
58 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.

MULTI-SCALE ROAD EXTRACTION USING LOCAL AND GLOBAL GROUPING CRITERIA

Albert Baumgartner, Stefan Hinz

Chair for Photogrammetry and Remote Sensing
Technische Universität München, D–80290 Munich, Germany

E-mail: falbertgfhinzg@photo.verm.tu-muenchen.de
URL: http://www.photo.verm.tu-muenchen.de

KEY WORDS: Image Understanding, Road Extraction, Grouping.

ABSTRACT

In this paper we combine two approaches for road extraction. The first approach makes use of multiple scales to detect
roads segments and employs local grouping criteria and also context information to extract the road network. This ap-
proach is suitable for aerial imagery with a resolution of 0.2–0.5 m. The second approach was designed to extract roads
from satellite imagery and can be applied to resolutions of 2–5 m. It fuses lines extracted from different channels for road
extraction and exploits especially the connectivity properties of roads, i.e., global network criteria for road extraction. By
combining the two approaches we can reduce the effort for selecting appropriate parameters, because both help each other
to get rid of some individual deficiencies. In addition, the evaluation of the extracted road network showed significant
improvements compared to the results we get by applying each approach on its own.

1 INTRODUCTION

There is a big economic desire to automate the extraction of objects from aerial and satellite imagery, and there is a lot of
research in this field, too. Nevertheless, fully automatic extraction of objects like buildings or roads is still an unsolved
problem. At our institute two different approaches for fully automatic road extraction have been developed during the
past years. The first approach makes use of multiple scales to detect roads segments and employs local grouping criteria
and also context information to extract the whole road network (Baumgartner et al., 1999). The second approach focuses
on the connectivity properties of roads and is able to make use of the information derived from multi-spectral satellite
imagery (Wiedemann and Hinz, 1999). Whereas the first approach is restricted to gray scale imagery with a resolution
of 0.2 to 0.5 m, in which roads appear as homogeneous regions, the second approach models roads as lines and is able to
fuse lines extracted in multiple channels. Both approaches show individually good results – within a limited scope. In the
work presented in this paper we show how both approaches can be combined and how they benefit from the strengths of
each other and help to overcome their deficiencies.

Some of the basic ideas of our road extraction scheme are described in detail in earlier publications, e.g., in (Steger et al.,
1995, Baumgartner et al., 1997, Steger et al., 1997, Mayer and Steger, 1998). Work related to our local approach for road
extraction has been carried out, by (McKeown Jr. and Denlinger, 1988, Ruskoné et al., 1994, Airault et al., 1994). E.g.,
(Ruskoné, 1996) proposed a fully automatic approach for the extraction of road networks from digital aerial imagery:
Hypotheses for connections between automatically detected seed points are checked based on geometrical constraints.
The influence of neighboring objects on road extraction has been investigated in (Bordes et al., 1997). For our second
approach the relevant previous works are (Fischler et al., 1981, Vasudevan et al., 1988)

Apart from the trend towards the integration of contextual information, there is a strong emphasis on defining evaluation
criteria and developing methods to evaluate the results of automatic and semi-automatic approaches for road extraction,
see e.g. (Heller et al., 1998, Heipke et al., 1998, Harvey, 1999).

The model which serves as the basis of our road extraction scheme is outlined in Section 2. In Section 3 we describe
the individual approaches for road extraction which are combined in Section 4. The benefits of this combination are
documented by an external evaluation of the results (Section 5). In Section 6 we draw some conclusions.

2 ROAD MODEL

We base our road extraction scheme on the road model displayed in Fig. 1. The road model comprises multiple scales and
describes the road network in three different levels. The real world level contains the road objects (e.g., road network,
junction) and their relations. At the geometry and material level, the 3D-shape and the material of roads are represented. In
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contrast to the image level, the representation at the geometry and material level is independent from sensor characteristics.
Depending on the scale, i.e., the image resolution, roads are either modeled as flat homogeneous regions, or as lines. The
solid dark lines establish the connections between the concepts at the different levels.

The use of different scale is motivated by the fact, that different characteristics of roads can be best detected at different
scales. At fine scale, i.e., in high resolution images, a better geometric accuracy can be achieved since the road sides can
be detected very precisely. Substructures on the road, e.g., markings, can give additional hints for road extraction. At
coarse scale, i.e., at resolutions where roads are only a few pixels wide, the network characteristics of roads are more
clearly visible, and small objects like single vehicles or trees do not influence the extraction as heavily as they do in fine
scale.
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Figure 1: Road model

(a) (b)
Figure 2: (a) Image (b) Segmentation of open rural context

In addition to the road model in Fig. 1, which comprises knowledge about geometric, radiometric, and topological prop-
erties of roads, our model contains also relations between roads and other objects, e.g., buildings, trees, and vehicles.
This type of knowledge is modeled by the context of the roads. The context model is split into local and global context.
Whereas, the local context describes relations between individual objects of different types, the global context segments
the image into three regions, in which the appearance of roads in imagery is completely different: urban, forest, and
open rural context regions. A texture based segmentation of the open rural context is shown in Fig. 2. The segmentation
of the different context regions provides a priori information about the typical problems which might occur during the
road extraction. Therefore, we can use the global context to guide the extraction and start at places where the extraction
is supposed to be easy and reliable.
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3 ROAD EXTRACTION MODULES

In this section we describe the main characteristics, the strategy, the advantages, and the deficiencies of our two basic
approaches for road extraction. We will combine these two approaches and use them as complementary modules in a
new road extraction scheme. In the remainder we will refer to them as “module I” and “module II”. Both modules use
local and global information for road extraction. However, module I mainly focuses on local criteria, whereas module II
exploits especially global criteria, i.e., the network characteristics of roads.

3.1 Module I: Local Grouping

On the local level, we use lines and edges as image features to construct road segments. According to the road model,
we use apart from the original image also a version of the image with a reduced resolution. The lines extracted in the
reduced-resolution image (about 2 m) are used to select edges extracted from the original resolution that are candidates
for road sides. In order to be selected as road sides edges must fulfill several criteria: The distance between pairs of edges
must be within a certain range. The edges have to be almost parallel, i.e., there is an overlap and the direction difference
between the edges is small. The area enclosed by a pair of parallel edges should be quite homogeneous in the direction of
the road. In addition, for each pair of road side candidates a corresponding line has to exist in the reduced resolution.

From these road sides, initial hypotheses for road segments are constructed (Fig. 3). The road segments consist of quadri-
laterals which are generated from parallel road side candidates. Quadrilaterals sharing points with neighboring quadrilat-
erals are connected. The geometry of the road segments is represented by the points of their medial axes, attributed by the
road width. These road segments are the semantic objects which are used as input for the extraction of the other parts of
the road network.

(a) (b)
Figure 3: (a) Initial hypotheses for road segments (b) Detail

The fusion of lines from low resolution and edges from high resolution has proven to be very useful in order to get more
reliable results. For easy scenes these steps are often sufficient to come up with correct hypotheses for road segments
which can easily be linked into longer segments. This advantage of the combination of line and edge extraction is also
confirmed by the results of (Trinder and Wang, 1998) who use a quite similar approach to fuse low and high resolution
imagery for road extraction.

However, the limits of this initial detection of hypotheses for road segments become clear when the approach is applied
to urban or suburban areas. Inside the village the number of correct initial hypotheses for road segments decreases
tremendously, in scenes with many buildings most of the hypotheses are displaced due to shadows and occlusions, or even
completely wrong (cf. Fig. 3).

Putting the correct hypotheses together and eliminating false ones is the task to be solved during the next steps. In
module I geometric properties of neighbored road segments are used to establish hypotheses for connections between
these segments. The connection hypotheses are verified by analyzing the gap between the segments based on radiomet-
ric and geometric criteria (e.g., thresholds on mean gray value, difference in width and direction). Applying so-called
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“ribbon snakes” showed to be a very useful method to find a path between two road segments and to verify the con-
nection hypothesis. If the verification based on these criteria fails, an attempt is made to explain the gap between the
neighboring segments by information about the local context, e.g., due to a shadow cast by a building. These grouping
steps are applied iteratively, and the thresholds on the distance and the direction difference are relaxed step by step.

Figure 4: Results of local grouping.

Simultaneously with the relaxation of the thresholds short segments
are removed. This elimination step is necessary because otherwise,
due to the relaxation of the grouping thresholds and due to the lim-
itations of the verification step, a lot of erroneous connection hy-
potheses would be accepted and would corrupt the further steps of
the road extraction. However, correct initial hypotheses are also
removed.

After the generation of hypotheses for connections and their veri-
fication, the road network is constructed (Fig. 4). Based on geo-
metric assumptions hypotheses for junctions are generated and ver-
ified. Ideally, after this step all road hypotheses are connected, and
there is a path between every pair of points on the extracted road
network. However, such a result cannot be expected, because the
extraction is primarily based on local information and is reliable
only in rural areas. In summary, module I uses only local infor-
mation to establish connection hypotheses and to verify them. The
network characteristics of roads are not optimally exploited. There-
fore, its most important feature compared to module II is the aspect
of local grouping. Apart from radiometric parameters which are
directly linked with the quality of the image, the threshold for the
elimination of the unconnected short segments is the most sensitive
parameter with respect to the quality of the results obtained with
this module.

3.2 Module II: Global Grouping

Module II is primarily based on the knowledge that roads have the function to connect different “important places,”
even if they are far away from each other. Roads form a (hierarchical) network that is mostly optimized to provide an
economic and convenient way for reaching different places. Because of this property, searching for the globally best
connection between such places is an essential step for road extraction. Moreover, since there usually exists only one
good connection between two “important places” (at least in open and rural terrain) the search can be restricted to the best
connection between two places.

Figure 5: Results of global grouping.

This module starts the extraction of the road network with the ex-
traction of lines, calculates attributes for these lines and assesses
the probability of the extracted lines to be a part of a road network.
Based on local line attributes (e.g., straightness, length) which are
then compared to the knowledge about shape and reflectance prop-
erties described by the road model, each line gets a quality measure.
The endpoints of all lines are used as vertices of a graph. The lines
which connect the endpoints are edges in this graph and for all pairs
of vertices which are not connected by a line a quality measure for
the shortest connection is calculated. The quality measure of the
“gap-edges” in this graph depends on purely geometric considera-
tions. The quality measures of lines and gaps are transformed by
linear fuzzy functions into values ranging from 0 to 1. An overall
fuzzy value of 1 means that the edge perfectly meets the properties
derived from the road model.

Once the weighted graph is constructed, the next step is to select the
“important places”. Since this approach knows nothing about addi-
tional objects of the real world, e.g., buildings, industrial areas, or
other sites of interest, we define “important places” as lines that rep-
resent portions of the road network with high probability. Hence,
instead of connecting true “important places”, we try to connect
pairs of high quality line segments (seed pairs). Additionally, the
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pairs have to be far away from each other, in order to emphasize the global network characteristics. The last step is to
calculate the best path between each seed pair. The sum of all best paths is supposed to correspond to the road network.

As this approach was designed for road extraction from multi-spectral satellite imagery, it is able to fuse lines extracted
from different channels. It can also be applied on a gray scale imagery, however, its capability can not be exploited very
much if only one channel is used. Results for this module, applied to our example image are shown in Fig. 5.

Although the criteria for the selection of these “important places” can be derived from semantically meaningful and
reasonable parameters, the selection of these points is one of the most sensitive steps within module II.

For the combination of the two modules the ability of module II to fuse line data from different images or even from
different sensors is essential, because the axes of road segments delivered by module I can easily used as an additional
input “channel”. Another useful feature of module II for our purposes is that different weights can be assigned to the lines
from different channels.

4 COMBINATION OF LOCAL AND GLOBAL MODULE

In this section we show two examples for the combination of module I and module II. In Sect. 4.1 module I and module II
are applied sequentially. This gives us a rough idea about the use of knowledge about the global connectivity of the road
network, which was up to now not exploited in module I. The integration of module I and module II described in Sect. 4.2
tries to make optimal use of globally best paths which can be found by module II and keeps the good geometric accuracy
of module I.

4.1 Sequential combination

Figure 6: Results of sequential combination of local
and global grouping.

The easiest way to combine the two modules is to combine them
sequentially. For this combination there is no need to change
anything of the internal structures of any module. The output
of module I (cf. Fig. 4) is used as additional input in module II.
The axes of the extracted road network are fused with the lines
extracted in the images at a reduced resolution of about 2 m. By
setting the weight for the axes resulting from module I much
higher than the maximum weight of the extracted lines, we en-
sure, that no axes will be lost in the resulting network delivered
by module II, i.e., we assume that the results of module I are
correct. Therefore, in this case the result of the combination
consists of the axes shown in Fig. 4 and some additional lines
which connect the fragmented result that was delivered by mod-
ule I. Comparing the combination result (Fig. 6) to the previous
results, then the most significant difference to Fig. 4 is the fact
that almost all parts of the extracted network are connected, and
that is possible for module II to find a path through the village
at the left side of the image. Compared to the stand alone result
of module II (Fig. 5) there are more side-roads and blind alleys
connected to the resulting network now, and the use of context
information allowed to bridge the shadow in the upper part.

4.2 Integrated Combination

In this section we describe the integration of module I and mod-
ule II. More exactly, we integrated module II in the extraction process of module I. As mentioned in Sect. 3.1 the elimi-
nation of wrong initial hypotheses for road segments has a strong influence on the resulting road networking. Basically,
in the elimination steps module I tends to eliminate not only erroneous ones, but correct initial hypotheses, too. Thus, it
achieves good correctness at the cost of completeness. However, in areas where the initial hypotheses for road segments
are very fragmented and short, e.g., in urban or built-up areas, the elimination of a few correct hypotheses mostly is
equivalent to significantly worsening the chances to extract the road network in this area at all. At this point module II
is employed to tell module I which of the short segments that are candidates for elimination should be kept due to their
importance for the connectivity of the road network.

Before initial hypotheses are eliminated by module I it sends all its road segments to module II and
labels them as “good” or “bad” candidates. Module II fuses all segments with the lines extracted
at reduced resolution and starts its road network extraction, using only the “good” segments as possi-
ble seed points. I.e., the task to select appropriate seed points for module II is solved by module I.
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Figure 7: Detail: Global link hypotheses (dot-
ted, white) and road segments (start segments for
global grouping are white, others, black).

Module II then returns all parts of its road network to module I
which are not covered by the “good” segments. From this result
module I gets information about the good segments which might
be linked according to global grouping criteria, and it can easily
decide which of the “bad” segments should be labeled as important
for the connectivity of the road network. This procedure is invoked
before every elimination step of module I.

Because the local grouping of module I bridges gaps between the
road segments, relaxes its grouping thresholds, and can rate other
road segments as “good” or “bad” ones, also the seed pairs for mod-
ule II can change. Therefore, it is necessary that module I asks
module II before every elimination step again.

In Fig. 7 this process is exemplified for an early elimination step:
The road segments displayed in white are considered to be “good”.
Candidates for elimination are displayed in black. The paths re-
turned by module II are dotted white lines. In this example the
overlap with a global path prevents some short road segments with
a bad rating from being eliminated.

Considering, that module I is quite good at detecting correct parts
of the road network, and that module II is able to provide good
hypotheses for the global connectivity, both modules benefit from
this combination.

Figure 8: Results of integrated combination of lo-
cal and global module

After the last elimination step all paths which were provided by
module II are added to the network extracted by module I. For those
paths which can not be verified using the methods of module I, at
least the position of the path is adapted to the features in the high
resolution image. This optimization is done, because the connec-
tion hypotheses from module II are known to be quite reliable, if
the seed pairs are well selected, and only the geometry of the paths
is known to be less accurate. The final result of this integration of
local and global grouping modules is given in Fig. 8.

5 EVALUATION

In the previous section we made some qualitative statements about
the results. Now, to get more imdependent statements we apply
a quantitative evaluation. For this evaluation we compare the ex-
tracted road networks with a reference network. The internal qual-
ity measures of module I and module II about parts of the extracted
road network are not taken into account. In the following we give a
short description of the external evaluation procedure we use. For
more details see (Heipke et al., 1998, Wiedemann, 1998). The ref-
erence data for this evaluation is shown in Fig. 9. It was manually
plotted at a resolution of 0.25 m. The width of the roads in the
reference network ranges from about 3 m to 8 m.

The evaluation scheme allows for statements about the complete-
ness and the correctness of the extracted roads by matching the extracted data to the reference data using the so-called
“buffer method”. For the correct parts of the extracted roads it provides further an RMS-value of the position of the
extracted axes with respect to to manually plotted reference. The completeness indicates how much is missing in the
network, whereas the correctness is related to the probability of an extracted linear piece to be indeed a road.

Completeness is defined as the percentage of the reference data that is explained by the extracted data, i.e., the percentage
of the reference data which lies within the buffer around the extracted data.

The correctness represents the percentage of correctly extracted road data, i.e., the percentage of the extracted data that
lies within the buffer around the reference network.
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Figure 9: Manually plotted reference network

In addition, the geometric accuracy of the extraction is assessed. It
is expressed as the RMS difference between the matched extracted
and the matched reference data.

The evaluation figures given in Tab. 1 show that the sequential com-
bination of module I and module II, i.e., of local and global group-
ing criteria, increases the completeness, and in the integrated com-
bination also the good correctness and RMS-values of the results of
the local level can be kept. The fact that the integration of global
grouping criteria enforces the extraction of a connected road net-
work is not expressed in the figures.

It should be noted that the networks resulting from the combined
approaches are inhomogeneous with respect to the geometric ac-
curacy since most of the resulting network originates from the hy-
potheses for road axes from module I and parts of the network orig-
inate from line extraction at 2 m resolution.

On principle, the evaluation results depend on the buffer width
which is chosen for the matching between reference roads and ex-
tracted roads. The larger we set the buffer, the more likely extracted
roads will be matched with roads in the reference. I.e., enlarging the
buffer can raise the correctness and completeness figures at the cost
of worser RMS-values. For the results given in Tab. 1 the buffer
width was set to 3 m, i.e., about half of the road width of an average road in the given image. In our case the influence of
the buffer width on the evaluation figures showed to be marginal. Only for very narrow buffers of less than 1 m the figures
change significantly.

Module I: Local Module II: Global I+II: Sequential I+II: Integrated
(Sect. 3.1) (Sect. 3.2) (Sect. 4.1) (Sect. 4.2)

Completeness [%] 81 71 86 87
Correctness [%] 94 88 90 93

RMS [m] 0.42 0.83 0.52 0.45

Table 1: Evaluation results for different combinations of local and global module

6 CONCLUSIONS AND OUTLOOK

By means of global grouping criteria, the knowledge about the topological properties of roads is incorporated, and we
are able to overcome some deficiencies of purely local grouping. We showed that a noticeable improvement especially
concerning the connectivity of the resulting road network is possible with an integration of global grouping criteria. One
point which still should be improved is the weak model for junctions. By now we can handle quite simple junctions only.

In contrast to semi-automatic approaches, where the human operator can decide about the use of automation tools in each
case separately and, what is even more important, he can accept or reject the results immediately, fully automatic systems
must be able to decide on their own, where to start their search for specific objects and what to do next. To be an useful
semi-automatic tool it is more important to optimize the interaction with the operator, than having a sophisticated self
diagnosis algorithms, which are necessary for fully automatic systems. Fully automatic systems can base their decision
only on knowledge about the object, which is available in the system or on the information which they can derive from
the provided data. Basically, many parts the knowledge of the system can be reduced to a set of parameters, which might
be hard-coded or selected by the user. The most important requirement for a fully automatic system is to be able to cope
with a wide variety of data sets without major parameter modifications. The number of user selectable parameters should
be reduced to a minimum and the influence of these parameters on the result of the system should be easily predictable
and self-evident also for an unexperienced user. In our case the combination of the two complementary approaches for
road extraction seems to be one important step towards this goal. The objection that by combining the two modules we
perhaps replaced some parameters in one module with at least as many needed in the other module is not really true. Here,
we were able to reduce the influence of some quite sensitive parameters, and to improve the quality of the results, too.
Even if the overall number of parameters increases, for us it seems to be more important that we could eliminate some
crucial parameters. Something which is not expressed by external evaluation criteria is the lower sensitivity to predefined
parameter settings of the integrated combination compared to the local grouping as stand alone system. Of course these
findings have to be validated on different data sets.
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However, also with this integration of local and global grouping methods the system is still restricted to less complex
scenes. E.g., by now we do not use enough knowledge about roads and their relations to other objects to be able to extract
roads in urban areas. In our opinion, in urban areas the influence of vehicles and road markings has to be considered,
and especially in downtown areas we have to integrate good height data to cope with the large number of occlusions and
shadows. The concept and first results for road extraction in urban scenes are described in (Hinz and Baumgartner, 2000).
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Airault, S., Ruskoné, R. and Jamet, O., 1994. Road detection from aerial images: a cooperation between local and global
methods. In: Image and Signal Processing for Remote Sensing, Proc. SPIE 2315, pp. 508–518.
Baumgartner, A., Eckstein, W., Mayer, H., Heipke, C. and Ebner, H., 1997. Context Supported Road Extraction. In:
Automatic Extraction of Man-Made Objects from Aerial and Space Images (II), Birkhäuser Verlag Basel, pp. 299–308.
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Verlag Basel, pp. 123–139.
Fischler, M. A., Tenenbaum, J. M. and Wolf, H. C., 1981. Detection of roads and linear structures in low-resolution aerial
imagery using a multisource knowledge integration technique. Computer Graphics and Image Processing 15, pp. 201–223.
Harvey, W. A., 1999. Performance Evaluation for Road Extraction. In: Workshop on 3D Geospatial Data Production:
Meeting Application Requirements, Paris, pp. 175–184.
Heipke, C., Mayer, H., Wiedemann, C. and Jamet, O., 1998. External Evaluation of Automatically Extracted Roads.
Photogrammetrie – Fernerkundung – Geoinformation (2/98), pp. 81–94.
Heller, A. J., Fischler, M. A., Bolles, R. C., Connolly, C. I., Wilson, R. and Pearson, J. I., 1998. An Integrated Feasibility
Demonstration for Automatic Population of Geospatial Databases. In: Image Understanding Workshop, Monterey, CA,
USA.
Hinz, S. and Baumgartner, A., 2000. Road Extraction in Urban Areas Supported by Context Objects. In: International
Society of Photogrammetry and Remote Sensing, Vol. 33, Part B, International Archives of Photogrammetry and Remote
Sensing, this proceedings.
Mayer, H. and Steger, C., 1998. Scale-Space Events and Their Link to Abstraction for Road Extraction. ISPRS Journal
of Photogrammetry and Remote Sensing 53(2), pp. 62–75.
McKeown Jr., D. M. and Denlinger, J. L., 1988. Cooperative Methods for Road Tracking in Aerial Imagery. In: Computer
Vision and Pattern Recognition, pp. 662–672.
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