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ABSTRACT

Rigorous sensor and dynamic modeling techniques are required if spatial information is to be accurately extracted from
video imagery.  First, a math model for an uncalibrated video camera and a description of a bundle adjustment with
added parameters, for purposes of general block triangulation, is presented.  The next topic involves the application of
invariance-based techniques, with constraints, to derive initial approximations for the camera parameters.  Finally,
dynamic modeling using the Kalman Filter is discussed.

1 INTRODUCTION

Unmanned aircraft vehicles (UAV’s) with video cameras on board are becoming a popular reconnaissance tool,
particularly for military applications.  Video cameras are generally uncalibrated and inherently contain significant lens
distortions that require careful mathematical modeling.  Unlike metric cameras, there are no fiducial marks visible on
video imagery to allow the precise location of image coordinates with respect to the principal point.  First, the
application of a bundle adjustment with added parameters to perform simultaneous photogrammetric georegistration of
a general block of video frames is presented.  Next, invariance-based techniques to compute initial estimates for camera
parameters are given.  Finally, dynamic modeling of video sequences using the Kalman Filter is discussed.

2 SIMULTANEOUS PHOTOGRAMMETRIC GEOREGISTRATION

2.1 Rigorous Sensor Model

Rigorous sensor modeling of a video sequence consists of
three major parts: 1) object-to-image transformation from
the ground-space coordinate system (X,Y,Z) to the
image-space coordinate system (x,y,z) modeled by
collinearity as a function of six exterior orientation (EO)
parameters; 2) the transformation from raw observed line
and sample image coordinates in a 2D pixel array to the
image-space coordinate system (x,y,z) using interior
orientation (IO) parameters to model several types of
systematic errors; and 3) platform modeling which
considers the stochastic relationship among camera
parameters of adjacent frames, the focus of Section 4.

The collinearity condition equations are a function of the
following parameters (see Figure 1):

xo,yo,c are the elements of interior orientation, the principal point offsets (xo,yo) and the camera principal
distance,

xb,yb observed image coordinates,
X,Y,Z ground coordinates corresponding to the image points,

Figure 1.  Video interior orientation
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M camera orientation matrix (function of these angles, ω, ϕ, κ),
XL,YL,ZL camera location,
∆c principal distance correction parameter,
K1,K2,K3 three radial lens distortion parameters,
p1, p2 two decentering lens distortion parameters, and
b1, b2 two in-plane distortion parameters (skew and scale difference).

2.2 Bundle-Block Adjustment Algorithm

For each image point that appears in a video frame, we write two collinearity condition equations of the form F(l, x)=0,
where l is the vector of observables (image point coordinates, xb, yb, for each image point) and x is the vector of  all
unknown parameters (IO elements and EO elements for each camera, and object point ground coordinates, X, Y, Z, for
each ground point).   The linearized set of collinearity equations takes the general form Av + B∆ = f  (Mikhail 1976).

A unified least squares technique is implemented in order to accommodate the recovery of different sets of unknown
parameters, thus allowing for the solution of various photogrammetric problems. The unified technique allows for the
incorporation of a priori information about the parameters, x; i.e, it treats the parameters as observations with a priori
covariance matrix, Σxx.  Implementation of the unified least squares adjustment technique with the general least squares
model can also be found in (Mikhail 1976).

The parameter, c, is fixed and taken as a constant in the adjustment.  The variables xb and yb are considered observables
in the adjustment.  The ground point parameters, X,Y,Z, are considered free adjustable parameters with very large
covariances for the unknown pass points.  The X,Y,Z for control points however have associated covariances that
represent the degree of accuracy to which they are known.  All of the six exterior orientation (EO) parameters, XL, YL,
ZL, ω, ϕ, κ, are free adjustable parameters with associated high a priori covariances.  Only a subset of the interior
orientation (IO) parameters, xo, yo, ∆c, K1, K2, K3, p1, p2, b1, b2, can actually be recovered in the adjustment since the
normal equations become unstable due to high correlations among them and between them and the EO parameters.  The
IO parameters to be recovered are free adjustable parameters with associated apriori covariances.

2.3 Experiments

The (VA Hospital) data set was used:  H = 900 m, GSD (nadir) = 3 m, t = 30°, f = 7.4 mm, format 320×240 pixels,
pixel = 20µm, σcontrol = 0.15 m, σimage = 0.5 pixel. The three cases were: 1) single frame resection, 2) three frames from
the same strip overlapping approximately 60%, 3) a block of six frames, three from each of two convergent strips.

Experiment 1:
Photogrammetric resection for a single video frame, Frame 41.  Several different sets of recovered interior orientation
(IO) parameters are tested for comparison.  The first ten cases are with 33 control points and 8 check points, while the
last two cases are with only 6 control points and 35 check points.  The control and check point RMS are tabulated in
Table 1.  In check point computation, note that the Z coordinate is fixed to its known value, while the X and Y
coordinates are computed using the inverse form of the collinearity equations.

Case:  IO Parameters No.
Control

No.
Check

Control Point RMS (m) Check Point RMS (m)

Points Points X Y plan. X Y plan.
0: xo, yo,∆ c 33 8 2.01 2.31 3.06 2.03 1.93 2.80
1: xo, yo,K1 33 8 1.38 1.37 1.95 1.41 1.82 2.30
2: xo, yo,∆ c,K1 33 8 1.28 1.39 1.89 1.31 1.83 2.25
3: xo, yo,∆ c,K1, p1, p2 33 8 1.30 1.33 1.86 1.34 1.89 2.31
4: xo, yo,∆ c,K1, b1, b2 33 8 1.30 1.36 1.88 1.37 1.87 2.31
5: xo, yo,∆ c,K1, p1, p2, b1, b2 33 8 1.30 1.33 1.87 1.33 1.85 2.28
6: xo, yo,∆ c,K1,K2 33 8 1.28 1.39 1.89 1.30 1.83 2.24
7: xo, yo,∆ c,K1,K2,K3 33 8 1.27 1.39 1.88 1.25 1.77 2.17
8: xo, yo,∆ c,K1,K2, p1, p2, b1, b2 33 8 1.27 1.37 1.87 1.28 2.07 2.44
9: xo, yo,∆ c,K1,K2,K3, p1,p2, b1,b2 33 8 1.32 1.30 1.85 1.51 2.40 2.83
1: xo, yo,K1 6 35 0.36 0.21 0.42 1.97 2.19 2.95
2: xo, yo,∆ c,K1 6 35 0.19 0.18 0.26 1.88 2.13 2.84

Table 1.  Resection Results for Single Uncalibrated Video Frame
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Comments: 1) adding IO parameters improves the control point RMS, but not for check points; 2) recovering a radial
lens distortion parameter, K1, is necessary for resection with an uncalibrated video camera (compare case 1 to case 0);
3) recovering ∆c improves the resection results (compare case 2 to case 1); 4) estimating p1, p2, b1, b2 does not improve
check point RMS (compare cases 3-5 to case 2); and 5) recovering K2 and K3 improved the results a little.  For a
practical number of control points, it is not feasible to use more parameters than those in case 2.

Experiment 2:
The second experiment involved the triangulation of three video frames with approximately 60% forward overlap.
Since the geometry of the intersection of rays was poor for this case, the value of the Z coordinate was fixed while the X
and Y coordinates of check points were computed.  Six cases of recovered IO parameters were tested and the RMS
results are tabulated in Table 2.  For this experiment, the best and most practical choice of sensor model parameters
appears to be case 2, which recovers xo, yo, ∆c, and K1.

Case:  IO Parameters Control Point RMS (m) Check Point RMS (m)
X Y plan. X Y plan.

1: xo, yo,K1 1.39 1.06 1.74 2.82 2.70 3.91
2: xo, yo,∆ c,K1 0.91 0.78 1.20 1.72 2.43 2.97
3: xo, yo,∆ c,K1, p1, p2 0.88 0.52 1.02 2.83 2.71 3.91
4: xo, yo,∆ c,K1, b1, b2 0.90 0.48 1.01 2.54 2.67 3.69
6: xo, yo,∆ c,K1,K2 0.90 0.79 1.20 1.72 2.43 2.97
7: xo, yo,∆ c,K1,K2,K3 0.90 0.80 1.20 1.71 2.43 2.97

Table 2.  Triangulation Results:  3 Frames (1 strip), 31 pass points, 7 control points, 15 check points

Experiment 3:
A block of six video frames, with 60% overlap and 100% sidelap, is used in a simultaneous triangulation.  This
experiment compares the use of a relatively large number of pass points, 19, to the use of only 5 pass points.  Note that
results from these two point configurations are shown in different columns of the same Table 3.  Therefore, only check
point results are shown.  For this relatively large block, check point RMS results are consistent for different
parameterization cases.  Note that the check point RMS results become significantly worse, especially in the Z
direction, when using relatively much fewer pass points.

Check Point RMS (m)
19 Pass Points 5 Pass PointsCase:  IO Parameters

X Y Z radial X Y Z Radial
1: xo, yo,K1 1.21 2.18 2.44 3.49 1.17 2.64 3.82 4.79
2: xo, yo,∆ c,K1 1.05 2.17 2.58 3.53 1.01 2.52 3.53 4.45
3: xo, yo,∆ c,K1, p1, p2 1.04 2.16 2.56 3.50 1.01 2.46 3.43 4.34
4: xo, yo,∆ c,K1, b1, b2 1.04 2.16 2.58 3.52 1.04 2.50 3.86 4.71
5: xo, yo,∆ c,K1, p1, p2, b1, b2 1.04 2.16 2.48 3.45 1.06 2.47 3.96 4.79
6: xo, yo,∆ c,K1,K2 1.05 2.17 2.58 3.53 1.03 2.53 3.51 4.45
7: xo, yo,∆ c,K1,K2,K3 1.06 2.22 2.51 3.51 Did not converge.
8: xo, yo,∆ c,K1,K2, p1, p2, b1, b2 1.06 2.16 2.59 3.53 Did not converge.

Table 3.  Triangulation Results:  6 Frame Video Block (2 convergent strips); 7 control points, 14 check points

3 INVARIANCE-ASSISTED VIDEO TRIANGULATION

Since the techniques in Section 2 are non-linear and require good parameter initial approximations, the invariance
techniques to be described in this section are practical, and can be applied as a first step in any photogrammetry-based
georegistration algorithm.  The purpose of invariance is to develop functional relationships such that the equations are
linear with respect to the parameters.  Unlike photogrammetry, however, the parameters used in an invariance
formulation do not usually have a one to one correspondence with the physical characteristics of the camera being
modeled or of the camera’s location and orientation.
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3.1 Linear Formulation – The P Matrix

The first step in recovering the camera parameters from a single video frame is to estimate 11 of the 12 elements of the
3×4 camera transformation matrix, P, which projectively relates ground coordinates to image coordinates as

[ ] [ ]TT ZYXPyx 11 ≈  in which (x,y) are image point coordinates, and (X,Y,Z) are ground point

coordinates.  The "≈" implies equality up to a scale factor.  To cancel out the scale factor, we can divide the first and
second equations by the third equation, respectively, noting that p34 = 1.
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where: m is the number of points used in the adjustment, 6≥m ,
j   is the point number, j = 1, 2, . . ., m,
Pi is the ith 1×4 row vector of the P matrix, i = 1, 2, 3, and
(xi, yi) are the observed image coordinates.

A linear pseudo least squares solution can be applied to Equations (1) to solve for the pij, by minimizing errors in the
linear equations obtained by clearing fractions.  If a rigorous refinement is desired, then least squares is applied directly
to Equations (1).  Since Equations (1) are nonlinear with respect to the unknowns, linearization in the form v + B∆ = f
(Mikhail, 1976) is required using the estimates obtained from the linear least squares solution as initial approximations.

3.2 Estimation of Photogrammetric Camera Parameters from P

It can be shown that the camera transformation matrix, P, can be partitioned as follows (Barakat and Mikhail, 1998):
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where     M is the orthogonal camera orientation matrix (function of ω, ϕ, κ) ,
xo, yo are the principal point offset parameters,
c is the principal distance, and
b1, b2 are the two in-plane distortion parameters; i.e., scale difference and skew, respectively.

The matrices M and A are obtained applying the QR decomposition, which decomposes a square matrix into an upper
triangular matrix and an orthogonal matrix.  The five interior orientation elements can be extracted from A, the camera
location can be extracted from T, and the orientation angles can be extracted from M as shown in (Barakat and Mikhail,
1998).

3.3 Constraints Among Elements of P

In cases when it is known that, for all practical purposes, the pixels are square and the x and y axes intersect at a right
angle, we can write two constraint equations to reduce the number of independent unknowns from 11 to 9.  Enforcing
the fact that the M matrix must be orthogonal, and b1=b2=0 in Equation (2) leads us to arrive at two such constraint
equations, G1 and G2.  If, in addition to the former two constraints, we have good estimates of the principal point offsets
or principal distance such as from camera calibration, then up to three additional constraints may be written, G3, G4 and
G5; i.e., one for each of the three known constants xo, yo, and c.  These three constraints would reduce the number of
independent unknowns further, to 6.  The five constraint equations, whose detailed derivation can be found in a
technical report, (Theiss and Mikhail, 1999), are:
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where xo
o, yo

o, and co are the apriori values of the principal point offsets and principal distance, respectively.  Note that
any combination of the constraints (Equations 3a-e) may be enforced depending on the photogrammetric implications
of the problem.

3.4 Fundamental Matrix (F) Relationship for a Pair of Video Frames

The fundamental matrix directly relates the image coordinates of 3D object points that appear on two images.  The 3 by
3 F matrix has eight unknown parameters since it is determinable up to a scale factor, and its (3,3) element is set equal
to unity.  In fact there are seven independent parameters, since F is of rank two and its determinant must be zero.  Once
solved for, the F matrix can be factorized into two relative camera matrices, Pr1 and Pr2 (Barakat and Mikhail, 1998).
Then the projective model coordinates, (X,Y,Z,1)r, can be computed as a function of the image coordinates of a point on
two images and their associated relative camera transformation matrices.

For uncalibrated cameras, the model coordinates computed using relative camera transformation matrices are in a 3D
non-conformal system.  Given the 3D model coordinates, the 15 elements of a non-singular 4×4 projective
transformation matrix, H, are computed.  Since three equations per point can be written, a minimum of 5 points is
required to solve for the 15 elements of H. (Note that the (4,4) element of H is set to unity.)  With more than 5 points, a
linear least squares solution is applied.  The 3D projective transformation H is from projective ground space to
projective model space.  Once solved for, the H matrix may be used to compute either absolute ground coordinates, or
the absolute camera transformation matrices.  Finally, the photogrammetric camera parameters can be extracted from
the camera transformation matrix, P, using the techniques discussed in Section 3.2.

3.5 Experiments

3.5.1  Single Video Frame Camera Parameter Recovery.  Experiments were run on two different video frames to test
the ability to estimate camera parameters, as a function of image and ground coordinates only, to be used as initial
approximations for rigorous photogrammetry.  Both frames came from the VA Hospital data set.  The first frame,
5800_17, was taken at 760 meters above mean terrain elevation with estimated principal distance and GSD (at nadir) of
16.7 mm and 1.3 meters, respectively.  The second frame, 6100-68, was taken at 950 meters above terrain with
estimated principal distance and GSD of 19.2 mm and 1.4 meters, respectively.  Both frames had nominal side-look
angles of 45 degrees from nadir.

The steps involved are:  1) compute the 11 elements of the P matrix using linear least squares, as described in Section
3.1; 2) apply the non-linear least squares with the first two constraints on the 11 elements of P, using the results of Step
1 as initial approximations, as described in Section 3.3; 3) estimate the real photogrammetric camera parameters from
the P matrix, i.e., the physical 6 exterior orientation and 3 interior orientation elements, as described in Section 3.2; 4)
use these 9 camera parameters as initial approximations in a rigorous photogrammetric resection; 5) use the principal
distance estimated from Step 4 and the fair assumption that xo = yo = 0 and 3 additional constraints (a total of 5
constraints) to estimate only the 6 exterior orientation parameters; and 6) Compute the RMS values using some check
points for each method to assess the performance.

The check point results for each of the video frames are tabulated in Table 4.  The X, Y, and Z ground coordinates of
control points were manually extracted from a triangulated stereopair of frame images on the digital photogrammetric
workstation.

3.5.2  Two-Frame Video Camera Parameter Recovery.  The pair has nearly 100% overlap, taken from different
flight lines.  The F-matrix technique was applied as described in Section 3.4.  The resulting camera transformation
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matrices, P, for each video frame which were used together to compute the X, Y, and Z ground coordinates of known
check points; the RMS results are shown in the first line of Table 5.

Check Point RMS (m)
Frame 5800-17, 8 control, 7 check Frame 6100-68, 8 control, 8 check

Method

No.
of

Unkn. X Y Planim. X Y Planim.
Inv 11 0.70 1.10 1.28 2.90 1.58 3.29
Inv 9 0.67 0.94 1.16 3.51 1.95 3.99

Photog. 9 0.67 0.94 1.16 3.51 1.95 4.02
Inv 6 1.16 0.70 1.34 3.60 2.90 4.63

Table 4. VA Hospital: Single Video Frame RMS

The camera parameters recovered from the P’s were then
used as input in a rigorous photogrammetric adjustment, and
check point ground coordinates were computed for the same
points.  Ten camera parameters were recovered for each
video frame, including 4 interior orientation (IO) parameters
in addition to the 6 exterior orientation parameters.  The four
IO parameters included the principal point offsets, xo and yo,
the principal distance, c, and a radial lens distortion
parameter, K1.  Although invariance provides good camera
parameter initial approximations as input to the rigorous
solution, rigorous photogrammetry with an additional
parameter for lens distortion provides better results.

4   DYNAMIC MODELING

4.1  Kalman Filter Estimation

Information obtained from the processing of previous video frames can be used to essentially constrain the solution of a
current frame to have reasonable parameter estimates that are consistent with its neighboring frames.  In other words,
there is a stochastic relationship and high correlation between at least some of the sensor model parameters of the
current and neighboring video frames.  The Gauss-Markov (GM) process is an example of such a stochastic model.  A
random process is a collection of functions of time.  More specifically, a first order Markov process is a continuous
random process that satisfies the criterion that the current state is dependent only on the state at the previous point in
time.

Kalman Filtering is a useful technique that allows implementation of sequential least squares adjustment while
simultaneously allowing the enforcement of a stochastic process.  It does this in the form of a state transition matrix,
and will be described in more detail in this section.

The Kalman Filter equations can be written as follows for the ith frame in a sequence of video images (Brown and
Hwang 1997),

1
xxxx )-(-,)( −−− +=∆−+∆=∆

iii e
T

ii
T

iiiiiiii QBQBBQKBfK (4a,b)

where     Ki is the Kalman Gain, and
−∆i  and 

−
i

Qxx are the a priori ∆  and xxQ , respectively, computed at the end of

processing the previous frame.

The following equations are for the covariance matrix of the updated state vector estimate, and estimates (projected
ahead to the next frame) for the state vector elements and associated covariance matrix:
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Check Point RMS (m)

Case
X Y Z

F-Matrix 1.79 4.78 1.72

Rigorous Photogr. 0.84 2.94 2.62

Table 5.  VA Hospital, Frames 7430_75
and 7030_70; Check Point RMS

Theiss, Henry J.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam 2000.822



where iφ  is the )( uu × state transition matrix that transforms the current camera parameter state vector of frame i to its

predicted state vector of frame (i+1).  If this sequential approach is to be modeled as a first order GM process, then iφ
is a diagonal matrix that contains qse−

on each diagonal element, where sq is a correlation factor unique to each
parameter q (note 10 ≤≤ qs ).  The value of sq is close to 0 for parameters that are highly correlated with their values at

the previous frame, while for the contrary sq is close to unity (Lee, 1999).

These Kalman Filtering equations provide the optimal parameter estimates for frame i, given all information from the

first frame through the current frame, written ii |∆ .  Therefore, the only frame whose parameters are estimated based on
observations from all frames is the last frame, n.  In order to obtain the optimal parameter estimate at an intermediate

frame i based on measurements from all n frames, ni|∆ , we need to apply a backward smoothing process following the
Kalman Filtering.

If smoothing is to be applied later, then for each frame in the Kalman Filtering algorithm it is necessary to save the a
priori and a posteriori parameter estimates and their associated covariance matrices.  At the completion of the forward

sweep, the final computations of Equations (4a) and (5a) result in nn|∆  and n|n
Qxx , respectively.  Proceeding with the

backward sweep, updated estimates, the smoothing gain, and the associated covariance matrix can be computed as
follows,

( ) ( ) T
ssxx

T
iixxsiinisiini iiiniiiiniiiiiii

KQQKQQQQKK
|1|1|||1| xxxxxxxx

1
|1|1|1|| ,,

+++
−+==∆−∆+∆=∆ −

+++ φ (6a-c)

4.2  Experiments

Video sequence 7430 from the VA Hospital was used to test the developed Kalman Filtering algorithm. The flying
height for strip 7430 was approximately 853 meters above ground level and the side-look angle was 30 degrees from
nadir.  The principal distance and ground sample distance (GSD) at nadir were estimated to be 354 pixels
(approximately 7 mm) and 2.8 meters, respectively.  The unknown camera parameters for each frame include the 6 EO
parameters and 4 IO parameters.  The IO parameters are the principal distance, principal point offsets, and one radial
lens distortion coefficient; i.e., c, xo, yo, and K1.

Since there was no GPS data available, known ground points were used to control the triangulation of the video
sequence.  The coordinates of the ground control points and check points were extracted from a controlled reference
image base (CRIB), which consists of an orthophoto and its co-registered digital elevation model (DEM). This

experiment uses 60 consecutive frames, 1 through 60, of
strip 7430.  There are 15 manually measured pass points
with as many as possible measured on each frame.  Control
consists of 17 known ground points on frames 1 and 60
only; Figure 2 shows Frame 1.  Since the geometric
intersection between any two intermediate frames of the 60
frame strip would be poor for computing check points, the
ground coordinates of the pass points themselves were
evaluated simultaneously with the triangulation.  Therefore,
the check point differences for this experiment consist of
the differences between the computed and the known
coordinates of the15 pass points.

For all cases in this experiment, Qxx was filled using the
following a priori standard deviations:  100 meters for XL,
YL, ZL and the X, Y, Z ground coordinates of all pass points;
0.1 meters for all ground coordinates of control points; 90

degrees for ω, ϕ, κ; 10 pixels for the principal point offset and principal distance; and 0.01 pixel-3 for K1.  The standard
deviations for the white noise, or square root of the diagonal elements of Qww corresponding to the EO camera

Figure 2.  VA Hospital, Strip 7430, Frame 1
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parameters only, started with 100 meters for XL, YL, ZL and 90 degrees for ω, ϕ, κ and were decreased by a factor of 10
for each of the eight cases from (2a) through (2h).  Thus, the standard deviations for XL, YL, ZL and for ω, ϕ, κ were:
100m and 90deg for case (2a), 10m and 9deg for (2b), 1m and 0.9deg for (2c), 0.1m and 0.09deg for (2d), 1cm and
30sec for (2e), 1mm and 3sec for (2f), 0.1mm and 0.3sec for (2g), and 0.01mm and 0.03sec for (2h).  The check point
results for cases (2a) through (2h) are tabulated in Table 6.

RMS (m) Bias (m) Standard Deviation (m)Case
X Y Z radial X Y Z radial X Y Z radial

2a 3.55 2.41 9.10 10.06 -2.01 -1.15 -6.20 6.62 2.93 2.12 6.65 7.57
2b 3.55 2.42 9.16 10.11 -2.04 -1.17 -6.28 6.71 2.91 2.12 6.66 7.57
2c 3.32 2.37 8.30 9.25 -1.98 -1.27 -5.99 6.44 2.67 1.99 5.75 6.64
2d 2.92 2.44 7.13 8.08 -1.76 -1.53 -5.38 5.87 2.33 1.91 4.68 5.56
2e 2.94 2.62 6.98 8.02 -1.54 -1.62 -5.06 5.53 2.51 2.06 4.80 5.80
2f 3.21 3.17 8.32 9.47 -1.57 -1.34 -6.95 7.25 2.80 2.88 4.57 6.08
2g 3.42 3.34 8.71 9.94 -1.62 -1.30 -7.33 7.62 3.02 3.08 4.71 6.39
2h 3.43 3.34 8.72 9.94 -1.62 -1.30 -7.33 7.62 3.02 3.08 4.71 6.39

Table 6.  VA Hospital Check Point Results

To evaluate the triangulation accuracy, the root mean square (RMS), bias (signed mean), and standard deviation in X, Y,
and Z of the check point differences was computed.  The relationship between these three measures for each of X, Y,
and Z can be written as follows:

22 bes −= , where     s = standard deviation, e = RMS error, and b = bias.

As the standard deviations of the white noise are decreased from case (2a) through (2d) the RMS of the check points
generally decreases.  However, as they are decreased further from case (2e) through (2h), the RMS’s increase, especially
in the Y, or flight, direction.  The results suggest that the optimum choice of standard deviations of white noise to model
the aircraft’s trajectory for this sequence of frames is 0.1 meter for XL, YL, ZL and 0.09 degrees for ω, ϕ, κ.

5    CONCLUSIONS

Bundle adjustment with added parameters is effective for modeling video imagery, but care must be taken to recover
the appropriate number and type of parameters depending on the geometry of the scene, and point configuration.
Invariance-based solutions are helpful in obtaining initial approximations for camera parameters; however rigorous
photogrammetry is superior with respect to accuracy.  Dynamic modeling provides a means for real-time processing of
video sequences, and incorporates the stochastic relationship among parameters of adjacent frames.
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