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ABSTRACT

The research presents analysis of photogrammetry data and  adjustment methods, the classification scheme of
mathematic processing of data in photogrammetry. The authors shaped generalized mathematic model which is universal
for photogrammetry problems.  Here is enlighted the theoretical solution of joint adjustment of measured quantities, their
functions and control data. There are some examples of partial cases proceeding from generalized mathematical model.
The authors proves that the notion of the function of loses provides with the possibility to process series of
measurement  with the errors division different from Gaussian law. The article provides with the generalized model of
phototheodolite survey and the theoretical solution of the adjustment task when control points and linear elements of
exterior orientation are known with high and almost equal accuracy (as in case with the use of GPS observation). The
presented mathematical models may be used to create new algorithms, software, for extension of functional abilities of
software for analytical photogrammetric equipment and digital stations.

INTRODUCTIONS

The integration of data received from various GIS sources causes the importance of fundamental task of
photogrammetry, namely the reconstruction of objects and measuring its metric parameters by its photoimage. Various
methods and techniques are applied to process images received in the result of stereophotogrammetric survey. The
methods of the digital photogrammetry on the stage of geometrical construction of model and analyzing results of
measuring apply in full the apparatus of analytical photogrammetry. Thus nowdays it still significant to elaborate
research the models and algorithms for mathematical processing of photogrammetric data.

The authors have already elaborated a set of such models [3-8]. In this research the following problems are put for the
discussion: Classification scheme of methods of mathematical data processing in photogrammetry, Generalized
mathematical model of adjustment in photogrammetry, some partial mathematical models, mathematical model of
adjustment in phototheodolite survey.
Let us discuss in detail the problems mentioned above.

1. CLASSIFICATION OF METHODS OF MATHEMATICAL PROCESSING IN PHOTOGRAMMETRY PROBLRMS

The analysis of photogrammetry data and methods of adjustment permits to make a scheme containing main
characteristics of series of measured quantities, extra data and geometrical conditions that appear in different
photogrammetry tasks (Fig.1).
We are going to  concentrate on some explanation of this scheme, putting aside the classical points that do not need
discussion.
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1.1 Photogrammetry measuring suggests quantities measured directly on  photos. Usually they are flat right-angled
coordinate  of point. When the mathematical processing is carried on the results are  usually adjusted according to the
classical scheme.

1.1 Photogrammetrical
servey

⇒   PHOTOGRAMMETRIC        PROBLEMS

1.2 Function of  Photogram
metrical survey

 1. Partial calibrating of the photographs

1Type of values subjecte. d to
adjustment

1.3 Control data  2. Complete calibrating

                        ⇓  3. Self calibrating

2.1 Just occasional  4. Reverse  photogrammetric intersection
2.2 Occasional and
systematical

 5. Double photogrammetric intersection
2. Errors data nature

2.3 No errors or they are
disdainfully small

 6. Direct repeated intersection

                          ⇓  7.Relative orientation of a couple of the
photographs

3.1 YES  8.Relative orientation of three   photographs3.The possibility of including
the systematic errors to
adjustment

3.2 NO  9. Phototriangulation as  to the Join-method

                           ⇓ 10. Phototriangulation as  to the method of
the models

4.1 Square 11. Formation of quasiphotograph
4.2 Unsquare 12. Geodetic orientation of the

4.Function of  losses

4.3 Mixed route model

                           ⇓
5.1 YES 13. Geodetic orientation of the  model (the

couple of photographs)
5. Is the codispersive matrix
known

5.2 NO

                           ⇓
6.1 YES 14. Research  stereophotogram-

metrical devises
6. The matrix weight of
photogrammetrycs
 data known 6.2  NO                    �

                           ⇓
7.1 YES7. The existance of additional

geometrical conditions 7.2  NO

Pic.1. The choice of the model for mathematical processing photogrammetry survey

1.2 The space photogrammetry coordinates of point of model are considered to be the functions of  1.1-type quantities.
If one includes them in the adjustment he should use  well-known theorem [1] to  get strong theoretical solution. The
theorem [1]  states that if there is adjustment of  F - functions of  correlated measuringY  and the matrix is introduced

Q Y= ′α αΣ ,                                                                       (1.1)

then the result gained  will be identical  with the  adjustment of values measured directly.
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Here α ∂
∂

= =F

Y
F F Y, ( ), (1.2)

Y∑ - covariant matrix of measured  values

1.3 Bearing data  include the following data classes: elements of projection; elements of geodetic orientation of
photography (linear and angular); coordinates of the control points; geodetic survey ( angles, directions, length of lines,
exceeding  and so on); size and forms of objects and  some others.
A separate equation is set for each type of data. This equation later is introduced into  the general system of  equations
in the process of adjustment.

4.1-4.2. The notion of the function of losses and notion of minimization of regressive remains is widely used in the
regressive analysis [1]. The function of losses for the linear model of regressive function is as follows:

 ( )ρ ε ε=
+2 d

,  (1.3)

here ε − -  regressive remains,   d - parameter of unsquareness ( )− < ≤1 0d .

If d = -1, the so-called  robust-method of evaluation is applied. If d = 0, we got a square function of losses or in other
words classical method of  least squares.
The use of the notion of the function of losses  provides with the chance to process  the series of surveys with errors
division different from Gaussian.

5.1-5.2. To use of the hypothesis about dependence (independence) of measuring equitation it is necessary to know (or

neglect) the covariant matrix of errors of measuring. On the other hand,  introducing covariant matrix  
Y∑  into

mathematical model provides for logic and correct solution. This condition is used in the present research.

2. GENERALIZED MATHEMATIC MODEL OF PHOTOGRAMMETRY SURVEY AND ITS THEORETICAL
SOLUTION

In this article we are discussing the general problem of joint adjustment of  the measured quantity  functions, control
data and direct measuring in the following order:
Let us admit that there are set  the following data: n-dimensional  vector Y of measured quantities, which are free from

systematical errors; its covariant  matrix 
Y1

∑ ;   r - values of functions are  calculated.

T F Y= ( )1  (2.1)

It is necessary to make the adjustment  with respect to r-conditions.

0),,( =′′′Φ=Φ UYT (2.2)

here  ′ ′ ′ −T Y U, ,  correspondingly means  adjusted values of functions

′ = +T T T∆ ,  (2.3)

control data ′ = +Y Y γ  (2.4)
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additional unknown quantities ′ = +U U U∆    (2.5)

Besides , the measured quantities  Y2   with the covariant  matrix 
Y2

∑  are connected by the equations  of  corrections

with the vectors ,,UY
−

so that

ε γ2 2 2= − − −B S U W∆ .   (2.6)

The covariant matrix 
Y∑ of vector  Y   is  known.

We consider the errors for Y1  and Y2  to be  divided  according to the Gauss law, and for Y -  they differ a bit from the

Gauss.  The dimensions of all the vectors do not cause the indetermination of the linear equations system, that is  the

matrix possess the complete rang. Let us consider as well that the vectors  Y1  ,   Y2   Y   are correlated with one

another.

As far as  ′ = + = + = + = +T T T F Y F Y
F

Y
T∆ ( ( ) ,1 1 1

1
1 1

ε ∂
∂

ε αε  (2.7)

Than 1αε=∆T (2.8)

When  carrying out the  linearization (2.2)    we  get

∂
∂

∂
∂

γ ∂
∂

Φ ∆ Φ Φ ∆ Φ
T

T
Y U

U T Y U+
′

+ + ′ ′ ′ =( , , ) ,0

or A T B C U∆ ∆+ + + =1 1 0γ ω .  (2.9)

Substituting  expression (2.8) for   ∆T   taking into account  (2.6), we get the initial system if equations

D B C U

B S U

ε ω
ε γ ω

1 1 1

2 2 2

0

0

+ + + =
+ + + =

∆
∆

 (2.10)

where D A= α  (2.11)

Let us make the adjustment for (2.10)  under the condition of the minimization of function of   losses ,    with

( ) ( ) ( )ρ ε ε ρ ε ε ρ γ γ1 1
2

2 2
2 2

= = =
+

, , ,
d

 (2.12)

where  d - parameter of unsquareness.
Let us compose the function of Lagaran, for conditional equations (2.10) where we introduce the sum marked with Gauss

symbols instead of ′
−∑γ γ
Y

1
:

[ ]Ψγ γ γ γ= = + + ++ + + +
p p p p

d d d

s

d2
1 1

2
2 2

2 2... ,  (2.13)
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( )Ψ Σ Σ Ψ ∆= + + − + + + −− −ε ε ε γ ωγ1
1

2
1

1 1 1 11 2
2

' '
y y k D B C U ( )2 2 1 2 2k D B C Uε γ ω+ + +∆ .  (2.14)

Thus we can get partial derivatives:
∂
∂ ε

ε

∂
∂ε

ε

Ψ Σ

Ψ Σ

1
1

1
1

2
2

1
2

2 2 0

2 2 0

1

2

= − ′ − =

= − ′ − ′ =

−

−

y

Y

k D

k

,

,

∂
∂

Ψ
U

k C k S= − − =2 2 01 2 (2.15)

( ) ( )∂
∂

γ δ γ
Ψ Β Σ Σ
U

d d k B k B
y y

= + ′ + + − − =− −2 2 2 2 01 1
1 1 2 2 ,

( ) ( )∂
∂ γ

γ δ γ
Ψ Β Σ Σ= + ′ + + − − =− −2 2 2 2 01 1

1 1 2 2d d k B k B
y y

,

where [ ]δ γ γ γγ =
1 1 2 2∆ ∆ ∆... s s (2.16)

( )
∆ ∆= − =

=
∑γ

γd

j

p
j

or
d

j
1

1

ln

!
 (2.17)

When solving  (2.15)  for ′ε ε γ
1 2

, , ,   we get

ε1 11
= ′Σ y D k ,

ε2 22
= Σ y k ,

γ δ γ=
+

′ +
+

+∑ ∑2
2

2
21 1 2 2d

B k
d

B k
y Y

.  (2.18)

On the base of (2.10) and (2.15) we get the system of the equations correlate

( ) ,D D
d

B k
d

B B k C U BY y Y
Σ ∆

1

2
2

2
2

01 1 1 2 2 1 1′ +
+

′ +
+

′ + + + =∑ ∑ ω δ γ

2
2

2
2

0
2

1 1 2 2 2 2
2+

′ + +
+

′ + + + =∑ ∑d
B B k

d
B k C U B

Y y
( ) .∆ ω δ γ (2.19)

The solution  completed by means of the method of consecutive exclusion of unknown quantities leads to finding out
the vector   ∆U   and correlate

( ) ( )∆U C M S R R C M S R R= − ′ − ′ ′ − ′− − −
11 11

1
12

1

12 11
1

13 ,  (2.20)
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( )k R R U R2 11
1

12 13= − +− ∆ ,  (2.21)

k N N k N C U N1 11
1

12 2 11
1

11
1

1= − − −− − −∆ ω  (2.22)

Here are introduced the following symbols

N D D
q

B B q dY Y11 1 11

2
2= ′ + ′ = +Σ Σ , , N N

q
B B

Y12 21 1 2

2= ′ = ′Σ ,,  N
q

BY Y22 22 2

2= + ′





Σ Σ ,

ω ω δ ω ω δγ γ1 1 1 2 2 2= + = +B B, , R S N N C R N N12 21 11
2

13 2 21 11
1

1= − = −− −, ,ω ω

M N N R R N11 11
1

12 11
1

13 11
1

1= −− − − ω , R N N N N12 21 11
1

12 22= − +− .
(2.23)

The covariant matrix  of adjusted vector  ∆U  is equal to ( )= ′ − ′ −∑ C M S R R
U 11 11

1
12∆

. (2.24)

 Basing on the task described we can formulate new variants of aerotriangulation. For example when one part of the net
is constructed by the method of models and another  part is constructed by the method of connections. Such
interpretation makes it  possible to fulfill in a new way the densibleness of the net  limited  by the couple of the
photographs. Besides it is possible to construct  models of locality and  relief.

3. SOME PARTIAL PROBLEMS AND MODELS

Let us discuss some partial tasks that proceed from generalized model (2.10) and which are of practical interest for
photogrammetry.

3.1.Measuring  Y2  was not made.

It leads the general statement to the task  of joint adjustment  of functions of measured quantities and the control data
with the mixed division of errors. Instead the system (2.10) we get

D B C Uε γ ω1 1 0+ + + =∆ ,  (3.1)

( )ε ω2 2 2 2
0= = = = =B S YΣ .

Then ( )∆U C N C C N= − ′ ′− − −
11

1 1

11
1

1ω ,  (3.2)

( )∆u
C N C∑ = ′ − −

11
1 1

 (3.3)

3.2.The task is analogous to the previous but with the condition that  for the errors ε 2   and γ    the law of the division

is  normal (Gaussian).

Then d = 0 and   

( )∆

Σ Σ

U C N C C N

N D D B B

= − ′ ′

= ′ + ′

=

− − −
11

1 1

11
1

1

11 1 1

1 1

1

ω

ω ω
ε γ

,

,

.

     (3.4)

∆U∑ - is expressed by the equation  (3.3)
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3.3. The initial equations are analogous to (2.10)  but    B2 0=  .

It means that the measuring for the control data was not made ( )Y 2 0= .  Then we get

( )
( )

∆ Σ Σ

Σ Σ∆

U C N C S S C N S

C N C S S

Y Y

U Y

= ′ + ′ ′ − ′

= ′ + ′

− − − − −

− − −

11
1 1 1

11
1

1
1

2

11
1 1 1

2 2

2

( ),

.

ω ω
 ( 3.5)

3.4. The task is analogous to the third, but the functions of losses for ε ε
1

2, and γ  are square.

 The solution will be as follows: ( )∆ Σ ΣU C N C S S C N SY Y= ′ + ′ ′ − ′− − − − −
11

1 1 1

11
1

1
1

22 2
( ).ω ω  (3.6)

The matrix ∆U∑  is analogous to  (3.3).

3.5 It is necessary to fulfill the joint adjustment of the measured quantities functions under condition when the errors
of control data can be neglected.

 The initial system (2.10).  Will be as follows:

D C U

S U

ε ω

ε ω
1 1

2 2

0

0

+ + =

+ + =

∆

∆

,

.
(3.7)

Here is B B
Y1 2 0 0= = =∑,       and

  
( )
( )

∆ Σ Σ

Σ Σ∆

U C N C S S C N S

C N C S S

Y Y

U Y

= ′ + ′ ′ − ′

= ′ + ′

− − − − −

− − −

11
1 1 1

11
1

1
1

2

11
1 1 1

2 2

2

( ),

.

ω ω
 (3.8)

Where       N D DY11 1
= ′Σ .

3.6. If there is no measuring Y2   in  task  five  we shall have  the adjustment of  the measured functions of quantities
with the additional unknown quantities U.
Then

         

.))((

),)(())((

,0

11

1
111

21

1

11

2

−−
∆

−−−

′Σ′=Σ

′Σ′′Σ′−=∆

=Σ===

CDDC

DDCCDDCU

S

YU

YY

Y

ω

ωε

(3.9)

The cases (1 - 6) described above do not restrict the list of the partial problems  that can be gained by the change of

coefficients A D B B C S, , , ,,2 1 , correlation matrix. ∑∑ ∑ 21
,,

YY Y
 and  quantity d. It should be noticed that it is

not diffucult to get  formulas  when the functions of losses for the vectors ε1   andε 2  are unsquare and are  analogous to

( )ρ γ  from   (2.12).
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4. MATHEMATICAL MODEL OF ADJUSTMENT IN  PHOTOTHEODOLITE SURVEY

The  problem of adjustment of data of phototheodolite survey is another partial case of generalized partial model.
The latter is based on the following data :  photogrammetric surveys (monocular or  stereoscopic) of  terrestrial
photograph, photo station  coordinates fixed by different means with the special accent on the use of GPS observation,
slope (Shift) angle of photos,  space coordinates of control (correction) points,  photography base data,  ccorrection
directions (vertical, horizontal).

The theory of photogrammetry provides for well-elaborated and described mathematical models, which admit that control
data are accurately known. Besides it is almost always admitted that elements of the central projection are accurately
known too, which means that making system gauge for  phototheodolite survey is not executed. This is caused by the
high metrics characteristics of surveying system in general.
We think that some practical and theoretical interest may be caused by other models for which  control data are
considered to be known with some certain preciseness and some corrections to photogrammetrical and control data are
found in the process of these data adjustment.
Under such condition the mathematical model looks as follows:

Φ+Γ++−= YDCSB )( δψδδε ,  weight ΦP

S
γ =          Sδ−                                                   SY+ , weight SP

ψγ =                       δψ−                                     + ψY , weight ψP

 Γγ =                                              −δΓ                 + ΓY , weight ΓP  (4.1)

=γ
?

 SB?
δ−                                                        Y ?

+  , weight ?P

βγ =   SB δβ−                           − β δD Γ             + βY   , weight βP

where

γ
S

 -  vector of corrections to measured coordinates of photo stations,γ Γ
 -– vector of corrections to measured

coordinates of control points,  γ ψ
 - vector of corrections to measured angle elements of exterior orientation,

Y ,Y S
, Yψ  , Y Γ  ,Y ?

,  Y β   - correspondingly vectors of measurements: photogrammetrical, coordinates of

photo stations, angle elements of exterior orientation, control points, basis, correction directions.

ε - vector of corrections to the measured quantities: ΓΨ δδδδ ,,, SE   - vectors of corrections to  elements of central

projection, linear elements of exterior orientation (photo station coordinates), angle elements of exterior orientation,
space coordinates of the point of the object.

−iP   – weights of corresponding measured quantities.

In this case it is necessary to explain two last equations out of  [4.1] which are connected with the basis and correction
directions.

The length of photography basis and its angle orientation is the function of the left and right centers of photography.

Therefore this type of equation is always reduced to the model with correction γ
?

, an absolute term Y ?
 and matrix of

partial derivatives ?B .
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The same situation is noticed for correction directions (horizontal and vertical angles) which may be presented as space
coordinates functions of the center of projections and the point of the object. Thus this type of equation is reduced to

the model with the correction γ β , an absolute term Yβ  and matrixes of partial derivatives Bβ  and Dβ .

System (4.1) presented  in general terms will look as follows:

ε = − −Y AX DZ ,  (4.2)

γ = − −Y TX FZ
_

.

Vectors X and Z are to be found due to certain  priorly defined conditions, that characterize stochastic nature of
probabilistic model. This conditions may be as follows:
1)errors ε  and γ  are influenced by the  Gaussian  law of division. They are  mutually uncorrelated and uncorrelated

inside groups ε  and γ  (this is classical method of the smallest square; in this case the diagonal matrix of weighs is

known for vectors ε  and γ :

 P
p

p=










ε

γ
 ;                                             (4.3)

    

2. errors ε  and γ  are influenced by the division law which is different from Gaussian. They are  mutually uncorrelated

but correlated inside groups ε  and γ , thus co-variant matrix of measurement errors is known –












= ∑

∑∑
γ

ε (4.4)

The correction minimization model is adopted for errors with Gauss division and matrix of weighs (4.3)

min=⋅⋅+⋅⋅ γε γε γε PP
TT

 ,  (4.5)

And for errors with division different from Gaussian and matrix (4.3)  we may apply the condition of minimization of
unsquare function of loses, or  the condition of minimization of mixed function of loses [5]:

2 2
ε γ+ =

+d
min  (4.6)

Where d – parameter of square - − < ≤1 0d
Model (4.2) with condition (4.6)  and covariant matrix (4.4) is the most general from theoretical view.
Let us show (4.2) in the following way

ε
γ







=








 − 





⋅ 





Y

Y

A D
T F

X
Z

_  (4.7)

or   η = R - S U
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According to square functions of loses 
Tη η⋅ = min  and after transformations, analogic to shown above [6], we

get adjusted value of the unknown � ( )U S RT TS S= ⋅ ⋅ ⋅ ⋅ ⋅− − −∑ ∑1 1 1
or









Υ

⋅












⋅











⋅



















−

−
=













Ζ

Χ
=

∑
∑









⋅













∑
∑

⋅








−

−

−

Y

TT

TT

U
FD
TA

FT

DA

FD

TA
TT

TT

1

1

1

1

1

ˆ

ˆ
ˆ

γ

ε

γ

ε

(4.8)

and













∑+∑
∑+∑

⋅












∑+∑∑+∑
∑+∑∑+∑

=







=

−−

−−

−

−−−−

−−−−

YFYD

YTY

FFDDTFA

FTDTTA

Z

X
U

TT

TT

TTTT

TTTT

A

D
AA

11

11

1

1111

1111

ˆ

ˆ
ˆ

γε

γε

γεγε

γεγε

In the reduced form it looks as follows:

�

�

X
Z

Q Q
Q Q

b
b







= 





⋅ 





11 12

21 22

1

2
(4.9)

The valuation of probability maximum for dispersion 2σ  Is equal to

� ( �) ( �) / ( )S R S U R SU n rT2 1= − ⋅ ∑ − −−
 ,  (4.10)

Where n – the number of equations, included into system (4.2),
            r – the  number of the unknowns in the system (4.2).

In mixed function of loses ε ε γT d⋅ + =+2
min . On the ground of [4] we get









∆+
∆+

⋅







=







 −

22

11
1

2221

1211
~

~

b

b

QQ

QQ

Y

X
(4.11)

where              ∆ ∆1
1= ⋅ ∑ ⋅ ⋅ ∑ ⋅−T YT

γ γ( ) ,    ∆ ∆2
1= ⋅ ∑ ⋅ ⋅ ∑ ⋅−F YT
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 ,   where j=1,2,3……,p – the number of series members (usually 4≤p ).

G K T= −( )1
,    K KT ⋅ = ∑γ  (4.12)
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The valuation of the dispersion 2σ  is equal to:

~ ( ~)
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Thus the formulated above model (4.2) and solution (4.8)-(4.13) are considered to be the solution of the problem of
phototheodolite survey with the use of control data.

CONSOLUSIONS

1.The analysis of photogrammery data and methods of adjustment permitted to make a scheme containing main
characteristics of measured quantities series, extra data and geometrical conditions that appear in different
photogrammetry tasks. This scheme may be used for the choice  of the corresponding model of mathematical processing
of photogrammetric survey.
2. Chapter 2 presents  the mathematical model of joint adjustment of the measured quantities, their functions and control
data. This model is generalized in accordance with the wide class  of photogrammetrical tasks. Theoretical solution of
this model covers the wide range  of both, classical solution and new adjusting tasks of photogrammetry. It is proved
that the notion of  functions of loses (which is widely used in regressive analysis) makes it possible to process the series
of measurements with error division different from Gauss.
3. The introduction of new geodetic and photogrammetrical methods and  equipment (in particular – the use of GPS
observations provides with control of  photo stations and control points) require new approaches to the process of
analytical processing of  survey materials. The generalized mathematical model of phototheodolite survey (3.1)  takes
into accounts all new technologies of collecting and processing data if the joint adjustment of photogrammetrical
measurements and control data becomes useful and possible. Traditional methods may be treated as partial cases of this
model.
The authors present the theoretical solution of the adjustment task when control points and linear elements of exterior
orientation are known with high and almost equal accuracy (as in case with the use of GPS observation).
The presented mathematical models (2.10) and (3.1) and their solutions may be used to create new algorithms, software,
for extension of functional abilities of software for analytical photogrammetric equipment and digital stations.
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