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ABSTRACT

The effects of horizontal density gradient and nonlinear drag offered by the solid particles on turbulent flow through
geological media are analysed analytically in the presence of a vertical gravitational field using Reynolds stress
analysis. The basic equations are governed by nonlinear Darcy-Forchheimer model and the fluid, which is at rest
initially, is accelerated by the baroclinic density field. A purely horizontal motion develops as the isopyenals rotate
towards the horizontal. The vertical density gradient decreases exponentially with time but the horizontal density
gradient remains unchanged. In the case of linear theory governed by Darcy equation the horizontal velocity has
uniform shear but decreases exponentially with time whereas in the case of nonlinear theory governed by Darcy-
Forchheimer equation the horizontal velocity has a variable shear both in time and space. It is shown that the flow is
stable because the gradient Richardson number decreases monotonically with time to %.

1 INTRODUCTION

In many geophysical applications like contaminant transport and mobility of petrol involving gravitational effects, the
Reynolds number is large of order of 10° because they involve gigantic length scale and complicated geometry. At that
high Reynolds number the flow in porous media generated instantaneously by horizontal density gradient is turbulent
no matter how small it is. The resulting turbulent motion affects the viscosity of the fluid in porous media and the
effects of Darcy resistance and Forchheimer drag may either increase or decrease the density gradient. In the extreme
case this density gradient may increase to such an extent that an effective discontinuity or front may develop as in the
case of non-viscous flow in the absence of porous media (Simpson and Linden 1989). The turbulent flow in the
absence of porous media has been extensively investigated both analytically and numerically using direct integration of
Navier - Stokes equations. The work on turbulent flow in porous media is very sparse. Recently Rudraiah et al
(1983,84,85,86,88,99) and Takatsu and Masuoka (1998) have studied this turbulent problem using Darcy-Lapwood
equation. The use of Darcy-Lapwood equations to study flow through porous media poses the problem of under
specified system (Beck 1972) when the basic flow is non-quiescent. This can be overcome by using Darcy-
Forchheimer equation (Rudraiah and Shivakumara 1999). Study of this turbulent model using Reynolds stress analysis
is the main object of the present paper.

2 FORMULATION OF THE PROBLEM

we consider two-dimensional motion of unbounded fluid saturated porous media in the(x, z) — plane with x-axis
horizontal having velocity u and z-axis vertical, i.e., anti-parallel to gravity g having velocity w. The basic equations
for this incompressible heterogeneous Boussinesq two-dimensional fluid through porous media are the Darcy-
Forchheimer equation.
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The fluid which is initially at rest so that q; = 0 and released from it with uniform initial gradients of density in the
horizontal and vertical, with the initial density given by

fi=ti(1-4x-482), 4>0, 4>0 at t=0 )

where & > 0 implies that fluid is heavy to the leftand & > 0 ensures static stability
we use the Reynolds decomposition namely,

Al 1 1

q; =9; +4;> A=84+1, p=p+p (5)

where the bar denotes the mean and prime denotes the fluctuation

qj +4j (qi +q;) (6)

Now ‘qi‘qi =

9;

But we know that (6a)

q; +9q;|< ‘ﬁi‘Jr

4i

In this paper, for convenience we force equality ( for example it will be valid when =A;q; where & >0 or
when q; and q; both have the same sign )

Then (6) becomes

laja; = { a|+a; } (ai +qi) (6b)
‘qi‘qi = ‘qi ‘qi +‘Gi‘qi +195(9; +19;(9; (6¢)
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Applying Reynolds averaging on this we get

‘qi‘qi = ‘qi‘qi +‘qi 9, +|di{9; +{9i (94
= \EI\EI +‘Ei ‘qi +]q;| q; + q;9; (6d)
By Definition al = ql . and ql = ql - ql = ql - al = ql - ql =0 (66)
So that (6d) becomes
‘qi‘qi = ‘ﬁi ‘qi +1951(9; (69
For the Closure problem, we use the Gradient Diffusion Model namely
4;|9; =kmVq; (6g)
which after using volume average becomes
v km _
qi19; = ~—— 49 (6h)
Jk
Then (6f), using (6h), becomes
_ = km _ .
‘qi‘qi = ‘qi‘qi - ?qi (61)
k

Observing that purely horizontal motion develops when the isopyenals rotate towards horizontal, and hence with no
further approximation but under the assumption w=0 equations (1)-(3) with the aid of (5), (61) and using Reynolds rule
of averages become

fig—=-— - —1u - ——— (7a)
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where K =|1-———— is the modified viscosity due to turbulence. Eliminating p between (7a) and (7b)

1

we get

1KU, 2fi) Cpll Uy

ﬁoﬁzt —gﬁx = - (8)
k Vi

where the suffixes t and x denote partial derivatives. Differentiating (8) w.r.t x and using (7d) we get

fixx =0 )

This is a necessary condition for the solution of (8) showing that the frontogenesis is associated with the presence of
vertical velocity and transverse circulation. We note that the horizontal density gradient may be uniform or non-
uniform. For non-uniform horizontal gradient we have to allow vertical velocity in (7c). In this paper however we
deal only with constant horizontal density gradient -pyo. and see whether frontogenesis is possible. Also, we find the
steady state and the nature of the flow when it is departed from the steady state.

3 SOLUTION OF THE PROBLEM

Replacing iy in (8) by —fia, and integrating w. r. t z and using the conditions u =uy =0 at z=0 we get

iK C
B +— T+—2 G2 =—4gz (10)

kK Jk

In the remaining part of this section we find the solution of (10) when the flow is linear valid in the Darcy flow
regime and nonlinear flow valid in the Darcy-Forchheimer regime.

3.1 Darcy Flow Regime

In this case, neglecting the nonlinear term compared to Darcy term in (10) and solving the resulting equation using the
condition u=0 at t=0,we get
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e ko (11)

Physically this implies that in the non-steady case the velocity attenuates with viscosity V , modified viscosity due to
turbulence K and small permeability k and varies with the vertical height z in the steady state as t — . From (11) we
see that as t — oo the flow tends to the steady state and hence the system is stable. This can also be proved from the
Richardson number analysis as explained below. Solving (7c) using (11) and (4), we get

) iKt )
a“gk Tk a“gk

fi=1, (l—ax—éz)+ﬁ0 > 5 AREES - fi zt (12)
i"K iK

This implies that the horizontal density gradient remains at the original value while the vertical stratification
continually increase with strength. The isopyenals rotate towards the horizontal with

iKt

a agk k ocgk2 Tk
tané=—+ t—— |+ e (13)

& 1K iK) 2

2

The velocity given by (11) depicted in Figure 1 shows that the vertical shear u, is independent of z but depends on

time t only and decreases to zero with time. A measure of the stability of flow is predicted by the gradient Richardson
number R; given by

¢,  a1’K? +a’giKkt 1
= + - (14)
- K
gé2k2 e kK © -1

R; decreases with time t (although it tends to infinity initially) and reaches 1/ 2 as t — . Therefore the turbulent
flow is linearly stable as in the laminar case (Rudraiah 1999).

3.2 Darcy Forchheimer Regime

In this case (10) after making dimensionless using the scales h, (ag)"?, (agk)”®  for length , time and velocity
respectively, takes the form

Koéu ) h h ,agk z
~Cpu°,  where6=—, Re=———, ¢=— (15)

Re Jk i h

Uy =-6¢-
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Equation (15) is of the form of Ricatti equation. To solve it, we first let u = a, a steady state of (15), and obtain

6K 6
and B=— (16)
Cp Re Cp

a2+§1a+B¢:0, with &=

To find the general solution of (15), we use the transformation

1 1
u=a+—, where — isthe departure from the steady state 17

\'% \%

Then (15), using (16) and (17), becomes

6K
vi—bv=Cy, where b=—+2aCy (18)
Re
1
The solution of (18), using the condition v =——at t =0, is
a
bt
C e
v=—b(ebt - 1)— - (19)
b a

Finally, the solution of (15), using (16), (17) and (19) is

pe P! K6

, Wwhere d:aCb(1+e_bt)+— (20)
d Re

This is numerically computed for different values of K and results are depicted in Figure 2. Here also we see that as
t > o, u —> a the steady state and hence it is stable. From (7c) using (20) and after integrating the resulting

equation, and using (4) ,we get

sat & aC
fi=(l-ax-az)+—+——log| 1+ b(e_bt—l)

21
6 6Cy b

We note that even in this nonlinear case the horizontal density gradient remain at its original value while the vertical
stratification varies continually with z and decays exponentially with space and time. Because of the non-linear nature
of T with z, it is cumbersome to find the angle at which the isopyneals rotate towards the horizontal. Further R;

defined in (14) takes the form
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ba 2 1+(1—2aCbt)e_bt
bl - - — + t+ bt
a b - _
aCb e +b aCb
R; = - 22)
2
bt abCe PY14(1-2aC, t)e o
(b+2aC, —2aCy bt)e abCpe aCy, t)e
where fr =1- - s C=b—2aCb

C+aCy e_bt (C+aCb e_bt)z

We note that in contrast to the linear case given by (14), the R; in the nonlinear theory depends exponentially both on z
and t and approaches a constant value as t — o. In this case the flow may be stable or unstable depending on the
value of R..

CONCLUSIONS

Both linear and nonlinear turbulent flow are discussed analytically using Reynolds stress approximation. The effect of
turbulence is found to decrease the viscosity effect by an amount given by K.  We found that horizontal motion
prevails both in the linear and nonlinear cases as isopyenals rotate towards the horizontal because the horizontal
density gradient remains unaltered while the vertical density gradient decreases exponentially with time. Analysis
reveal that the vertical shear is uniform in space in the case of linear theory while it is non-uniform in space in the case
of nonlinear theory. We conclude that the flow in the Darcy regime is monotonically stable because it tends to a
constant value as t — oo, while in the case of nonlinear theory the flow is stable or unstable depending on the value of
R.. Finally we conclude that in the case of constant horizontal density gradient frontogenesis cannot occur and to
predict frontogenesis we have to allow vertical flow in the equation (7c). The work in this direction is in progress.
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NOMENCLATURE

X; -(x,z) when
i=1 and i=3

rectangular coordinates

gi=u,w) when velocity in x and z directions

i=1 and i=3
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Figure 1

Velocity Vs Time for Linear case
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Figure 2

Velocity Vs Time for Nonlinear case
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