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ABSTRACT

About five years ago, in Computer Vision, a linear representation for the relative orientation of three images by means
of the so-called Trifocal Tensor (TFT) was discovered using more parameters than necessary having no easily
comprehensible geometric meaning compared to the notion of inner orientation (IOR) and exterior orientation (XOR).
The relative orientation’s fundamental condition of intersecting projection-rays for each homologous point-triple is
described by four homogenous linear equations. The TFT also allows the usage of homologous image-lines for the
relative orientation which is not possible for the relative orientation of two images. Each triple of homologous lines
gives two linear equations. The TFT is made of 27 elements and so it can be computed linearly up to scale (since only
homogenous equations are used) using ≥ 7 point-triples or ≥ 13 line-triples or combinations by means of a linear least-
squares-adjustment minimising algebraic-error. Certain arrangements of the TFT’s elements form matrices with
interesting geometric properties, which can be used to compute the images IOR and XOR out of the tensor.

1 INTRODUCTION

The basic requirement for doing object reconstruction with a set of photographs is image orientation; i.e. the estimation
of the XOR and maybe the IOR of all the photographs. For some of these tasks the reference to a global system of
coordinates (‘absolute orientation’) is either not necessary or done later: in other words, no or insufficient control
features may be available. In such cases one works with the so-called ‘relative orientation’. This is the alignment of at
least two images in such a way that homologous projection rays intersect each other in a point in space.

The relative orientation of images is determined using only the observed image coordinates which are subject to
accidental errors. To decrease the error’s disturbing influence on the estimated unknowns an adjustment is done during
which the sum of squares of the errors is minimized. For this, two statistically well-founded models exist: the Gauss-
Markoff-model, in which each observation can be expressed in terms of the unknowns (aka ‘adjustment by indirect
observations’), and the Gauss-Helmert-model, in which only combinations of the observations can be expressed in
terms of the unknowns (aka ‘general case of least squares adjustment’).

The unknowns which are estimated in these two models are distinguished by the following properties: They are
unbiased and have least variance (‘best unbiased estimation’), the sum of the squared discrepancies is minimized
(‘least-squares-estimation’) and in the case of observations having a normal distribution they are a ‘maximum-
likelihood-estimation’;[Koch 1987]. In general, one works with a least-squares-estimation. However, it is important to
point out that such a least-squares-estimation is a best unbiased estimation only if the sum of the squares of the original
observations’ errors (so-called ‘measurement-error’ or ‘reprojection-error’) is minimized and not the sum of squares of
some other quantities (so-called ‘algebraic-error’).

For such an adjustment, however, linear equations are required. Since the equations of the central projection are non-
linear, they have to be linearized, and for this approximate values of the XOR (and under certain circumstances also for
the IOR) of the photographs are necessary, but in many cases the determination of these approximate values is quite
tedious.

In the relatively young discipline of computer vision central perspective images are also worked with. Due to the highly
non-linear character of the central-projection formulated in terms of XOR and IOR in computer vision a linear
representation for the central perspective relation between object and image is aimed for. This linear representation is
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achieved by projective geometry but at the price of using more parameters than necessary, which have no easily
comprehensible geometric meaning compared to the notion of IOR and XOR. The linear representation of the central
projection is obtained by means of a 3x4 matrix with 11 degrees of freedom (DOF) – the ‘projection matrix’ (see
section 2.1). Furthermore, certain indexed systems of numbers (so-called tensors) are used in computer vision, which
describe the relative orientation of 2, 3 and 4 images in a linear manner. For five and more images no such alternative
formulization exists. Using the so-called ‘essential matrix’ resp. ‘fundamental matrix’ one gets a linear representation of
the relative orientation of two calibrated resp. uncalibrated images (see section 2.2). The so-called ‘trifocal tensor’ Ti

jk

(TFT) enables a linear form of the relative orientation of three uncalibrated images. Moreover, with the so-called
‘quadrifocal tensor’ the relative orientation of four uncalibrated images can be presented linearly; e.g. [Hartley 1998].
Within this paper a closer look at the trifocal tensor and the relative orientation of three images will be given.

2 BASICS

2.1 The central projection using homogenous coordinates

Using homogenous coordinates it is possible to write the central projection of an image ψ in a very compact way. If the
XOR of ψ is given by the image’s projection center Oψ and rotation matrix R (from the image system to the global
system of coordinates), and if the IOR of the image is given by the principal point (x0, y0), the principal distance f and
two parameters (α β) modeling affine image deformations, then the central perspective image-point pT = (x y 1) – as a
homogenous vector – of an object point PT = (X Y Z) may be computed by the following product of matrices:
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‘~’ symbolizes that the left and right side in (2.1) are equal only up to scale. Using these matrices and vector p it is
possible to write the projection ray r from the center of projection to the object point P in a compact way: r = R⋅C1⋅p. If
a straight line m in the object space is given, then, in general, its projection in the image will also be a straight line λm.
Due to the point-line-duality in the 2-dimensional projective space it is possible to identify the straight line λm by a
homogenous vector λm = (a b c)T (up to scale). A reasonable way to define the scale of λm would be to set a2 + b2 = 1.
In this case c would be the orthogonal Euclidean distance of the image coordinate system’s origin to λm. An image-
point p is sited on λm if it holds: pT⋅λm = 0. Furthermore, given the image line λm and the elements of IOR and XOR it
is easy to determine the normal-vector nε of the projection plane ε going through Oψ, λm and m by: nε = R⋅C-T⋅λm

Note1: A linear mapping of points to points within the 2-dimensional projective space is termed ‘collineation’ and a
linear mapping of points to lines within the 2-dimensional projective space is termed ‘correlation’.

Note2: The matrix-multiplication C-1⋅R⋅[E3×3, -Oψ] would result in a 3×4-matrix – the projection-matrix – having 11
DOF due to the scale ambiguity.

2.2 The relative orientation of two images

The relative orientation of two images ψ1 and ψ2 (with IORs C1 and C2 and with projection centers O1 and O2 and
attitudes R1 and R2) is obtained by the intersection of the projection rays of homologous image-points p1 and p2; i.e. the
base-vector b = O2 - O1 and the two projection rays are coplanar. Using the results of section 2.1 we can formulate this
relation in an elegant manner using a quadratic form; e.g. [Niini 1994]:
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The cross-product was solved by: [ ]
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This property of intersection is independent of the origin and attitude of the object-coordinate-system. As a
consequence, the latter may be fixed, e.g., in the following way: Its origin coincides with the projection center of the
first image and the attitude of the axes of this photograph’s image-coordinate-system fixes the orientation of the object-
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coordinate-system’s axes: O1 = 0, b = O2, R1 = E3×3 (the so-called ‘relative orientation by successive images’). The
matrix F12 represents an alternative formulization of the relative orientation of two images in a linear way. In the
computer vision community F12 is termed ‘essential matrix’ (e.g. [Longuet-Higgins 1981]) in the case of calibrated
images and ‘fundamental matrix’ in the case of uncalibrated images (e.g. [Luong, Faugeras 1996]) whereas in the
photogrammetric community F12 is always termed ‘correlation matrix’ (e.g. [Brandstätter 1991], [Niini 1994]).

The latter name is derived from F12’s property that p1 resp. p2 is mapped by F12 to the corresponding epipolar-line in the
2nd image (F12⋅p1) resp. 1st image (FT

12⋅p2) on which the homologous partner p2 resp. p1 is constrained to lie (called
‘epipolar constraint’). So by means of F12 not only the relative orientation of 2 images is described in a linear way, but
it also allows a compact representation of the epipolar geometry inherent in two images. As a consequence, the epipoles
and epipolar-lines can easily be computed. The epipoles v12 and v21 are the left and right kernels of F12; i.e. F12⋅v12= 0
and FT

12⋅v21 = 0. F12 is also used for the so-called ‘epipolar transfer’, i.e. given 3 images and the fundamental matrices
F12, F13, F23 and the homologous image-points in 2 images, the homologous image-point in the 3rd image can be
computed by means of intersecting epipolar lines. But it should be noted that this epipolar transfer fails if the
corresponding object-point and the three projection-centers lie in one common plane. All these properties may be the
reason why F12 is also termed ‘essential’ resp. ‘fundamental’.

2.3 The homography induced by a plane

A ‘homography’ (according to [Shashua, Werman 1995] ‘a projective transformation of planes’) is a mapping
(collineation) of points from one image ψ1 to the points of another image ψ2. By means of a 3×3 matrix H12,σ the
homography can be expressed in the following way:

�� � ��  " ⋅~ (2.4)

The points p1 and p2 which are related in this way by H12,σ are the image-points of a point in 3d-space. The 3d-space-
points of all pairs of image-points which satisfy (2.4) lie in one common plane – the homography-plane σ. One may
say: “H12,σ is a homography from image ψ1 to image ψ2 induced by the plane σ”. Homographies can be used e.g. for the
detection of obstacles sited on a plane on which a robot is moving. If the XOR and IOR of the two images ψ1 and ψ2 are
given in the same way as in section 2.1 and if the plane σ is given by nσ

T⋅P = d; with nσ being the plane’s normal-
vector, then H12,σ has the following structure:
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The homography H21,σ due to the same plane σ but from image ψ2 to image ψ1 looks the same, except for exchanging
the indices 1 and 2. Generally rank(H12,σ) will be 3. Depending on rank(H12,σ) the following relations between H12,σ and
the epipoles v12 and v21 hold; [Ressl 1997]:
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Finally there is also a relation between H12,σ (rank >1)and the fundamental-matrix F12 of the two images:

[ ] � � �� �� � ���
⋅×~

(2.6)

2.4 A few basics of tensor calculus

A tensor is an indexed system of numbers. There are two kinds of indices: sub-indices are called ‘co-variant’ and super-
indices ‘contra-variant’. A tensor with contra-variant valence p and co-variant valence q has np+q components with n
being the dimension of the underlying vector-space; i.e. each index runs from 1 to n. Using these indices and Einstein’s
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convention of summation certain mathematical relations can be expressed in a very efficient way. This convention says
that a sum is made of all the same indices appearing as co- and contra-variant. So, for example the scalar product
s(x,y) = xT⋅y of two vectors x = (x1 x2 x3)T and y = (y1 y2 y3)T can be written in a shorter way as: s(x,y) = xiy

i. The
product A⋅B = C of two matrices A and B can be written as Ai

j⋅Bj
k = Ci

k. The contra-variant indices relate to the rows
and the co-variant ones to the columns. As it can be seen the index responsible for the summation disappears (i resp. j in
the examples above). Such indices are termed saturated (or dummy) while the remaining ones are termed free indices.
Using this indexation and the convention of summation the following expression of matrices may be simplified:
A⋅E⋅B + C⋅E⋅D = F    ⇒    Ai

j⋅Ej
k⋅Bk

m + C i
j⋅Ej

k⋅Dk
m = Ej

k⋅(Ai
j⋅Bk

m + C i
j⋅Dk

m) = Fi
m. The indexation and the convention

of summation are everything of tensor calculus that is needed for the following.

3 A HISTORICAL REVIEW

The existence of dependencies among 3 images of an object has been known in photogrammetry since, e.g., [Rinner,
Burkhardt 1972] (trilinear image-fields resp. trilinear relations). The term ‘trilinear’ means, in this case, that a
homologous line in the first and second image is related to a line in the third image. These trilinear relations are used,
e.g., to transfer image contents (image-pair of maximum image-content) or to create an object’s ground plan by means
of two images. Despite those and other interesting properties of these trilinear relations, they remained quite unused in
photogrammetry, maybe due to the lack of a compact mathematical formulization.

In computer vision the first to discover redundancies within the contents of 3 images were [Spetsakis, Aloimonos 1990].
They found three relations between homologous points and one relation between homologous lines in three images
expressed in terms of 27 coefficients, arranged in three 3×3-matrices. [Shashua 1995] showed that as a matter of fact
these 27 coefficients and one homologous triple of points in three views form together nine linear equations (four of
them being independent), which he called ‘trilinearities’, since they consist of products of three image coordinates and
one of the 27 coefficients. Furthermore [Hartley 1994] showed that the same 27 coefficients and a homologous triple of
lines actually create two equations. He also proposed for this set of 3x3x3 coefficients the term ‘trifocal tensor’,
nevertheless the tensor is sometimes also referenced as ‘trilinear tensor’.

4 THE TRIFOCAL TENSOR AND ITS OBSERVATION EQUATIONS

Given are three images ψ1, ψ2, ψ3. In view of a relative orientation the first image’s projection center O1 is set to 0. So
the central projection of these three images is given by:
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If the images λ1, λ2, λ3 of a 3d-straight-line m (not lying in the epipolar-plane of O2 and O3) are given then it can be
shown that the following relation holds:

( ) ( ) ���� � ¡ ¢�¡�¡  ¢� �¢ ⋅⋅⋅+⋅⋅⋅−£ (4.2)

So using (4.2) the mapping of m in image ψ1 can be computed using the images of m in ψ2 and ψ3 and the orientation
elements A, B, v21, v31. If the products and sums in (4.2) are replaced by tensorial-expressions we get the following
three-lines-relation (the indices i, j, k running from 1 to 3 are put in brackets for better distinction):
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Ti
jk is the trifocal tensor which is not unique, because it depends on the choice of the 1st image (this is expressed in (4.3)

in such a way that only λ1 can be predicted by λ2 and λ3 – no way for a prediction of λ2 by λ1 and λ3 or of λ3 by λ1 and

λ2). If one multiplies this three-lines-relation (4.3) by ( ) )(
111 1 ±

² ³µ¶ ==·¸ – a point in image ψ1 lying on λ1 – one gets:
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This is one single point-line-line-equation. If instead of the homologous lines λ2 and λ3 the homologous points

( )¾¿À 122=ÁÂ  and ( )ÃÄÅ 133=ÆÇ  are known – so {p1  p2  p3} forming a homologous point-triple – one can use

these image-points to create fictitious lines in each of the two images (ψ2, ψ3). With h = (2,3) these three lines are the

line ( ) ÈÉÊ−= 10ËÌ Í  going through ph parallel to the x-axis of image ψh, the line ( ) ÎÏÐ−= 01ÑÒ Ó  going through ph

parallel to the y-axis of image ψh and the line ( )ÔÕÕ ÖØ 0−=ÙÚ Û connecting the origin of the image-system of image ψh

and the image-point ph. Using these three lines one has 3×3 = 9 possibilities to choose λ2 resp λ3 out of the set
{µx,2  µy,2  µ0,2} resp. {µx,3  µy,3  µ0,3} to form equation (4.4). These nine equations are the nine trilinearities reported in
[Shashua 1995]. Since only four of them are linearly independent one may erase µ0,h and combine the other two to the

matrices 





−
−= Ü

Ü
Ý
Þ

10
01ßà

. Then, using again tensorial-expressions we can write four independent trilinearities (three-

points-relations) in the following form, which are valid as long as no image-point {p2  p3} is sited on the line of infinity:
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The fourth possible relation within three images would be a point-point-line-relation. Given the homologous point p1

and the homologous line λ2 resp. λ3 then the homologous point p2 resp. p3 can be computed by:
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The trifocal tensor includes all the projective geometric constraints inherent in three views, so it plays the same role for
three views as the fundamental matrix plays for two. If one has homologous points or lines in two views, the location of
the homologous partner in the third view can be computed by means of the tensor using equations (4.6) resp. (4.2). This
‘tensorial-transfer’ of points works even in the case when the epipolar-transfer of points by means of fundamental
matrices fails. The tensorial-transfer of lines, however, fails for object-lines lying in the epipolar-plane of O2 and O3.

Although the tensor depends on the XOR and IOR of the three views, it can be computed from image correspondences
alone. So if one wants to compute the trifocal tensor for three given images, it holds: Every homologous triple of points
resp. every homologous triple of lines gives four resp. two independent equations expressed linearly in the elements of
the tensor; i.e. the equations (4.5) resp. (4.3). The trifocal tensor allows the use of homologous lines for the relative
orientation for the first time; this was not possible with the fundamental matrix.

Since the tensor is made of 3×3×3 = 27 elements it may be computed given a sufficient number of point-triples (≥ 7) or
line-triples (≥ 13) or combinations using a least-squares-adjustment by minimising the homogenous equations’ right
side. Since these equations (4.5) resp. (4.3) are homogenous the trifocal tensor is determined only up to scale (same
property for the fundamental matrix) and so this scale has to be chosen; e.g. by ||Ti

jk|| = 1, which leads to an eigen-value
problem [Hartley 1994]. For such a linear solution no approximate tensor is needed. One must be aware, however, of
the fact that such a linear solution is obtained by minimising non-meaningful quantities whose minimization is justified
neither geometrically nor stochastically, since not all of the point observations are treated the same way, i.e. the
observations’ weights become dependent on the point location in the images (i.e. minimising ‘algebraic-error’ instead
of ‘measurement-error’).

Besides the fact of minimising algebraic-error, this linear solution has also the disadvantage that it is totally over-
parameterised because it is computed with 26 unknowns although the relative orientation in the case of three calibrated
images has only 11 DOF and in the case of three uncalibrated images 18 DOF. So we see that the tensor’s elements
should meet with 16 resp. 9 constraints (one of these constraints is the tensor’s scale which has to be fixed in advance).
So, this unconstrained linear solution minimising algebraic-error will have a strong bias depending on the image-noise
(and the image-distortion, which are not included in the TFT-modelling). By minimising measurement-error without
considering the mentioned constraints the situation gets slightly better. According to [Torr, Zisserman 1997] these
constraints have been investigated but are not as yet thoroughly understood. In [Papadopoulo, Faugeras 1998] 12
constraints can be found; i.e. some of them should be dependent. All of these constraints are non-linear and are partly
expressed in terms of the epipoles.
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To compute a tensor that meets with these constraints but avoiding to explicitly include them in the computation one
possibility is to introduce a new parameterisation for the tensor having exactly 18 coefficients. One such method is
presented by [Torr, Zisserman 1997]: By choosing E3×3 for the IOR-matrix C1 – which makes no difference for the
projective relations – it is possible to compute the tensor by six homologous point triples across three views. Of the 36
image-coordinates of these triples, convenient 18 coordinates are kept fixed. In this way a consistent and minimal
parameterisation of the tensor is achieved. The unknowns themselves are obtained as (up to 3) solutions of a cubic
equation. Due to this fixing of erroneous observations in the images one may entertain suspicion that errors in the
calculated tensor may be induced, furthermore no correct minimisation of the measurement-errors of all observations is
possible. And as it is shown by the results in [Torr, Zisserman 1997] the standard deviation depends on the choice of the
6 points resp. the fixed 18 coordinates.

Another consistent and minimal parameterisation is proposed by [Papadopoulo, Faugeras 1998]. There 18 special
quantities are selected as unknowns, parameterising the epipoles and some parts of the tensor. The solution for the
selected unknowns is unique and is achieved by minimising measurement-error. This method depends on approximate
values; e.g. obtained by the eigen-value algorithm mentioned. Furthermore that parameterisation itself is not unique; i.e.
depending on the configuration of the three images other 18 quantities have to be chosen.

The photogrammetric standard case of known IOR is not dealt with in the papers of the computer vision community.
Using calibrated images even 15 constraints must hold among the 27 elements of the tensor. Their form is still not
known, either.

5 THE HOMOGRAPHIES AND CORRELATIONS OF THE TENSOR

One can imagine the trifocal tensor Ti
jk formed as a 3×3×3 cube of numbers and the cube’s edges related to the

indices i, j, k. If we keep one index fixed we slice a 3×3 matrix out of the tensor. Since we have three indices we get
three different kinds of matrices – different also in their geometrical meaning. If we keep the i-index fixed as i = t =
{1,2,3}, we get the following matrix It (et being the tth column of E3×3):

ö
÷ ø

ö
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ÿ
⋅⋅−⋅⋅= (4.1)

It describes a linear mapping (correlation) of the lines λ3 in image ψ3 to the points p2 in the image ψ2. Such a point p2 in
ψ2 is the image-point of the intersecting-point of the projection-plane due to λ3 and the projection-ray R1⋅C1⋅et of image
ψ1. Therefore, all mapped image-points p2 lie on one common line lt in image ψ2 – the epipolar-line of this particular
projection-ray. The line lt can be computed by:

It
T⋅lt = 0       or by    lt ~ [v21]×⋅A⋅et ~ F12⋅et (4.2)

Since lt is the left kernel of It it is also interesting to look at the right kernel rt of It which is the epipolar-line in ψ3 of
that particular projection-ray:

It⋅ rt = 0       or by    rt ~ [v31]×⋅B⋅et ~ F13⋅et (4.3)

If all three rt and lt are computed and arranged as the rows of the matrices R× and L× then the epipols v21 and v31 can be
computed quite easily:
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The columns of It are linear-combinations of the two vectors v21 and A⋅et , so the rank of It will be 2 in general. These
three It-matrices are the basic element for [Papadopoulo, Faugeras 1998] to find their consistent and minimal

parameterisation. The 12 constraints they found are: rank(RX) = 2, rank(LX) = 2 and 
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If we keep the j-index fixed as j = t = {1,2,3}, we get the following matrix Jt (et being the tth column of E3×3):
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Jt is a homography-matrix from image ψ1 to image ψ3 due to the plane αt whose position and attitude is determined by
image ψ2; in detail αt goes through O2 with nαt = R2⋅C2

-T⋅et and dαt = -v21
(t). Similarly if we keep the k-index fixed as k

= t = {1,2,3}, we get the following matrix Kt (et being the tth column of E3×3):

����� ���  � ⋅−⋅⋅= ! " #$
31 (4.6)

Kt is a homography-matrix from image ψ1 to image ψ2 due to the plane βt whose position and attitude is determined by
image ψ3; in detail βt goes through O3 with nβt = R3⋅C3

-T⋅et and dβt = -v31
(t).

Besides their geometrical properties (discussed earlier in section 2.3) these two groups of homography-matrices are of
interest because of two things: Firstly, with the equations of section 2.3 it is possible to compute the missing epipoles:

% &'( && %%'% &% ('& (( %%'% ( )*))+))+))*) ⋅=⇒⋅=⋅=⇒⋅= −− , - . (4.7)

Because of the inversion in these computations at least one regular Jt- and Kt-matrix is needed. Since the determination
whether a matrix is singular or not using noisy data is an ill-posed problem, a good way to overcome this is to choose
that Jt- and Kt-matrix which has the best conditioning number because it is very unlikely (though possible) that all three
Jt- or Kt-matrices are singular.

Secondly, using these Jt- and Kt-matrices and the computed epipoles we can determine the fundamental matrices
between the views ψ1 and ψ2 and between ψ1 and ψ3 with equation (2.6). With these so derived fundamental matrices
and the given IOR-matrices C1, C2, C3 we are able to compute the rotation matrices R2 and R3 (by setting R1 = I, i.e. by
working with the relative orientation of successive images); [Brandstätter 1991]. In case of unknown IOR-matrices it is
possible to compute a common IOR for all images (C1 = C2 = C3); [Niini 1994]. But for this purpose a fundamental
matrix between ψ2 and ψ3 is necessary, which can be computed using a homography-matrix H between these images. A
rank-2 homography H23 resp. H32 from image ψ2 to image ψ3 resp. from image ψ3 to image ψ2 can be computed by:

/01 22304 1/04 22301 4 5678956879
⋅⋅−⋅=⋅⋅−⋅= −− : ; <: ; < => ? @ A=

2131

1
.

1
    with s, t ∈ {1,2,3} (4.8)

Whether H23 or H32 is to be chosen depends on which homography Js or Ks is the best conditioned one. An IOR- and
XOR-computation for a given tensor can be found in [Ressl 1997].

6 FUTURE WORK

Within this paper an introduction to the relative orientation of three images in a linear way by means of the trifocal
tensor was given. This trifocal tensor is of interest because of three reasons: Firstly, the theoretical and geometrical
background of the underlying relations (some of them have been reported in this paper); secondly, as a means for
computing approximate values for the XOR and the common IOR of three images (i.e. image orientation and
calibration); and thirdly, the trifocal tensor constitutes a first suitable means to detect blunders ‘on a small scale’ in
advance, on the contrary to gross-error-detection in the whole image set by means of data-snooping.

In [Torr, Zisserman 1997] a method called RANSAC (random sample consensus) is used for the blunder-detection. In
the course of that out of a large set of n point correspondences (order 100) a subset of six homologous points is selected
and the trifocal tensor underlying this subset is computed uniquely. Afterwards the number of outliers is computed; i.e.
those of the remaining (n-6) point-correspondences not being involved in the tensor’s computation having an error
above a certain threshold. After that the whole procedure is repeated for several (∼500) other subsets of six points out of
the given point correspondences. This is done to make sure (∼95% probability) that there is at least one subset
containing only good data points. Out of the resulting multitude of trifocal tensors the one having least outliers is
chosen as an approximation for the following least-squares-adjustment including all the correspondences considered as
inliers yielding an improved estimation.

Of further interest is the topic of dangerous surfaces. In [Shashua, Maybank 1996] it is shown, that if the trifocal tensor
is computed by means of >6 homologous point-triples no such surfaces exist, but 10 certain singular positions for the
points in space (including the projection centers). The arrangement of these dangerous points is not given, except that
these points arise as the intersection (base points) of a linear system of cubic surfaces. Also not given is their ‘sphere of
influence’, i.e. how far away points must lie to allow a solution. In this connection it must be mentioned that the
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dimension of ‘dangerous surfaces’ in practice always appears higher by one. [Luong, Faugeras 1996] use in this context
the term ‘critical volume’ for emphasizing that depending on the image noise ambiguities and inaccuracies of the
unknowns may also appear for configurations quite far away from the ‘exact’ dangerous surface. In [Maybank, Shashua
1998] it is shown that reconstruction from three images of six points is subject to a three way ambiguity which is
preserved as long as the optical center of the camera remains on a certain quadric surface; i.e. if 6 points are used for
computing the trifocal tensor a real dangerous surface can exist, which is of a special interest for the 6 point algorithm
proposed by [Torr, Zisserman 1997]. The question arises if this ambiguity due to six points can be broken by any
seventh point, or are there some constraints which such a ‘point of deliverance’ must meet.

The topics of gross-error-detection, dangerous situations, constraints within the TFT (also for calibrated images) and the
inclusion of image-distortion into the TFT-framework will be investigated in more detail in the near future in the course
of a research-project subsidized by the Austrian Science Fund FWF (P13901-INF).
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