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ABSTRACT

In this contribution the author presents a complete approach in order to calculate surfaces of second degree fitted to 3D
point clouds for further applications mainly in architectural photogrammetry. A least square adjustment is used for this
purpose. The process consists of two distinctive parts. The first part involves the calculation of the parameters of the
general equation that describes a surface of the second degree. From these parameters the surface type is classified, and
approximate parameters for shape, size and orientation are calculated. These values are necessary for the second part in
which individual programs for each surface are described. As an example this process is applied to a conical tower on
the island of Andros in Greece.

1 INTRODUCTION

Architectural applications of photogrammetry require very often the determination of the shape of a building or of a
specific structure such as a dome, a vaulted ceiling, or a tower. In particular surfaces of second degree come frequently
upon in those applications. These are mainly the ellipsoid, sphere, cone, paraboloid, hyperboloid and cylinder. They can
fully or partially describe the object. single image photogrammetry techniques very often profit from the knowledge of
the analytical equation describing the surface of the object. (Theodoropoulou, 1999). Since stereo techniques mainly
complicate tasks in terms of equipment and algorithms, monoscopic methods are advised due to their simplicity and
effectiveness. Image rectification remains the most widespread tool for architectural and archeological applications and
in this case only one photo is adequate for the representation of the 3D space. The necessary information provided by
the second image could be replaced by a geometric property of the object. For example, if the object’s surface is smooth
and can be described by analytical expressions the second image is no longer indispensable. In this case the knowledge
of the mathematical equation describing the surface is essential to the application therefore the problem of surface
fitting to measured points arises. Such problems have been tackled repeatedly in the past where mathematically
expressed surfaces were developed or projected (flattened) successfully.

Ellipsoids are very often encountered in domes. An interesting example of fitting a set of photogrammetrically
determined redundant points on an ellipsoid was carried out at the Dome of the Rocks in Jerusalem. (Restle and
Stephani, 1988). Ellipsoidal domes were restituted by means of a technique based on projecting the surface
orthogonally on rectangular polyhedrons. The knowledge of the shape of the triaxial ellipsoid was essential. (Vozikis
and Jansa, 1980). As a subcase of the ellipsoid, the sphere is frequently used to describe architectural buildings. The
restitution of old globes entails the investigation of their shape and condition and therefore requests the adjustment of a
best fitting spherical surface (Kager et al., 1992; Hemmleb and Suthau, 1999). Redundant points determined
photogrammetrically were fitted to an elliptical paraboloid (Fotiou et al.,1991). The aim was to detect deformations at
the Dome of the House of Sports in Teramo. The shape was determined as well as the origin.

Cones and cylinders are moreover developable surfaces, i.e. they can be unwrapped or flattened on the plane without
any distortions (Karras et al.,1996; Hemmleb and Wiedemann, 1997; Karras et al., 1997). Conical surfaces have been
treated in the past , (Petsa,1993), whereas cylindrical surfaces have been subject to a more frequent research (Chandler
and Cooper,1991; Robson et al.,1992).

In all the cases mentioned above the question of determining the best fitting mathematical equation arises. For this
purpose points could be sampled in many ways, for example by surveying methods, or photogrammetry. Finding and
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defining the analytical equation is the first step for a further parametrical rectification of the objects. There is an
increase of architectural and archeological applications which demand a raster representation or even a 3D visualization
of the object.

2 SURFACE FITTING

2.1 The Equation of Second Degree

A surface of second order is defined as a set of points, which satisfy the following equation:

a1x
2 + a2y

2 + a3z
2 + b1xy + b2yz + b3xz + c1x + c2y + c3z + d = 0 (1)

The above equation contains 10 coefficients. By dividing the equation by any constant there are 9 effective coefficients.
Thus, in general one unique quadric passes through nine given points. In other words, if nine independent conditions are
satisfied by the 9 effective constants, the surface can be determined uniquely (Jain and Ahmed, 1991). These 9
coefficients represent the three parameters of the canonical forms defining shape (surface size and type) and the 6
parameters for surface position and orientation. The intersection of such a surface with a plane, is a second order curve.
If all six coefficients of second order are all zero, then the surface will represent a plane.

There are cases where the surface type is not obvious or there are doubts concerning the surface type, for example
between an ellipsoid and a sphere. By fitting this 9 parameter equation to the set of points, it is possible to classify the
surface uniquely by calculating the so called 4 invariants and 2 semi invariants of the quadric (Bronstein et al.,1997), or
by performing a 3D transformation to another cartesian coordinate system where the quadric will be in its simplest form
(canonical form). Quadrics could be classified in 17 different surface types. Among these, the ones most often
encountered in photogrammetry are ellipsoids, spheres, cylinders, paraboloids and cones. It is possible, from the general
9-parameter equation by performing a 3D transformation (translation and rotation) to get the parameters of the
canonical form. Nevertheless, once the surface type is determined, it is advised to process each surface with its own
canonical equations. The information that the photogrammetrist should determine for each surface is shape, size and
orientation (position and orientation).

2.2 The Least Squares Model

For the solution a Least Squares Adjustment based on conditions equations is selected (Dermanis and  Fotiou, 1997).
Other possible methods have been already mentioned in the literature (Robson et al.,1992) The coordinates of the
observed points are treated as observations. This allows different accuracies x, y, z  to be included in the model.
Given the observations (x,y,z) then the sum of the squares of the observation errors are to be minimized. The functional
model of the condition equations has the form:

u(xa,ya) = 0 (2)

xa: vector of unknown parameters

ya: vector of observed quantities

In matrix form the linearised equation has the form :

Ax – Bv + w = 0 (3)

w: vector of misclosures

A,B : design matrices

v : vector of observations

x: vector of unknowns
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The best linear unbiased estimates 
∧
x  are computed:

∧
x  = -N-1u = -(AT(BP-1BT)A)-1(AT(BP-1BT)-1w)

(4)

P : weight matrix

also

∧
x a=xo+

∧
x

(5)

xo : vector of approximate values of parameters

∧
v =P-1BT(BP-1BT)-1(w+A

∧
x )

(6)

ms

PT

−
= ννσ

ˆˆ
ˆ 2 ,

(7)

2σ̂ : a posteriori variance

s : number of equations

m : number of unknowns

The functional model for the estimation of the unknown parameters in the least squares adjustment is:

u = a1x
2 + a2y

2 + a3z
2 + b1xy + b2xz + b1xz + c1x + c2y + c3z + d  = 0   (8)

Where

 a1,a2,...d  : are the unknown parameters

 x,y,z       : the observations (coordinates)

These 10 coefficients a11...d  are parameters without any physical meaning. They tell us nothing about the shape or the
orientation of the surface in question. It is however possible to extract useful information from them and to answer the
following questions :

- which is the type of surface ? The 4 invariants can classify uniquely the surface.

- the required parameters for shape, translation and orientation can be extracted from the 10 coefficients.

Only 9 of the 10 parameters   a1...d4  are independent. Therefore in order to get a solution from the least squares
adjustment a constraint has to be introduced. This is a problem that has been already subject to research in the literature
before. It is common in photogrammetric applications to use the constraint  d = constant for example d = 1. However
this constraint can produce several problems as it is not invariant to translation and rotation for example in the
classification of the surface. Other constraints have been proposed in the literature. The author selected the constraint
(Bookstein, 1979):

a1+a2+a3+0.5(b1+b2+b3) = constant (9)

2.3 The Process

The nine independent parameters of the equation of second degree are calculated based on three dimensional
coordinates for a sufficient number of points. For the functional model (8) approximate values must be provided. For
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the observations the approximate values are the measured coordinates. However approximate values must be calculated
for the unknowns. Hence a special process for the calculation is applied. The approximate values for the parameters a1,
a2...d are computed by setting temporarily the parameter d = constant and creating another linear model.

f(xa) =constant (10)

The parameters are recalculated by using the constraint (9) and the final approximate values are inserted to the non
linear functional model (8).

The second part consists of individual programs that treat every surface type separately. The adjustment is performed
once more. This is necessary in order to get precision estimations of the parameters having a physical significance.
These are the ellipsoid (with the sphere as a subcase), the elliptical paraboloid, the one and two sheet hyperboloid and
the elliptical cone. Degenerate cases of surfaces of second order like a pair of planes or a pair of intersecting lines are
not included in this approach. The minimum number of independent parameters required to define the size and shape is
used. Additional unknowns for the position (translation vector) and orientation (rotation matrix) are included. For these
parameters  (which in this case have a physical significance) approximate values are required. From the results derived
in the first part of the program these approximate values can be extracted. The program finally provides :

- the necessary parameters defining shape and orientation

- the corrected (adjusted) coordinates of all the 3D points.

-precision estimation of all the quantities that have been estimated in the adjustment

2.4 Individual Surfaces

In this paragraph the individual surfaces of second degree are briefly presented. For each surface observation equations
are derived and the particularities are shortly discussed. For the adjustment of the individual surfaces the same model is
used, i.e. the observations are the measured coordinates of the points. This contribution does not exhaust all the cases of
second degree surfaces. The hyperbolical paraboloid is excluded because of its rareness in architectural applications.
The cylinder is on the other hand not mentioned since the derivation of the model and the observation equations are
repeatedly treated in the literature.

2.4.1 Ellipsoid  The equation of the triaxial ellipsoid has the form:

1
2

2

2

2

2

2

=++
c

z

b

y

a

x (11)

For the full knowledge of the parameters of the triaxial ellipsoid one should determine the semiaxes a,b,c and the
orientation: position (three unknowns for the origin xc,yc,zc) and a rotation matrix (three unknowns). The observation
equation is:

01
2

2

2

2

2

2

=−++=
c

z

b

y

a

x
u

(12)

Usually the coordinates of the points are referred to an arbitrary geodetic coordinate system, therefore orientation
parameters should be introduced.: Translation: x’ = x-xc, y’ = y-yc, z’ = z-zc. The rotations ω, ϕ, κ are introduced in the
form of a rotation matrix (Moffitt and Mikhail, 1980) as follows:

 x’’ =  r11(x-xc)+r21(y-yc)+r31(z-zc) (13)
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 y’’ = r12(x-xc)+r22(y-yc)+r32(z-zc)

 z’’ = r13(x-xc)+r23(y-yc)+r33(z-zc)

Let x’’ = u1, y’’ = u2, z’’= u3.

The observation equation can be rewritten:

013
1

2
1

1
1 2

2
2

2
2

2
=−++= u

c
u

b
u

a
u

(14)

Therefore the partial derivatives of the unknowns (a,b,c,xc,yc,zc, � � �) must be calculated for the matrix A, and partial
derivatives for the observed quantities (x’’,y’’,z’’) for the matrix B.

 A rotational ellipsoid occurs when two axes are equal, say a=b, whereas when a=b=c, the ellipsoid becomes a sphere.
For the rotational ellipsoid the unknown parameters are seven since a=b and the rotation over the axis  z is irrelevant.
For the sake of completion the derivation of the observation equation for the sphere is also given here. In order to
determine a sphere, 4 parameters are demanded, its origin xc, yc, zc and its radius R. Thus, in some cases, and within a
certain tolerance limit, the triaxial ellipsoid could be treated as a rotationary surface or even as a sphere. The
observation equation of the sphere is:

u = (x-xc)
2+(y-yc)

2+(z-zc)
2-R2 = 0 (15)

where (xc,yc,zc) the center of the sphere and R the radius.

2.4.2 One Sheet Hyperboloid : The locus of the equation:

1
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2

=−+
c

z

b

y

a

x (16)

is a hyperboloid of one sheet. If a = b the hyperboloid is a rotationary hyperboloid or a hyperboloid of revolution.

For the full knowledge of the parameters of the hyperboloid of one sheet one should determine the semiaxes a,b,c and
the orientation :position (the origin xc,yc,zc) and a rotation matrix. The observation equation and the orientation
parameters are introduced as in paragraph 2.4.1, so the observation equation can be written:
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2.4.3 Two Sheet Hyperboloid : The equation :

1
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=−−
c

z

b

y

a

x (18)

represents a hyperboloid of two sheets. The surface is separated in two portions, one above the plane z = c and the other
below the plane z = -c. For the full knowledge of the parameters of the hyperboloid of two sheet one should determine
the semiaxes a,b,c and the orientation :position  and a rotation matrix. The orientation parameters are introduced in the
same way as in paragraph 2.4.1 so the observation equation can be written:

013
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c
u

b
u

a
u

(19)

 2.4.4 Elliptical paraboloid : An elliptical paraboloid is a set of points with the following equation:

0
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=−+
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b

y

a

x (20)

Except for the origin, the surface lies above the xy plane. From the mathematical expression of the surface it is clear
that the parameter c should be arbitrarily set in order to compute the parameters a and b. So for an arbitrary value of c, a
pair of a and b will exist and vice versa. Six more unknowns are also in this case necessary for the orientation.
Therefore for the full knowledge of the parameters of the elliptical paraboloid one should determine the semiaxes a,b,
and the orientation :position and a rotation matrix. The orientation parameters are introduced as in paragraph 2.4.1, so
the observation equation can be rewritten:
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(21)

2.4.5 Elliptical Cone :  A conical surface is the surface which is generated by a straight line, the generatrix, which
always intersects a given curve the directrix, and always passes through a given point, the vertex. The quadric cone is an
elliptical cone whose canonical equation is:
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The cone is a central non-bounded surface. It extends to infinity. It is a simple curved surface, that is the tangent plane
intersects the cone on a line. If  a=b then the surface is a circular cone or a cone of revolution. The parameter c should
be arbitrarily fixed for the elliptical cone as for the elliptical paraboloid. For the full knowledge of the parameters of the
elliptical cone one should determine the semiaxes a, b, and the orientation :position and a rotation matrix. The
orientation parameters are introduced as in paragraph 2.4.1, so the observation equation can be rewritten :

03
1

2
1

1
1 2

2
2

2
2

2
=−+= u

c
u

b
u

a
u

(23)
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3 PRACTICAL EXAMPLE

The documentation of a hellenistic tower on the island of Andros, in
Greece was requested by the Hellenic Ministry of Culture. The tower has
an overall right circular conical form and is approximately 20 meters high
(Figure 1). Points on the external surface were geodetically measured in
order to perform the adjustment as well as the orientation of the images for
the documentation of the building.

At first the 208 measured points were introduced to the program “Adjust”
fitting the general equation of second degree. The constraint mentioned
above was set to the constant value 0.5. Values for the 10 unknown
coefficients were estimated and the invariants were calculated (Table 1).
Actually the invariant ∆ should be equal to zero for the conical surface. In
this case it looks as if the surface is identified as one sheet hyperboloid.
This is probably due to the poor point distribution. The vertex of the cone
is at 95 meters whereas the points are distributed to the lower 20 meters of
the surface. The double curvature indicated by this invariant can be
attributed to the roughness of the stones especially on the lower part of the
tower.

a1 = 0.4991 ∆ = 0.000945 Approximate Results
a2 = 0. 500 δ =-0.000348 a = 2.32 (m) a = 2,287 σ̂ a = 4,95(cm)
a3 =-0.00139 T = 0.2486 b = 2.32 (m) b = 2.274 σ̂ b = 4,78(cm)
b1 =-0.0022 S = 0.9986 xc= 211.791 xc = 211.649 σ̂ xc= 10.69(cm)
b2 =-0.000997 yc= 213.510 yc  = 213.445 σ̂ yc = 10.69(cm)
b3 = -0.00148 zc= 81 zc = 95.360 σ̂ zc = 1.8 (m)
c1 =-211.78121 ω = 0° ω =-0.002° σ̂ ω = 0.01°
c2 =-214.263 ϕ = 0° ϕ =0.035° σ̂ ϕ = 0.01°
c3 = 0.753733 κ = 0° κ =-1.538° σ̂ κ = 1.8°
d = 45267.4891 c = 44 (constant) c =44 (constant)

Table 1 : Program Adjust : Results Table 2 : Program Cone : Results

The overall a posteriori variance of the adjustment is :

cm01.6ˆ 2 =σ

Further on the program “Cone” for the adjustment of an elliptical cone needs approximate values for the unknowns a
and b, for the vertex (xc,yc,zc) and for the rotation matrix (Table 2). The approximate values for the semi axis are
calculated from the eigenvalues of the equation. From the above results one can immediately conclude that the cone is
circular since the values for a and b do not differ significantly. The translation vector is calculated together with the
invariants. Moreover, the coefficients for the rotation are practically zero, and so are the approximate values for the
rotation angles. The overall a posteriori variance of the adjustment is 6 centimeters. The distribution of the points
explains the big uncertainty of the value zc. It is clear from the results that the cone is circular and right i.e. the angles ϕ
and ω are small. The values for the semi axes a and b are calculated for the constant value c = 44m. In fact the angles β1

and β2 resulting from the ratios a/c and b/c, indicate how “open” the cone is, and are 2.975° and 2.958° respectively. A
program adjusting a right circular cone where the unknowns are the vertex and one angle β indicating the ratio a/c . This
best fitting adjustment uses another mathematical model, giving slight different estimations for xc, yc but a better overall
a posteriori variance (Theodoropoulou et al., 2000).

4 CONCLUDING REMARKS

It is evident that surfaces of second degree appear frequently in architectural buildings, momuments or other industrial
constructions. The knowledge of the mathematical equation which best approximates the surface of the object is very
often necessary in photogrammetric surveys and offers possibilities in particular in single image applications. The best
fitting process in this paper uses the method of least squares and minimises the sum of the square errors of the

Figure 1 : The hellenistic
conical tower on Andros
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observations. With this model adjusted coordinates for each point are calculated. Nevertheless other models where
another expression to minimise is selected, for example the perpendicular distance to the surface, might in some cases
provide more suitable results. Accordingly the choice of the mathematical model will influence the quality of the
adjustment.

The final product of a photogrammetric restitution is very often 2D vector or raster representation of the object. The
presented approach provides the user with a reference surface for the choice of the appropriate projection.
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