a very fast matching algorithm in order to process efficiently the huge data amounts
generated.

Because of aircraft attitude and velocity variations the image geometry is not strictly epipolar. Therefore, available
efficient epipolar algorithms, e. g. the algorithm of Gimel’farb (1999) using dynamic programming techniques, can be
used only as a first approximation. For refinement a very fast and precise non-epipolar algorithm is needed.
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Here, a new method is presented which relies on a pixel-wise minimisation of a quadratic measure of the grey value
deviation of two images (e. g. nadir and forward images) under some constraints to estimate the disparity in both
directions. The 2D disparity vector is updated recursively in each image point of the nadir image until stability is
reached, i. e. the disparity change remains below some threshold. As constraints at the moment the ordering constraint
(Klette et al., 1998) is used. In image regions without occluded areas and with continuous surface the ordering
constraint guarantees a coupling of disparity values over some distance which is essential for stereo matching within
homogeneous areas where no stereo information is available. To transfer stereo information from edges, corners etc.
into homogeneous regions Gaussian smoothing of the image pair is applied.

In order to prevent too big gray value deviations of the stereo image pair a coarse gray value fitting (equal mean value
and standard deviation in both images) is applied as a pre-processing step. The initial condition of the non-linear
algorithm can be given by the disparity values s,(i,j) (in epipolar direction, derived by an epipolar matching algorithm),
5,(i,/))=0 (perpendicular to epipolar direction). Using these values instead of s,(i,/)=0 diminishes possible trapping in
local wrong minima if big disparities occur in the image pair.

The resulting disparity images s.(i,j), s,(i,j) can be smoothed with a special edge preserving smoothing algorithm which
assumes that the disparity inside image segments changes smoothly (i. e. without discontinuities). That assumption
especially seems to be useful in order to assign disparities to partly occluded image regions. The used smoothing
algorithm is an adaptation of an edge preserving smoothing algorithm for images of gray values (Jahn, 1998) and other
features (Jahn, 1999).

In contrast to most other (sequential) methods the presented matching algorithm is parallel in space and sequential in
time. As in the human visual system where layered neural processing structures solve the matching problem (Hubel,
1995) the new algorithm also can be implemented in special Multi Layer Neural Networks or in recurrent Neural
Networks. Therefore, when suitable parallel processing hardware (with one neuron or processor element assigned to
each pixel) will be available then real-time stereo processing becomes possible.

Because the disparity is computed in each pixel of the nadir image a dense disparity map is generated and there is no
need for interpolation.

The method was tested with some airborne images with good success. Some results (disparity and matched gray value
profiles, disparity images) are presented. Of course, the quality of the results must be enhanced further, especially in
regions with occlusions.

The method will be described in chapter 2. Then in chapter 3 the results of some processed images are presented and
discussed. Finally, conclusions for further investigations are drawn.

2 THE METHOD

Let g.(i,j), gr(i,j) (i=1,..Ny; j=1,....Ny) be an image pair registered with a left and a right camera, respectively. In case of
pushbroom line scanners the L-image corresponds to the nadir image and the R-image to one of the images taken by the
forward or backward looking CCD lines. Between both images the following relation (approximately) holds:

gL(i’j):gR(i+Sx’j+Sy)' 1)

Here, s, = s,(i,j) and s, = s,(i,j) are shifts (disparities) in x- and y-direction, respectively. They are considered as
functions of the coordinates (i,j) of the left image (the L-image is considered as a distinguished image having in mind
the pushbroom scanner application where the L-image is the nadir image).

With the coordinate transform i’ =i + s/2, j* =j + s/2 (1) can be written in the equivalent form

o S 5 oy S, .,+SV )
l__, —_ = 1 —, —_
8L > J > 8r > J >

which can be used for obtaining better stability of the algorithm. Of course, the disparity can also be assigned to a
centered (cyclopean) image as it is done sometimes (Belhumeur, 1996, Gimelfarb, 1999). This does not change the
method.
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Of course, (1) or (2) does not hold in regions which are occluded in one of the images. Therefore, in images with many
occluded areas (e.g. in cities) each method which relies on a assumption like (1) in every pixel will not work very good
in those regions. Future investigations are necessary to alleviate that problem. The smoothing procedure to be
considered at the end of this chapter is one (preliminary) approach. Here, the problem is not considered in detail. But it
must be stressed that the problem of occlusion generally cannot be solved exactly because of missing information. The
same is true in homogeneous regions with constant gray value where no disparity information is available. A priori
assumptions and interpolation processes are necessary preventing exact measurements in all image pixels. Precise
measurements are possible only in image points which can be identified non-ambiguously in both images. Even the
human visual system with its huge stereo processing capability is not able to measure precisely! Of course, using more
than two images (as can be done with the above mentioned digital stereo cameras), the number of occluded image
points can be reduced and the precision can be enhanced. Here, that possibility is not considered because here the
development of the new parallel method is in the center of interest but in the future the method should be generalized to
the multi-viewing case.

Furthermore, (1) does not hold exactly because of illumination changes, non-lambertian reflection properties of object
surfaces etc.. That can be taken into account very roughly by adapting the mean gray values and standard deviations of
both images. A better performance can be obtained if the image statistics is adapted locally using the local median and
the local mean absolute difference instead of mean gray value and standard deviation. This must be studied more
carefully in the future (see also Wei et al. 1998).

To determine the disparities s, = s,(i,j) and s, = s,(7,j) in each point (i,j) first the least squares measure

Jl(i,j;sx,sy)z [gL(i,j)—gR(i+sX,j+sy)]2 3)

is considered. For every (i,j) J; is a function of two variables s,, s,. To look for the minimum of J; here the method of
steepest descent is considered. Of course, there are many other minimization methods (Himmelblau, 1972) but here
only the principle is essential and therefore comparisons of the existing methods are not performed.

0) 0

According to the method of steepest descent starting from an initial point (s ) the disparities are changed in the

S
x Yy
direction of the negative gradient of J;:
s, j) =", j)-w- VI, (i, jis") . 4)
0) Sxt) K, 0
In 4 s = 0 is the disparity vector at recursion level (or discrete time) z. The matrix K= 0 is
N K
y y
determined later.
To compute the gradient of J; first the derivative in x-direction is considered:
oJ .. . . agR(x,j-i-S )
1 :_2[gL(l’])_gR(l+Sx’-]+Sy)]. s x=i+s, (5)
os, ox '
. : of, oo 8r : o
This representation has the drawback that —— vanishes in points (i,j) where = O even if there is a shift between
sx
g, and g in that point. Therefore, according to (2) it is better to use
2
N N S N
Jo=| g | i, = | g P+ (6)
TR 27 2 ) L2 2

gL
X

can be used too.

instead of (3) because then the derivative
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Now some words concerning the calculation of the derivatives of g; and g are necessary. The (continuous) image in the
focal plane of an diffraction limited optical system is band-limited and hence an analytical function which can be
differentiated (Jahn, Reulke, 1995). If the sampling frequency is greater than the highest spatial frequency transmitted
by the optical system then Shannon’s sampling theorem is fulfilled and the intensity samples (gray values) represent
the whole intensity function g(x,y). Then computing the derivatives of g(x,y) is possible using the sampling theorem. Of
course, this ideal case is not fulfilled. Often the sampling condition is violated meaning that the sampling theorem is not
fulfilled exactly. Furthermore, the gray values are digitized numbers and noise is present which prevents exact
differentiation of g(x,y). Therefore, only approximations of the derivatives of g(x,y) are possible. Here, the
approximation

dg(x, j)

ox

Iy N
xﬂz5k0+Lﬂ—gO—Lﬂ] )

is used.
Of course, if one applies (5) with (7) to the original images then the recursion (4) often will be trapped in false (local)

© s(o)) are too far from the real ones. Therefore, the recursion (4) is

minima, especially when the initial disparities (sx )8,

applied in a Gaussian pyramid (Jolion, Rosenfeld, 1994) starting with the coarse image
8, =G, ®¢g. ®)

Here ® means convolution, and the kernel G, is the normal distribution function N(0,0). The operation (8) has the
advantage that it transfers disparity information (which is available at edges, corners etc.) into homogeneous regions.
Therefore, if o is big enough also inside large homogeneous regions a disparity can be measured and determined with
the algorithm (4). Of course, the convolution (8) also blurs both images and fine detail is destroyed. In those regions
wrong disparities are generated. To overcome this, the values of o used in the pyramid must become smaller with
increasing pyramid layer. Here, a pyramid with four layers [ = 0, 1, 2, 3 was used and the o - values were chosen
according to

o, =2"" ©

Then the algorithm works as follows:

1. Initial disparities (s;o),si,o)) are chosen. Here the initial condition (sio) = (),S(VO) = 0) can be used. In case of

pushbroom images the epipolar condition is fulfilled approximately. Then, using an epipolar matching algorithm

(0)

sufficient), the number of iterations, and hence the computing time.
2. Layer [ = 0: The smoothed L- and R-images are computed according to (8) with oy = 8. Then the iteration (4) is

0) L) (1=0) (=0)
x ’sy x ’sy

(e.g. that of Gimel’farb, 1999), one can determine §, ’. This reduces the number of pyramid layers (/ = 0 may be

started with the initial disparities (s ) The result are new disparities (S ) which are used as

initial values in the next layer / = 1, and so on.
3. At the end of the iteration in layer / = 3 the result of the algorithm are the final disparity estimates

(§x =g ,§y = s;l:3)) in each point (i,j) of the left (nadir) image.

X

That algorithm has the drawback that it is slow on a sequential computer. To speed up the algorithm the smoothed

images g o, can be sub-sampled (for / = 3 one has N, - N, gray values, whereas in layer / there are only N2 N/23 N

sampling values). Then, the output of layer / are N,/27" - Ny/23 " disparity values, but in layer [+1 N/2°"- N}/ZZ'Z initial
values are needed. Therefore, interpolation is necessary. This works but it is not considered here in detail.

In order to transfer disparity information into the interior of large homogeneous regions the maximal value of o and
hence the highest pyramid layer must be chosen big enough. Adaptivity seems to be necessary, but this was not studied

up to now.

Another method to enhance the performance of the algorithm is the use of

8,=0,-8+0, 8, (10)
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instead of the blurred images g, (8). The original image g used here besides g, preserves detail, and hence reduces the
number of wrong disparities in image regions with fine structure. Some experiments showed that & = o = 1 seem to

be good values, and that, using g - instead of g, the number of necessary pyramid layers can be reduced.

The method can be enhanced further if instead of the gray values alone additional local image features are taken into
account. Here, the image gradients in x- and y- direction have been used. Then, the algorithm (4) is applied to

1,0 jssos,) =7 len )= gplivsjts, )P +7 Vg ()~ V. geli+s, j+s, )P

(1)
+7; '[VygL(iaj)_Vng(i+sx’j+Sy)]2

This gives considerably better results because some ambiguity is removed. The problem of choosing adequate features
is not considered here. It seems that wavelet transform coefficients give good results which also have been applied in a
coarse-to-fine pyramid (Kim et al., 1997). (11) shows how such and other features can be used in the algorithm
described here. It was not investigated which the best choice of the parameters 7, ¥,, V5 is. The results presented in
section 3 were obtained withy; =y, =v; = 1.

The steps (8), (10), (11) for reducing ambiguity are not sufficient. Other measures are necessary. In the literature many
constraints have been formulated (Klette et al., 1998) which can be exploited to reduce ambiguity further. Here, the so-
called ordering constraint (Klette et al., 1998, Wei et al., 1998) is used. This means that (in x-direction) if gg(i+s.(i,7))
is matched to g;(i,j) and gg(i+1+s,(i+1,))) to g,(i+1,j) then

i+s (i, /)<i+1+s (i+1,)) (12)
must be fulfilled. (The same holds in y-direction). This is equivalent to the condition that the distance

d (i, )=1+s,(+1,j)—s.3,J) (13)
of successive matched image points i’, i’+1 (i’ = i+s,(i)) of the gz — image must be non-negative.

The condition (12) can be violated if there exist objects which are located in front of other objects (or the background)
such that there is no continuous surface (see e.g. Klette et al., 1998). In aerial images this case is met when single clouds
are present. In cloud free conditions it is met seldom. Up to now (12) is used not very often to enhance matching. One
of the exceptions is the algorithm of Gimel’farb, 1999 which is based on dynamic programming and which gives good
results for epipolar geometry.

The condition (12) has to be fulfilled in each iteration of the algorithm (4). To guarantee this the step width As”(i,f)
must be limited. If e.g. As)(:)(i, Jj) >0 then the point (i + S(')(' ]), Jj ) will be shifted in positive x—direction. To

fulfill (12) even if the next point (i +1+ s (l +1, /), ) is shifted in negative x—direction the increment As ', 1))

can be limited as follows:

d'G. )2 i ok -V I sY)>d"6, )2
A, )=14-a"i-1,))12  if KX-VXJ(Z,J Ne=d (i-1,/)/2 (14)
K, -VXJ(i, j;s(’)) elsewhere

The condition (14) is essential for the reduction of ambiguity because it prevents outliers (which do not obey the order
constraint and which can be very frequent without application of (14)) of the disparity generated by noise and other
deviations of both images. Of course, because (14) reduces the possible step size in each iteration many iterations may
be necessary if the disparities are big. This is a drawback which might be reduced if the directions of V.J in the right
and left neighbors of point i are taken into account but this was not studied up to now.
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One can see from (14) that it is not useful to use too big values of x, such that K ~|VXJ | is much bigger than
d,/2.Therefore, at each pyramid level x; can be chosen adaptively according to some average values of |V J | and d,/2,

e.g. from K, -<|Vx.]|> =1/2 or similar relations.

Further measures to reduce ambiguity are edge preserving smoothing of both images as a pre-processing step and a
smoothing procedure applied to the disparity increments AS}(C’)(Z' ,J) (before (14) is applied) in order to reduce noise in

the original images and in the disparity increments. For edge preserving smoothing of the original images the algorithm
described in (Jahn, 1998) was applied. A modified algorithm for disparity smoothing is described now:

AS)(CnH)(l _]) A (n) l_] +c- ZW _]kl [A n (l+k J+l) As n)(l ])] (15)

k,=—1

1
(c= ).

S w(, jik,1)
1

1
kl=—

With the special weights w = 1 the algorithm (15) computes the ordinary mean value recursively which blurs the
disparities. But, the hypothesis to be used is that the disparity is constant or smoothly changing inside homogeneous
image regions. Therefore, as for edge preserving smoothing of the original images (Jahn, 1998) the weights are chosen
according to

(n)
(")(' ik l)= H

w la]a 5 n . . .o
p" +g, i+k, j+1)-g, G )

(16)

These weights favor contributions to (15) where g, (i+k,j+1) = g;(i,j)- ,u(") is a parameter which can be kept constant or
which can be chosen to tend to zero with increasing » in order to accelerate convergence. (15) generates a coupling of
image lines because there is smoothing in y-direction. This diminishes errors in single image lines which sometimes can
be seen as stripes in disparity images generated with pure epipolar algorithms.

Some general words concerning the recursive algorithm (4). If one looks at anaglyph images with big parallaxes then
one observes that it takes some time until the final 3D impression is obtained and that this time increases with
increasing disparity. That behavior can be explained with recursive algorithms of type (4) where the disparity increment
is limited by some constraint as e.g. (14). Furthermore, the iterative determination of the disparities also reduces
trapping in wrong maxima (as compared with “one-step” algorithms). Another argument for algorithms of type (4) is
that the disparities in every image point (i,j) of the left image can be calculated in parallel (this holds also for the order
constraint (14) and the smoothing procedure (15)). Therefore, when appropriate parallel processing hardware will be
available then real-time stereo matching becomes feasible. Of course, this does not mean that the algorithm which is
used here is an ultimate one. It only shows to a certain direction of further research.

When big disparities in both directions are present in the image pair, then the x- and y- disparities must be estimated
together as proposed by (4). If the geometry is strictly epipolar then an one-dimensional version of the algorithm can be
used (&, = 0). But, if the geometry is near-epipolar (only small y- disparities are present) then the algorithm can be first
applied in epipolar direction (or another epipolar algorithm can be used) to estimate s, coarsely with subsequent s,
estimation with the same algorithm applied in y- direction (with recursive application if necessary). This seems to be a
good processing scheme for pushbroom stereo image pairs.

3 RESULTS

A few results to be presented now show the capabilities of the method and the difficulties which should be overcome by
future research. First, a stereo pair of a rural region with a small village generated with the airborne camera WAAC is
considered. Figure 1 shows the image pair.
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Figure 1. WAAC stereo pair “Village”

The bright horizontal lines show the places where a cross section of both images were taken. Figure 2 shows the gray
value profiles along those lines. One can see the varying disparity. Figure 3 shows the profiles after matching. A good
coincidence of both profiles now is observed.

600 F

grey value
grey value

100

0 50 100 150 200 250 300 0 50 100 150 200 250 300
column i column i

Figure 2. Gray value profiles Figure 3. Gray value profiles after matching

The disparity s, along the horizontal line is displayed in figure 4. This seems to be a useful result although ground truth
is not available. Figure 5 shows the s,- image.
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Figure 4. Disparity profile Figure 5. Disparity image

The stereo pair of figure 1 is not strictly epipolar. After matching in x- direction as was shown here there remain small
shifts in y- direction in some image regions caused by aircraft attitude disturbances. These shifts can be nearly removed
by applying the algorithm in y- direction. A red-green coded overlay of both images reveals this but that is not shown
here because of limitations of printing space. Some areas with matching errors remain especially near buildings where
occlusions occur. Furthermore, the disparities seem to be too smooth.
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The well-known image pair Pentagon (figure 5) shows the limits of the present status of the algorithm better because in
that image pair are many occlusions and especially small non-overlapping structures with big disparities which the
algorithm cannot handle satisfactorily up to now. The x- disparity image shown in figure 6 reveals this.

Figure 5. Stereo pair “Pentagon” Figure 6. Disparity image

4 CONCLUSIONS

The few results presented here show that the algorithm works in some image pairs generated with aerial stereo cameras.
In section 2 some remarks concerning necessary future research were already made which shall be supplemented now.
Because of its local gradient computation (5), (7) the algorithm gives only good results when the disparities are small,
i.e. if there is an overlapping of structures in both images. To cope with big disparities the gradient computation must be
extended to a non-local operation. First experiments have given promising results but more investigations are necessary.
Furthermore, the J-function (11) to be minimized has to be generalized. More geometric rather than radiometric
information should be included because some disturbances which occur in only one image of the stereo pair (e.g.
reflections of sun light) can lead to wrong disparities.
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