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ABSTRACT 
 
The purpose of feature extraction is to abstract substantial information from the original data input and filtering out 
redundant information.  In this paper we transfer the hyperspectral data from the original-feature space to a scale-space 
plane by using a wavelet transform to extract significant spectral features. The wavelet transform can focus on localized 
signal structures with a zooming procedure. The absorption bands are thus detected with the wavelet transform modulus 
maxima, and the Lipschitz exponents, are estimated at each singularities point of the spectral curve from the decay of 
the wavelet transform amplitude. The local frequency variances provide some useful information about the oscillations 
of the hyperspectral curve for each pixel. Different type of materials can be distinguished on the basis of the differences 
in the local frequency variation. The new method generates more meaningful features and is more stable than other 
known methods for spectral feature extraction. 
 

1 INTRODUCTION 

 Multispectral sensors have been widely used to observe Earth surface since the 1960’s. However, traditional sensors 
can only collect spectral data less than 20 bands due to the limitation of sensor technology. In recent years, spectral 
image sensors have been improved so as to collect spectral data in several hundred bands, which are called 
hyperspectral image scanners. For example, the AVIRIS scanners developed by  NASA  JPL provide 224 contiguous 
spectral channels. Theoretically, using hyperspectral images should increase our abilities in classifying land use/cover 
types. However, the data classification approach that has been successfully applied to multispectral data in the past is 
not as effective for hyperspectral data as well.  
 
As the dimensionality of the feature space increases subject 
to the number of bands, the number of training samples 
needed for image classification has to increase too. If 
training samples are insufficient for the need, which is quite 
common for the case of using hyperspectral data, parameter 
estimation becomes inaccurate. The classification accuracy 
first grows and then declines as the number of spectral bands 
increases, which is often referred to as the Hughes 
phenomenon (Hughes, 1968), as shown in figure 1. 
 
One of the approaches to improve the classification 
performance is to extract important features from the 
original hyperspectral data. The goal of employing feature 
extraction is to remove the redundant information 
substantially without sacrificing significant information. 
Some proposed feature extraction methods are based on 
stochastic theory (Hsu, 1999), such as the principal 
component analysis (Schowengerdt, 1997), discriminant 
analysis feature extraction (Tadjudin and Landgrebe, 1998), 
and decision boundary feature extraction (Lee and 

Figure 1. mean recognition accuracy vs. 
measurement complexity for the finite 
training cases (Hughes, 1968) 
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Landgrebe, 1993).  
 
Due to the high spectral resolution, it becomes possible to analyze the absorption characteristics of hyperspectral data. 
Symbolic descriptions of features can be used as quantitative indices of absorption bands to distinguish different 
materials. Some methods related to the physical characteristics are performed in the scale-space plane, such as the 
algorithms of spectral derivative ratio (Philpot , 1991) and spectral finger-prints (Piech and Piech,  1987). 
 
In this paper, we attempt to transform the spectral data from the original feature space to a scale-space plane by using a 
wavelet transform. The wavelet transform can focus on localized signal structures with a zooming procedure. The local 
frequency characteristics such as the Lipschitz exponents provide some useful information about the oscillation of the 
spectral curve for each pixel. Different type of materials can be distinguished on the basis of the differences in the local 
frequency variation. The method we proposed in this study is called modulus maxima feature extraction (MMFE) as the 
reason that the features are extracted according to the wavelet transform modulus maxima. The new method generates 
more meaningful features and is more stable than other known methods for spectral feature extraction. 
 
This paper first reviews some feature extraction methods that have been developed to speed up the process and increase 
the precision of classification. After that, the basic theory of wavelet transform is described for preparing the description 
of MMFE methods. Finally, three kinds of 220-band AVIRIS data are analyzed to illustrate our discovery and test to 
show the efficiency of the new feature extraction methods. 
 

2 SPECTREAL FEATURE EXTRACTION 

The high spectral resolution of hyperspectral data provide more information about the radiance of different materials, 
but the large amount of data in the high dimensional data space also create opportunities to extract meaningful spectral 
features. Generally speaking, features are any extractable measurement used. They may be numerical, symbolic, or both 
values. There are many approaches to extract important spectral features to reduce the dimensionality of hyperspectral 
data. In general, current known methods can be divided into two categories: the stochastic-based methods and the 
physical-related methods.  
 
2.1  Stochastic-Based Feature Extraction 

In the approaches of stochastic-based feature extraction, features are defined as band combinations that provide 
significant contributions to the statistical classification. The stochastic-Based methods allow for statistical treatment of 
multivariate data such as correlation analysis and regression, and finally produce quantitative results. The common 
method used for remote sensing application is the principal components transform (PCT). This method can remove the 
correlation between the spectral bands and concentrate the most variances in the first few components. Another method 
for generating a transformed set of feature axes in which class separation is optimized is called canonical analysis 
(Richard, 1986) or discriminant analysis feature extraction (DAFE). This approach uses the ratio of a between-class 
covariance matrix to within-class covariance matrix as a criterion function. Thus a transformation matrix is determined 
to maximize the ratio, that is, the separability of classes will be maximum after transformation. Besides, Lee and 
Landgrebe (1993) showed that discriminantly information features and redundant information features can be extracted 
from the decision boundary itself. The approach is called decision boundary feature extraction (DBFE). 
 
Although stochastic-based methods can be tailored to a wide range of classification problems, but there are some 
restrictions on the application of hyperspectral image For examples, the computation time of PCT is large for 
hyperspectral images; the number of training samples is usually not enough to prevent singularity or yield a good 
covariance estimate in DBFE.  
 
2.2  Physical -Related Feature Extraction 

The molecular absorption bands of water and carbon dioxide cause deep absorption features that complete block 
transmission of radiation. These spectral regions were avoided for traditional remote sensing of the earth’s surface 
(Schowengerdt, 1997). However,  hyperspectral data give laboratory-like curves with spectral resolution sufficient to 
describe key absorption features of many materials. The ability for spectral analysis has also renewed interest in 
extracting physical-related spectral features in contrast to stochastic approaches.  
 
One of the earliest physical-related feature extraction specifications for hyperspectral data was the calculation of image 
“residual” spectra for mineral detection and identification (Schowengerdt, 1997). This method emphasizes the 
absorption bands of different minerals relative to an average signature without absorption features.   
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A symbolic description called finger-print of the absorption bands for hyperspectral data was developed by Piech and 
Piech. The finger-print is a representation based on a scale space filtering of the hyperspectral data. A scale space image 
is a set of progressively smoothed versions of the original spectral curve. As the smoothing scale increase, features of 
the curve disappear until only a dominant spectral shape remains. The net result of scale space analysis of a 
hyperspectral data curve is a sequence of triplets. Each triplet describes a spectral feature and contains a measure of 
important directly related to the area contained within the spectral feature and the left and right inflection points of the 
spectral feature.  
 
Another method proposed by Philpot (1991) to reduce the effects of atmospheric scattering and absorption on spectral 
signatures is the derivatives analysis. The derivatives are estimated using finite divided difference approximation 
algorithm with a finite band separation (Tsai and Philpot, 1997), ii λλλ −=∆ +1 . The derivatives not only emphasize 

subtle spectral details, but also minimize illumination and atmospheric effects. Thus, derivatives are well-suited to 
extracting spectral features relating to specified target properties. 
 
In this paper, a wavelet transform is applied to extract physical-related features. The wavelet transform can focus on 
localized signal structures with a zooming procedure. The local frequency characteristics such as the Lipschitz 
exponents provide useful information about the oscillation of the spectral curve for each pixel. In next section, we first 
briefly introduce the basic theory of wavelet transform and then explain the theory of MMFE method. 
 

3 WAVELET-BASED FEATURE EXTRACTION 

3.1 Wavelet Transform 

The continuous wavelet transform which decomposes signals over dilated and translated wavelets was first introduced 
by Morlet and Grossmann (1984). A function ∈ψ L2( ) is named a wavelet if and only if  
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The wavelet transform ),( sufW  is a function of the scale and the spatial position x. It measures the variation of f in 
the neighborhood of u, whose size is proportional to s. When the scale s varies from its maximum to zero, the decay of 
the wavelet coefficients characterizes the regularity of f in the neighborhood of u. This is the key idea to detect the 
absorption band position from reflectance spectra.  
 
One can prove (Grossmann and Morlet, 1984) that the wavelet transform is invertible and f(t) is recovered with  
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3.2 Lipschitz Regularity 

Singularities and irregular structures often carry essential information in a signal. To characterize singular structure of a 
signal, it is necessary to quantify local regularities precisely. Lipschitz exponents provide not only uniform regularity 
measurements over time intervals, but also pointwise Lipschitz regularity at any point v. If f has a singularity at v, which 
means that it is not differentiable at v, then the Lipschitz exponent at v characterizes this singular behavior. (Mallat, 
1997)  
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If the wavelet has a compact support, the value of ),( suWf  depends upon the value of f(x) in the neighborhood of u, 
of size proportional to the scale s. At fine scales, it provides a localized information on f(x). Measuring this asymptotic 
decay is equivalent to zooming into signal structures with a varies from its maximum to zero. 
 
The relationship between the decay of the wavelet transform amplitude across scales and the pointwise Lipschitz 
regularity of the signal was described by Jaffard (1991). He proved a necessary and sufficient condition on the wavelet 
transform for estimating the Lipschitz regularity of f at a point v. Suppose that the wavelet ψ  has n vanishing moments 

and n derivatives having a fast decay. If ∈f L2( ) is Lipschitz n≤α  at v, then there exists 0>A  such that  
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Conversely, if n≤α  is not an integer and there exists A and αα ≤'  such that   
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then f is Lipschitz α  at v. 
 
In order to simplify the above necessary and the sufficient condition, we assume 
that ψ  has a compact support equal to ],[ CC− . The cone of influence of v in 
the scale-space plane is the set of points (u, s) such that v is included in the 
support of )()( 1

, s
ut

ssu t −= ψψ . Since the support of )( s
ut−ψ  is equal to 

],[ CsuCsu +− , the cone of influence of v is defined by Csvu ≤− . It is 

illustrated in Figure 2. If u is in the cone of influence of v then ),( suWf  

depends on the value of f in the neighborhood of v. Since Csvu ≤− , the 

conditions (5,6) can be written as 
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which is identical to the uniform Lipschitz condition given by Mallat (1997). 
 
3.3  Modulus Maxima of Wavelet Transform 

A wavelet ψ with n vanishing moments can be written as the nth 

order derivative of a function θ (Mallat, 1997), that is 
)()1( nnθψ −= , thus the resulting wavelet transform is a 

multiscale differential operator: 
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),(2 sufW , are respectively to the first and second derivative 

of f(x) smoothed by )(uf sθ∗ . For a fixed scale, the local 
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will correspond to the inflection points of )(uf sθ∗  (figure 3). 

For all scales, the local maxima points of ),(1 sufW can be 
connected as a set of maxima line in the scale-space plane (u, s). 

Similarly, the zero-crossings of ),(2 sufW  define a set of 
smooth curves that often look like finger-prints. 
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Figure 3. Local Maxima of ),(1 sufW  and the 

zero-crossing of ),(2 sufW  are the inflection 

point of function )(uf sθ∗ . 



                    Hsu, Pai-Hui

           International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Supplement B7. Amsterdam 2000.                   65

By detecting the positions of local maxima or zero-crossings from coarse to fine scale, we can obtain the positions of 
the singularity of a signal. The two methods are very similar, but the local maxima approach has several important 
advantages (Mallat, 1992). The smoothing function θ  can be viewed as the impulse response of a low-pass filter. An 
important example often used in signal processing is the Gaussian function. In this study, the wavelet is defined as the 
first derivative of the Gaussian function, and the modulus maxima is used to detect positions of the absorption bands of 
a hyperspectral signal. 
 
Although singularities can be detected by finding the abscissa where the wavelet modulus maxima converge at fine 
scale, the Lipschitz regularity however is not characterized yet. It is not sufficient to trace the wavelet modulus maxima 

across scales to detect singularities. We need more information about the decay of ),( suWf  along the maxima line.  

For simplification, we assume that all modulus maxima converge to v are included in a cone. In the other words,  f does 
not have oscillations that accelerate in the neighborhood of v. The potential singularity at v is necessarily isolated. From  
(7), function f is uniformly Lipschitz α  in the neighborhood of v if and only if there exist 0>A  such that each 
modulus maximum (u, s) in the cone satisfies  

2
1

),( +≤ αAssuWf , (8) 

which is equivalent to 
( ) sAsuWf 22

1
22 loglog),(log ++≤ α

 (9) 

The Lipschitz regularity at v is thus the maximum slope of ),(log2 suWf  as a function of s2log  along the maxima 

lines converging to v. 
 

4 EXPERIMENTS 

4.1 Test data 

The test data are a set of hyperspectral data delivered from the airborne visible/Infrared imaging spectrometer (AVIRIS). 
The data has 220 spectral bands from 400nm to 2450nm with 10 nm spectral resolution. The spectral curves of three 
different materials are shown in Figure 4. 
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Figure 4. Three kinds of hyperspectral curves from AVIRIS images. 

 
4.2 Wavelet Transform Modulus 

Figure 5(a), 6(a) and 7(a) respectively show the wavelet transform ),( sufW  of the spectral curves with respect to the  

three materials. They were calculated with 'θψ −= , where θ  is a Gaussian function. The position parameter u and 
the log2 of scale s vary respectively along the horizontal and vertical axes. Black, gray and white points represent 
positive, zero and negative wavelet coefficients respectively. The absorption bands create large amplitude coefficients 
in their cone of influence.  Figure 5(b), 6(b) and 7(b) show the results of extracting modulus maxima from ),( sufW . 
It could be seen that all singularities can be detected easily along the maxima line from coarse to fine scale. The 
maxima lines begun at large scale are corresponding to the main absorption bands of the spectral curves . 
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Figure 5. (a) ),( sufW , wavelet transform of the grass spectrum, (b) The modulus maxima of ),( sufW  
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Figure 6. (a) ),( sufW , wavelet transform of the soybean spectrum, (b) The modulus maxima of ),( sufW  
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Figure 7. (a) ),( sufW , wavelet transform  of corn spectrum, (b) The modulus maxima of ),( sufW  
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4.3 Lipschitz Exponent 

Figure 8 shows the results of Lipschitz exponents calculated at each singularity point for the test data. Because the 
Lipschitz regular α was estimated under the assumption of the compact support wavelet ψ  with one vanishing 

moment, the values of α should satisfy 10 <≤ α  for isolated singularity. The negative values of Lipschitz exponents 
indicate the corresponding points possessing high-frequency oscillations in their neighborhood.  
 
The spectral curves of soybean and corn shown in figure 4 look quite similar in shape and their main absorption bands 
corresponding to the low-frequency components are almost the same. However, one would be easy to discover the 
differences when a scale factor is introduced to overlap these two curves. In figure 8 obviously shows that the high-
frequency variations of the corn spectrum are larger than the soybean’s in the 21th , 76th and  153th bands. Therefore, this 
two different materials can be distinguished easily with the Lipschitz exponents. 
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Figure 8. The Lipschitz exponents calculated at each singularity points for the test data. 

 
4.4 Dyadic Wavelet Transform 

For fast numerical computations, the detection of the wavelet transform maxima can be limited to dyadic scale ∈j
j}2{ . 

Figure 9 shows the result of the dyadic wavelet transform of corn spectrum.  This dyadic wavelet transform has the 
same properties as a continuous wavelet transform, ),( suWf . Singularities create sequences of maxima that converge 
towards the corresponding location at fine scales, and the Lipschitz regularity is calculated from the maxima amplitude.   
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Figure 9. (a) Dyadic wavelet transform computed up to the scale 28, 

          (b) Modulus maxima of the dyadic wavelet transform. 
 



Hsu, Pai-Hui

68                       International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Supplement B7. Amsterdam 2000.

5 CONCLUSIONS 

The high spectral resolution of hyperspectral data provides the ability for diagnostic identification of different materials. 
In order to increase the classification performance, feature extraction is a pre-processing for removing the redundant 
information substantially without sacrificing significant information. In this paper we transfer the hyperspectral data to 
the scale-space plane by using wavelet transform to extract important spectral features. The wavelet transform can focus 
on localized signal structures with a scaling and dilation of a wavelet. The absorption bands of spectral curves are thus 
detected automatically by the wavelet transform modulus maxima, and the Lipschitz exponents are estimated at each 
singularities point of the spectral curve from the decay of the wavelet transform amplitude. The local frequency 
variances provide useful information about the oscillations of the hyperspectral curve for each pixel. Different materials 
can be distinguished on the basis of the differences in the local frequency variation. The new method generates more 
meaningful features and is more stable than other known methods for spectral feature extraction.  
 
In particular, The method proposed in this paper will be helpful for spectral analysis that reduce the multidimensional 
hyperspectral data to a smaller number of key features that can be both automatically processed and physically 
interpreted.  
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