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ABSTRACT

A strategy for the classification of raw LIDAR data as terrain, buildings and vegetation is presented. Its main features are a
preliminary classification of grid data based on a geometric and topological description and a final filtering of raw data, guided by
the previous classification. After raw data have been interpolated to a grid and segmented in connected regions bordered by a step
edge, the topology of these regions is built up. Noise, vegetation and data gaps are classified first, mainly based on size and region
fragmentation. Then, regions enclosing terrain and building points are labelled analysing their relationships with adjacent regions.
Since regions may enclose more than one instance of different classes, a first check is made on grid data looking for consistency of
gradient orientation with class characteristics. Finally, a local analysis is performed on each grid cell to label raw data point, based
on the information on the surroundings inferred by the classification.
Results obtained with Toposys and Optech systems on datasets with different ground point density gathered over the town of Pavia
are shown to illustrate the effectiveness of the procedure.

1. INTRODUCTION

Demand for high accuracy, high resolution DTMs in a wide
range of applications in civil engineering, environment
protection and planning is growing in Italy, pushed by raising
standards (e.g. more reliable cost estimation of earthworks in
road building) and the development of improved prediction
techniques for hydro-geological risk assessment and
delimitation of areas subject to flooding. Currently available
elevations databases and DTMs come mainly from digitisation
of technical maps at scales ranging from 1:5.000 to 1:25.000,
whose accuracy standards cannot match those of the new
applications. To fulfil this demand, LIDAR is probably still the
most effective data acquisition technology, though integrated
IMU/GPS systems and digital aerial cameras may narrow the
gap in the level of automation of the workflow. Because of its
characteristics (first and last pulse, penetration rate in forested
areas, etc), LIDAR is anyway better suited and more versatile
than photogrammetry for DTM production, breaklines
extraction apart. However the accuracy potential of the system
is not yet fully translated into DTM accuracy: strip adjustment
and georeferencing (including computation of orthometric
heights) still deserve attention in pre-processing. Several
techniques have been suggested to address these problems and
remove systematic errors (Kilian et al. 1996, Vosselman and
Maas 2001, Burman 2002).
To remove non terrain data points, interactive editing is still
necessary because data classification techniques often fail,
increasing production times: there is great interest in
developing effective and reliable tools and algorithms on this
topic.
Kraus & Pfeifer (1998) filter out trees in forested areas by
fitting an interpolating surface to the data and using an
iterative least squares scheme to bring down the contribution of
points above the surface, so that it gets closer and closer to the

lowest data points. Rottersteiner & Briese (2002) stretched this
technique to filter out also buildings. Separation of terrain
points is achieved by iterative threshold-dependent
densification of a TIN (Axelsson, 2000) or by slope based
filtering using mathematical morphology (Vosselman and
Maas, 2001), the slope threshold being the maximum allowed
height difference between two points expressed as a function of
the distance between these points. Based on curvature and
height difference analysis, Filin (2002) develops a method for
clustering data points in surface categories (such as low and
high vegetation, smooth and planar surface). With the same
goal, Roggero (2001) clusters points based on connectivity and
a principal component analisys using geometric descriptors
such as static moments, curvature and data anysotropy.
Brovelli et al. (2002) filter out non-terrain points by analysing
the residuals from a spline interpolation
In the following sections we present our strategy for
classification and filtering of LIDAR data for DTM generation.
Grown out of a previous (and still ongoing) work on building
reconstruction from laser data, our strategy has two distinctive
features. In a first stage, raw data are interpolated to a grid,
segmented based on height differences and classified in three
main classes. In a second and  final stage we go back to raw
data, filtering points within each grid cell based on the
previous classification.
We believe that the aggregation of data in sets enables
reasoning about their relationships at an appropriate scale and
provides the contextual information essential to increases the
probability of correct classification of single data point in the
final stage. In this respect we share the motivations of Filin in
his proposal and believe that effective filtering cannot be
separated by some sort of object recognition: identifying terrain
patches or trees is not different from extracting buildings.
Though not pretending to be any close to that goal, we are



developing a hierarchical rule-based scheme to classify each
region as terrain, vegetation, building and other minor classes.
In this respect, it is essential to the viability of the method the
segmentation of the data set in connected regions and the
reconstruction of the geometric and topological relationships
between these regions.
Work is still in progress, so not all rules are yet complete and
all cases of ambiguity solved, but results on several datasets
are encouraging.
In section 3 we describe in more detail our strategy. Raw data
are first interpolated to a grid (3.1); then a region growing
algorithm is applied (3.2), which find connected regions
bounded by a discontinuity. The topological and geometric
description of the regions (3.3) make it easier to apply a set of
rules for classification (3.4). Information on gradient
orientation (3.5) is used to separate instances of different
classes possibly included in the same region. Raw data
consistency with cell class (3.6) is finally evaluated. The
results shown in section 3 refer to two sites of the of the Pavia
dataset, whose characteristics will be presented in the next
section.

2. THE PAVIA DATA SET

Under a national research project aiming at the assessment of
LIDAR technology for DTM production, height data were
acquired in November 1999 over the city of Pavia with an
airborne Toposys laser scanning system and, about two weeks
later, with a helicopter-based Optech1210 system. Stereo aerial
images were also gathered during the Toposys flight. The area
covered is about 30 km2 large and includes the old city centre,
with narrows streets and very complex roof shapes, suburban
areas with both high rise buildings and detached houses with
trees, the Ticino river in the southern part of the town and the
countryside with farms, open fields and forests.
The Toposys instrument flew several strips in East-West
direction at about 800 m above ground and two cross strips at
400 m with a scan angle of 14°. The point density is about 6
pts/m2 and 12 pts/m2 respectively. Only last pulse data were
recorded.
The Optech ALTM 1210 instrument flew three missions: the
first one covered the urban area at about 600 m above ground
with a scan angle of 30° (point density: 1pts/m2); the second
one over a suburban area at about 650 m with a scan angle of
40° (point density: 0.4 pts/m2) and the last mission along a
railway line at about 500 m with a scan angle of 20° (point
density: 2.8 pts/m2). All missions acquired first and last pulse.
Currently we do not perform any strip adjustment: therefore the
data we processed are either grid data, registered and
interpolated by the data provider (the  whole Toposys dataset)
or raw data within a single strip (Optech). In the following, the
results refer to two areas extracted from the  grid data of the
Toposys flight at 800 m and from the Optech flight at 600 m.

3. FILTERING TERRAIN POINTS FROM LASER
DATA

We want to classify objects in three main classes: terrain,
buildings, vegetation, plus other minor classes.
In a primary segmentation we use height differences only,
looking for regions separated by a step edge from the adjacent
ones. With a proper choice of the threshold, this achieves a
good separation of objects.

The classification is performed by a set of rules, based on the
geometric characteristic of each region and their topological
relationships, where adjacency relationships and height
differences along the region borders play a key role. To favour
this process we therefore interpolate the raw data to a grid.
The primary segmentation cannot separate all instances of the
above mentioned categories; a region may enclose objects of
different classes (for instance, a building can be enclosed in the
same region with vegetation); on the other hand, the terrain
will be likely split in many regions, each of which must be
recognized as such and merged. This is achieved with a
geometric and topological description of the segmented regions
and a further segmentation based on the orientation of the
height gradient .
Finally, we go back to the original raw data: we believe that
discriminating between points within a mesh element is made
easier once its surroundings have been classified with a certain
degree of confidence. Therefore, if there is evidence, we filter
out non terrain points from regions classified as terrain and,
viceversa, label as terrain some points included in regions
classified as vegetation. Though currently we have good results
working with grid data, we want the region growing algorithm
to be independent of the interpolation and to test it directly
with raw data.

3.1 Raw Data interpolation

We started working on raw data only lately, so raw data
interpolation is still work in progress. We have to answer 3
questions: a) which grid spacing to use; b) what kind of
interpolation to use when several raw data points fall into a
grid element or when none does; c) how to handle data gaps.
a) The mesh size depends on raw data point density and on the
size of the smallest feature to be filtered out. Of course the
ground pattern of laser spots plays a major role: the rather
anisotropic distribution of the Toposys instrument requires a
compromise between the number of points/cells and the
percentage of empty cells. Ideally, with a uniform distribution
on points on the ground, we would use 1 point/cell: in such
case there is no distinction between raw and grid data. With
anisotropic data we will have empty cells and cells with many
points; points in the latter will be to classified in the last stage.
With the Pavia dataset we used 1x1 m mesh size both with
Toposys and Optech data.
b) If the cell is empty we currently interpolate with the median
of the 8- or 24-connected neighbours. With more than one
point the interpolation algorithm may be set to privilege the
lower points in DTM generation or the higher points in
building extraction, if there is evidence of a step edge;
otherwise the median is used. If the cell has just one point we
use nearest neighbour interpolation.
c) The philosophy is not to fill gaps larger than 3x3 cells. Data
gaps are considered much as regions with no laser response
and classified as water.

3.2 Grid Data Segmentation

Grid data segmentation is performed by aggregation of pixels
in connected sets, by a region growing algorithm. From a seed
pixel, every of the 8-connected neighbours with a height
difference with the central pixel less than a threshold is
enclosed in the region and becomes in turn seed point of the
same region. The process goes on, until no points are added.
Therefore, the region border will feature a discontinuity larger



than the threshold. This does not rule out large discontinuities
within the region: the algorithm searches all directions to find
where the slope is smaller than the threshold. Therefore, if
there is a path smooth enough, it can for instance go round very
steep terrain breaklines, coming to the top from behind.
Ideally, this procedure may include all terrain points in a single
region, if there are no closed breaklines steeper than the
threshold. With the grid size of one meter, the threshold was
set, after some trials (Nardinocchi & Forlani, 2001), to 0.5 m.
Originally tuned for building detection, this value has proven
to be very effective in sorting out buildings and trees from the
terrain. A higher threshold would have made it possible for the
algorithm to climb over buildings from nearby trees and also
include in the same region several adjacent buildings, making
their reconstruction later more complex. The low value cause
the trees to be fragmented in many adjacent regions, each made
of a few pixels only. The drawback is that the terrain may be
split in several regions, because it can be fragmented for
instance by dense tree rows, buildings or rivers: labelling
regions as terrain is therefore the real task after this
preliminary segmentation.

3.3 Geometric and Topological description of the regions

A geometric and topological description of the regions is a key
aspect of our approach. For each region, basic statistical
parameters are computed. The topological information can be
summarised in two graphs: the graph of external adjacencies
(EAG) and the graph of heights (HG) and in a quantitative
measure, the useful external border (UEB) of a region, defined
as the number of pixels that surround (do not belong to) the
region and exist (do not belong to the image external border).
Let An be a set of simply or multiply connected regions in a
plane. An adjacency relationship (AR) between two regions A1

and A2 exists if and only if the UEB of A1 and A2 have a non
empty intersection. AR is reflexive and symmetric. If the UEB
is visited clockwise (so that the region is always to the right of
the border), we can say that A2 has an external adjacency
relationship (EAR) with A1 when A2 is always on the left of the
external border of A1. According to this definition, EAR is
transitive but neither reflexive nor symmetric. The unique
difference between our EAG and a usual adjacency graph (in
which nodes represent the regions and arcs, bi-directional or,
equivalently, not oriented, the adjacency relationships) is that
the arcs must be oriented: if A1 EAR A2 and A2 EAR A1 are both
true (this is not mandatory) the two nodes must be connected
by two opposite arcs, not by one bi-directional arc.

Fig. 1. A typical result of the segmentation process

HG has the same number of nodes, representing the regions, of
EAG. The arcs of HG are oriented from the node corresponding
to the region with the higher mean elevation along the common
border towards the lower one. In addition, an arc between two
nodes exists only if AR is true and the difference between the
mean heights is an attribute of the arc.
Fig. 1 shows a typical result of the segmentation. Region 1 is
the terrain, region 6 a courtyard, region 4, 10, 11 small regions
(noise) and the remaining are buildings. The EAG and the HG
of these 11 regions are shown in Fig. 2 and Fig. 3, respectively.
This example shows clearly how the above defined topological
information can be used in data classification. According to

Fig. 2. The EAG of the regions shown in Fig. 1.

Fig. 3. The HG of the regions shown in Fig. 1

rules in (3.4) , the algorithm is not misguided by the fact that
regions 2, 4, 8 and 9 are all surrounded by both lower and
higher   regions  and   it correctly classifies them.  Labelling  of
regions 1 and 6, from one hand, and of  regions 3, 5, 7, 10 and
11, on the other hand, is straightforward because their nodes in
HG have, respectively, ingoing and outgoing arcs only.

3.4 Grid Data Classification

The hierarchical application of a set of rules based on the
geometric and topologic properties allows to assign regions to
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several classes: bare terrain, buildings, vegetation, courtyards,
water (or data gaps), narrow regions and noise.
3.4.1 Vegetation and noise.  Because of the characteristic
of our region growing algorithm the identification of vegetation
and noise is straightforward. We define small regions those
enclosing less than 3 pixels: if they are adjacent to other small
regions, they are grouped together and classified as vegetation;
if they are isolated, they are considered as noise.
If first and last pulse are both available (as grid data), they are
used to improve the classification. Connected sets of pixels
with differences between heights of the first and last pulse
larger than 20 cm (i.e. the Z noise level of the sensor) are
generated and classified as well as vegetation.
Narrow regions are often found within trees as well as on
dykes, fences, balconies, shelters, canopies, etc. They are not
yet currently classified as artificial or natural structures.
3.4.2 Terrain. The most significant region with respect to
geometric and shape descriptors (max number of pixels, max
bounding rectangle) as well as topological relationships (max
number of AR) is classified as terrain. Other regions exceeding
a size of 200000 m2 are also classified as terrain, provided that
all their EAR do not have a mean height difference larger than
5 meters (i.e. they are not large industrial buildings). The
rationale for this is that, unless small patches are considered
(e.g. around a large building block in urban areas), this is
always the case.
The terrain may get fragmented in several regions because of
“fences”, i.e. data gaps, row of trees or large hedges already
classified, or by terrain breaklines larger than the threshold.
Looking through the EAG we are able to verify whether the
height difference between the terrain border and the
unclassified region border is less than a threshold of 1.5 m,
which is less than anything may be called a building and still
enough to overcome rows of trees and bushes. Other regions,
usually very small, with ingoing arcs only in the HG graph are
also classified as either terrain or as courtyards, if their
adjacent regions are only buildings.
3.4.3 Buildings. Buildings are defined as regions with
outgoing arcs only in the HG; besides, buildings are identified
in two later stages by examining the region’s relationships
(both in the EAG and HG) with the previously detected terrain
and building regions. Whether or not a region classified as
building is really so will be decided later by the building
reconstruction module, where, based on clustering of pixels
within the same partition of the gradient orientation, roof
slopes will be detected. This automatically discards those
regions erroneously classified as buildings on high trees with
dense canopy.
3.4.4 Others. Some small regions may remain unclassified.
They are mainly terrain patches enclosed by vegetation or
terrain breaklines. Therefore we label them provisionally as
terrain, deferring the final classification to the filtering terrain
module.
3.4.5 Two examples. In the following we show the results
of the classification for either Toposys and Optech data in two
sites drawn from the processing of the whole Pavia dataset. We
used grid data provided by Toposys (so we don’t know exactly
what sort of smoothing has been performed) and raw data,
interpolated by the median filtering, for the Optech data; grid
spacing is 1 m in both cases.
The first site is the block of the university of Pavia (see Fig. 4):
there are many courtyards with trees, narrow streets and cars in
the parking area; the second one is a suburban area (see Fig.
7): low rise buildings with surrounding trees and fields

bordered by trees. The result of the classification is represented
in a colour coded image: buildings detected in separate stages
are in white (first stage, regions with only outgoing arcs in HG)
blue and brown (second and third detection stage); the main
region labelled as terrain is represented in yellow, other
regions also classified as such are in red; courtyards are in light
green. Vegetation is represented in dark green and elongated
regions in orange (they look relatively large clusters of pixels,
but are in fact made of many small adjacent regions).

Fig. 4 Arial image of the University of Pavia

In the urban scene (Fig. 5 and 6), since Toposys has a higher
point density than Optech, interpolation to the grid yields more
smoothing: cars in the parking area are not visible, because
they have been included in the terrain regions. The same
applies, to some extent, to small trees within the courtyards.
On the contrary in Optech data the same cars are identified and
labelled as “noise”. Unclassified regions (the courtyard in top
right of Fig. 5) are in grey. The main buildings are correctly
extracted in two or three stages (first the towers are selected,
then the main block roofs); the tops of three trees are also
classified as such, but will be discarded later in the building
extraction module.

Fig. 5. Toposys data: classification of the University area

Some buildings (e.g. the small one in the image top) were
detected in the first stage with Toposys and in the third stage
with Optech data because the interpolation gave rise to a
different adjacency graph and triggered a different rule.
Two out of the three narrow (about 5x5x40 m) medieval
towers in the centre-right of Fig. 4 (you may spot them from
the shadow projected on the main parking area) have been
captured in the Optech data as buildings; the third is labelled



as small elongated region. In Toposys data, interpolation
probably led to fragmentation of high differences: all towers
are marked also as small elongated regions. Optech data also
captured more clearly noise and vegetation in courtyards.

Fig. 6: Optech data: classification of the University area

In the suburban scene (Fig. 8 and 9), grid Toposys data already
filtered out much of the vegetation in the lower right corner of
the image, because of the higher density and penetration rate in
the foliage, so the main terrain region in Toposys is larger. Not
so with Optech data, despite first and large pulse were
available, probably because of the lower laser spot density.

Fig 7. Aerial image of a suburban area

Fig. 8. Toposys data: classification of a suburban area

As far as building identification is concerned, also here
different rules were applied but there is considerable
agreement between the two outcomes of the classification.
Notice that in the Toposys data the car boxes in the top center
of the image are missing.

Fig. 9. Optech data: classification of the suburban area

The growing algorithm may have enclosed in regions classified
as terrain also non terrain points such as low vegetation or cars
and even buildings. When the size of these objects with respect
to the grid mesh is large enough, they will show as blobs in the
terrain. A further classification and filtering is therefore
applied (3.5). To show how it works, we concentrate first of all
on the University building and specifically on the courtyards.
Figure 10 shows the labels attributed to the courtyards and
Table 11 and 12 summarize the main parameters for the region
classified as terrain within each courtyard, before filtering.

Fig. 12. The courtyards labelled in Table 11

id # pixels mean (m) min (m) max (m) σ(m)

25 615 78.19 77.94 80.03 0.28

29 807 78.50 78.22 80.42 0.34

39 503 78.71 78.57 79.19 0.10

60 858 77.96 77.70 79.55 0.16

64 645 77.99 77.86 78.75 0.09

70 459 78.73 78.51 80.36 0.28

81 281 78.63 78.45 79.92 0.19

108 687 78.53 78.35 79.88 0.17

109 428 77.83 77.68 79.83 0.19
Table 11. Toposys data for the 9 courtyards, before filtering

25 29 39
60

64 70
81

108
109



id # pixels mean (m) min (m) max (m) σ(m)

25 518 78.22 77.86 80.37 0.34

29 624 78.42 78.12 79.79 0.24

39 406 78.76 78.58 79.57 0.09

60 572 77.91 77.49 78.81 0.12

64 490 78.00 77.76 78.76 0.10

70 349 78.64 78.38 79.04 0.17

81 197 78.66 78.49 78.80 0.05

108 523 78.47 78.21 79.30 0.14

109 368 77.77 77.58 77.97 0.18
Table 12. Optech data for the 9 courtyards, before filtering

Differences in size depends on the larger number of small
regions found in Optech, which are basically raw data and
moreover on the smoothing applied to Toposys data by the data
producer: we have chechek that this results in the systematic
underestimation of the building’s size. Therefore all courtyard
in Toposys data have about 100 pixels more than in Optech.
Apart from this, the overall the range and dispersion in
elevation of the two sets is similar.
Figure 13 shows a zoom on court 25 for both sets, for the
terrain region only: the hole in Optech is a set classified as
narrow region.

  

Figure 13. Court 25 before filtering; left :Toposys, right: Optech

3.5 Check on Terrain Data Classification

The idea is to look whether the region is really smooth enough
to represent the terrain. To this aim we threshold with a rather
low value (0.25) the height gradient and cluster the pixels with
similar value of the gradient orientation (we use partitions 45°
wide) in new sub-regions. In flat and hilly areas (those where
using laser scanning for high accuracy DTM makes sense) the
terrain can indeed be assumed to be smooth enough: sudden
slope changes may be expected only along break-lines.
Therefore, we classify the sub-regions as noise (cars or low
vegetation) if smaller than 3 pixels and as breaklines if they
are elongated. Buildings may get included in the terrain e.g.
when there are car ramps leading to the roof; there is also a
(very small) probability that the algorithm climbs on the roof
from nearby dense high vegetation. In both cases, there is to be
evidence of plane surfaces compatible with a building.
Currently, no rule is implemented to solve for this ambiguity.

Figure 14 shows the gradient orientation for the University
building, where the same colour correspond to the same class
of the partition of the orientation space [0-π]. Orientation has
been computed just over the region classified as terrain; black
pixels are locally flat, i.e. below the threshold.

Figure 14. The gradient orientation for Toposys data

As it is apparent, along the building contour there is always a
border of pixels with the same orientation: this is because
using Sobel operator the height gradient includes also a roof
pixel. Within the courtyards the gradient orientation highlights
features previously unnoticed by the region growing: some are
due to statues or  fountains, others to cars parked inside. Also
in the main region classified as terrain rows of cars can be
noticed.

id # pixels mean (m) min (m) max (m) σ(m)

25 377 78.11 77.98 78.28 0.06

29 294 78.29 78.22 78.44 0.13

39 199 78.68 78.57 78.76 0.06

60 456 77.92 77.70 78.14 0.11

64 485 77.96 77.86 78.10 0.06

70 170 78.61 78.52 78.74 0.05

81 156 78.59 78.47 78.68 0.06

108 186 78.47 78.37 78.63 0.05

109 325 77.79 77.68 77.86 0.03
Table 15. Toposys data for the 9 courtyards, after filtering

classe punti zmed zmin zmax zsqm

25 329 78.15 77.88 78.65 0.09

29 375 78.36 78.14 79.17 0.19

39 164 78.79 78.62 79.48 0.14

60 198 77.88 77.49 78.40 0.14

64 367 77.98 77.76 78.76 0.06

70 139 78.62 78.41 78.91 0.11

81 78 78.66 78.54 78.77 0.03

108 200 78.45 78.23 79.03 0.07

109 265 77.75 77.58 77.91 0.08
Table 16. Optech data for the 9 courtyards, after filtering

Table 15 and 16 summarize the results of this further
classification in the courtyards: the final terrain region has
been sharply reduced in both datasets.  As can be seen, even
accounting for the above mentioned difference in size of the
courtyard, more points have been discarded in Optech than in
Toposys. Despite this Optech remain more noisy (we should
not forget that Toposys has a higher density and was gridded
with some smoothing). This point out to the need to try to get
back some of these points in the final filtering stage. Figure 17
show the enlarged view of court 25 after filtering.



   

Figure 17. Court 25 after filtering; left :Toposys, right: Optech

It is apparent that the grid interpolation with Toposys results
in a larger

Coming back to the two larger areas, Fig. 18-21 show the
results of this further filtering: pixels definitely assigned to
terrain are in yellow, buildings are in blue, vegetation in green
and orange pixels are elongated regions; pixels discarded using
gradient orientation are shown in pink (small regions) and
black (breaklines). Small elongated regions (orange) are still
unclassified. This is deferred to the final filtering, going back
to raw data.
In the urban scene, all buildings have been found; vegetation
has always been well detected using a single impulse response;
noise, such as cars, has also been successfully detected in this
step of terrain filtering. As noticed earlier, trees in blue will be
discarded later, when consistency with a plane will be tested.

Fig. 18. Toposys data: result of terrain extraction

In the urban scene, all buildings have been found; vegetation
has always been well detected using a single impulse response;
noise, such as cars, has also been successfully detected in this
step of terrain filtering. As noticed earlier, trees labelled in
blue will be discarded later, when consistency with a plane
will be tested.

Fig. 19. Optech data: result of terrain extraction

Also in the suburban area all main buildings have been found,
despite more disturbances by nearby trees. Boxes in the top
center of the image where identified in Optech and not in
Toposys data. Filtering with gradient orientation highlighted
some of the vegetation undetected by the height difference
segmentation in Toposys data. Overall, the results look quite
similar in both datasets.

3.6 Raw Data Classification

The main task of this last filtering stage is to extract terrain
points in regions classified as vegetation, either rows of trees
or forested areas: this is still work in progress. To this aim we
plan to check the region border from adjacent regions classified
as terrain, looking for consistency of the points in the border
cells with the terrain just outside. This also applies, but in a
simpler manner, to points labeled as noisy data within areas
classified as terrain: in case there is redundancy in the cell (i.e.
there is more than one point) we look whether some point may
in fact belong to the terrain. Finally, also regions classified as
terrain will be checked, again in case of redundancy, if their Z
values lie within a given range with respect to the interpolated
height of the pixel.

 Fig 20. Toposys data: result of terrain extraction



 Fig 21. Optech data: result of terrain extraction

4. CONCLUSIONS AND PERSPECTIVES

Originally developed for building extraction and reconstruction
(and still integrated in the same software), a strategy for
automatic data classification of LIDAR data has been
presented. As already remarked, work is still in progress: grid
interpolation and the final filtering within each cell have not
been fully addressed yet. The core of the procedure, i.e. the
classification of grid data based on their geometric and
topological relationships and the filtering with gradient
orientation look sound enough. Although contextual
information may be recovered correctly, some ambiguities will
obviously never be solved, because the variety of situations in
real world cannot be squeezed in a few rules; we are also
aware of the risk of being misled by the particular dataset the
strategy is tested on. The reliable identification of the main
terrain regions is perhaps the most important aspect the
method relies on implicitely, especially for the success of the
final filtering. The order the rules are being applied is also
important, especially when not all neighbouring regions have
been already classified: we want to gain more experience on
that. Overall, results are more than encouraging.
Besides the large Pavia dataset, processed with two different
laser systems, the method has currently been applied to other
datasets, including those provided for the ISPRS WGIII/3. Here
examples of rough terrain were also processed, demonstrating
that the method can deal with dataset containing many
breaklines.
From the very preliminary comparison we made, using both
first and last pulse or just last pulse doesn’t seem to change
much the results, therefore the classification of the vegetation
is good enough: the only difference is that the amount of small
or elongated regions is clearly larger when using both first and
last pulse, because the threshold we used (0.2 m) is less than
that of region  growing, so fragmentation gets higher.
We want to improve the effectiveness of the preliminary
interpolation over the grid trying different kind of filters and to
study the behaviour of the algorithm under different laser spot
densities and grid size.
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