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ABSTRACT:

The registration of data sets in the same coordinate system is an essential task in the fusion of data obtained from similar
or different sources. The determination of the registration accuracy by commercial firms is often undertaken by comparing
points of one surface to heights interpolated between points of the other surface. The last few years have seen research
undertaken in the development of surface matching algorithms, which automate the registration. High redundancy is
achieved with these algorithms as each point of one surface can potentially participate in the formation of a normal
equation for the least squares adjustment. These algorithms may be expected to become an important tool of data fusion,
especially with data acquisition techniques such as ALS which lack thematic information. This paper demonstrates that
the accuracy of the registration, both in height and plan positioning, as well as the accuracy of the matching (the residuals
of the least squares matching) are related to the density of the reference data. A cross-validation method is used to find
the accuracy of the registration and the mean of the matching residuals for different densities of the reference surface.
The paper presents two experiments: with artificial data and with ALS data. The reference data is similar in the two
instances: the data is evenly distributed and is triangulated using a Delaunay triangulation. Furthermore the paper shows
that the curves generated by a cross-validation method can be modelled on hyperbolic functions. These functions are
used to predict accuracy for densities higher than that used for the validation. The accuracy of the predictions ranged
from sub-millimetre values to 4mm for both experiments. The accuracy of the registration of the ALS data where the
differences ranged from 9mm to 134mm was the exception. In this case however the accuracy improved with increasing
density.

1 INTRODUCTION

One of the tasks in the processing of spatial data is its regis-
tration in an appropriate coordinate system. The change of
coordinate system requires a conformal transformation. In
photogrammetry, which provides thematic information on
the data, the (6 or 7) parameters of the transformation are
estimated in a least squares adjustment. The adjustment
fits the captured data onto a set of ground control points
(GCPs), which are identifiable on the stereopair. The two
functions of the GCPs are to allow the orientation of the
stereopairs and to facilitate the registration of the data in a
chosen coordinate system (Wolf and Dewitt, 2000). The
production of GCPs can add significantly to the cost of
a survey, especially in rugged country, as surveyors have
physically to go on site to mark the ground and assess the
coordinates of the marks.

An alternative method is to use a surface registered in the
wanted coordinate system to realise the absolute orienta-
tion of the stereopair (Mills et al., 2003). This data set is
referred to as the reference surface in the rest of this article.
The method, called surface matching, involves fitting the
two sets by means of a least squares fit which minimises
the separation between the surfaces. High redundancy is
achieved as a normal equation of the least squares adjust-
ment can potentially be generated for each point of the set.

Similar methods have been used in strip adjustment of data

acquired by airborne laser scanning (ALS) (Maas, 2000),
and in the fusion of photogrammetric and ALS data (McIn-
tosh et al., 2000). Surface matching without control points
is also used in change detection (Mitchell and Chadwick,
1999).

This paper examines the possibility of anticipating the ac-
curacy of surface matching given the density of the refer-
ence surface. The method also allows prediction of density
requirements of the reference data to achieve a given accu-
racy.

The project was originally inspired by the Newcastle City
Council (NSW, Australia). The Council acquired large
amounts of data from 1999, approximately 2 million data
points in total, to produce a DEM for a flood study of the
area. The accuracy of the data was assessed by comparing
the photogrammetric data to approximately 10000 points
of existing ground survey data. It was foreseen that surface
matching without control could be used to assess the accu-
racy of the photogrammetric data (Mitchell et al., 2002),
by matching the photogrammetric data to the ground sur-
vey data and checking the r.m.s. of the matching.

The matching algorithm fits a cloud of points to a facetted
surface, and not to the real surface. The facetted surface
is a triangulated model. Its faithfulness to the real sur-
face is related to the sampling spacing of the data and to
the roughness of the terrain. The use of synthetic data al-
lows verification of the accuracy of the matching to the real



surface by calculating the difference in height between the
matched points and that real surface. It also permits test-
ing of the ability of the algorithm to position the cloud of
points accurately. This paper develops a technique for ap-
plying these checks to real data. The method uses a vali-
dation technique to model the accuracy of the matching to
the density of the data.

2 THE TOOLS OF THE EXPERIMENT

2.1 The matching algorithm
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Figure 1: Reference surface

The matching algorithm adopted for this experiment has
been developed and is still being improved at the Univer-
sity of Newcastle, Australia. The reference data is triangu-
lated using a Delaunay triangulation. The advantage of the
triangulation is that all the points of the surface are hon-
oured and second generation interpolation is avoided. The
only interpolation occurs during the matching when the
points of the second surface are interpolated in between the
points of the reference surface. The Delaunay algorithm,
amongst other methods, has the property that no points in
the data set fall inside the circumcircle of any of the trian-
gles formed. The circumcircle is the circle passing through
the three vertices of a triangle (Sloan, 1993). The method
produces a unique triangulation and the triangles formed

are as equilateral as possible, avoiding long-shaped trian-
gles, whenever possible. The iterative algorithm minimises
the normal distances of the elements of the point cloud to
the patches of the reference surface, in an algorithm similar
to that described by Schenk et al. (2000).

2.2 Data generation and controlled matching

Two experiments were conducted: one involving synthetic
data, the other ALS data. The set of tools used in the first
experiment is described below.

2.2.1 Data generation The surfaces generated repre-
sent a surface of area 100m by 100m. For simplicity, the
reference surface and the cloud of points are named respec-
tively S1 and S2 in the paper.

Both data sets are generated in the same manner: the heights
of the points are computed as a function of the planimetric
coordinates obtained randomly and uniformly distributed.
The points of the two data sets lie on the same surface, but
do not correspond. The reference surface S1 is then trian-
gulated. A side and plan view of S1 is shown in Figure 1.
The second set S2 is then transformed to create some sep-
aration between the two surfaces. The matching process
can then take place.

2.2.2 Controlled matching The term “controlled match-
ing” refers to the fact that the original coordinates of S2
are known, as well as the transformation parameters used
to create a separation between the surfaces (referred to as
“initial transformation” in the rest of the text, and as op-
posed to “matching transformation”, the reverse operation).
Effectively the differences between the parameters of the
initial transformation (chosen by the user) and the param-
eters of the matching (resulting from the least squares fit
and bringing back the surface to its original position before
the initial transformation) are only an approximate indica-
tor of the matching success, and are not a reliable measure
of the closeness of the fit: the effect of the differences be-
tween three rotations, three translations and a scaling fac-
tor (i.e.: ωinitialtransf −ωmatchingtransf , φinitialtransf −

φmatchingtransf , etc...) happening simultaneously are dif-
ficult to assess and interpret.

The significance and extent of this mismatch can be more
readily assessed by calculating the distance between the
points in their original position (before the initial transfor-
mation) and the points after matching. This is therefore a
measure of the ability of the matching to bring back the
points to where they belong, or where they originally came
from. A mean and standard deviation of these distances
can then be calculated. This check is referred to as the
mean mismatch in the results shown in next section.

It must be mentioned here that the least squares matching
algorithm does not actually bring back S2 to its original
position exactly, as it matches S2 to a facetted model of
the real surface. The difference between the parameters
of the separation transformation and of the matching could
thus be interpreted as a measure of the validity of the tri-
angulated model, or in other words as a measure of the
faithfulness of the triangulated model to the true surface.



3 EXPERIMENT WITH SYNTHETIC DATA

3.1 Determination of accuracy of matching as a func-
tion of density

A reference surface S1 of 7000 points and a cloud of points
S2 were generated for the experiment. In order to generate
an experimental curve of the matching results versus the
density (actually the number of points), a cross-validation
method was used. A number of points corresponding to
one twentieth (350 points) of the total number of points of
the reference surface (7000 points) was randomly picked
out of the reference set. Matching of the surface S2 to the
thinned-out reference surface S1 (now 6650 points) was
then undertaken. The operation was repeated a number
of times (20 in this experiment) with the same number of
points (350 points) deleted from S1, but the points deleted
were different and picked out randomly each time.

The average of the 20 results and the standard deviation of
the results were then plotted against the number of points
(6650 points), as the mean of the mean residuals and an
error bar representing 67% confidence.

The same number of matches (20) was then undertaken
with a number of points deleted from S1 corresponding to
twice the preceding amount, or two twentieths of the total
number of points (700 points). The results were plotted
as previously. The validation was stopped after the 20th
matching of S1 thinned out by nineteen twentieths of its
points (350 points remaining).

The same computations were undertaken to obtain a mean
of the mean mismatches for different densities. The curves
obtained through the validation are shown in Figure 2.

Both curves are smooth and indicate that the mean of the
residuals and the mean mismatch diminish as the density
was increased. Assuming that the surface S2 was free of
outliers and noise, it can be assumed that the means tended
to zero as the density tends to infinity.

3.2 Experiment results

A mathematical model was fitted on each experimental curve.
The models belong to the hyperbola family:

Accuracy =
1

Densityk

Additional parameters a, b, c, d and e to allow for scaling
and translations of experimental values are found by least
squares:

(a.accuracy + b) =
c

(d.density + e)k

Fitting results are shown in Figure 3. The experimental
curves with fitted models are shown in Figure 3(a), while
the residuals of the fittings are shown in Figure 3(b).

The models were used to predict the accuracy of the resid-
uals and the mismatch for reference surfaces with num-
bers of points ranging from 8000 points to 15000 points.
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Figure 2: Synthetic data cross-validation

Mean matching residuals (m)
No of points predicted obtained ∆

8000 0.0098 0.0111 -0.0013
9000 0.0083 0.0098 -0.0015

10000 0.0071 0.0086 -0.0015
12500 0.0049 0.0065 -0.0016
15000 0.0034 0.0053 -0.0019

Table 1: Predicted and experimental means of residuals
obtained with synthetic data

Mean mismatches (m)
No of points predicted obtained ∆

8000 0.0031 0.0039 -0.0008
9000 0.0026 0.0034 -0.0008

10000 0.0022 0.0026 -0.0004
12500 0.0015 0.0020 -0.0005
15000 0.0011 0.0017 -0.0006

Table 2: Predicted and experimental mismatches obtained
with synthetic data
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Figure 3: Experimental and fitted curves for synthetic data

The comparison between predictions and matching results
is shown in Table 1 and Table 2.

From both sets of predictions, it can be concluded that
the matching accuracy to both the facetted surface and the
real surface can be modelled on hyperbolic functions. The
differences between predicted and matched means of the
residuals do not exceed 2mm for the densities tested, while
the differences in the mean mismatches are all in the sub-
millimetre range.

4 APPLICATION TO REAL DATA

4.1 Adaption of validation technique to real data

The data used was part of an ALS survey of the city of
Newcastle undertaken by a private surveying firm. An area
of 250m by 250m was selected from a larger data set. The
data had already been filtered to show only ground points.
The set had distribution characteristics similar to those of
the synthetic data: the points were not on a regular grid but
were evenly distributed across the terrain. The set is shown
in Figure 4. The presence of larger triangles indicates the
presence of buildings before filtering.
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Figure 4: ALS data

Using real data presented several challenges to the valida-
tion method. Firstly, two surfaces are needed for matching.
Secondly, and unlike the case of synthetic data, the coor-
dinates of matched points cannot be assessed for the accu-
racy of their positions. The sample data chosen comprised
15836 points.

A solution to the problem was to randomly extract approxi-
mately 2000 points (1976 points exactly) from the original
set to form the surface S2. The points of S2 are evenly
distributed across the entire surface. The rest of the points
(13860 points) were thinned out to create sets of 12000,
11000, 10000, 9000, 8000 and 7000 points. The 7000-
point surface was then used to generate an experimental
curve of the means of the matching residuals versus the
number of points. To undertake this task, the 1976-point
surface S2 was first transformed to create a small separa-
tion between the two surfaces.

This in turn allowed for a curve of the means of the mis-
matches to be generated. Effectively, and as with the syn-
thetic data, the coordinates of the matched points of S2
could be compared to that of the same surface before the
initial transformation. The generation of the curves in-
volved running the matching program 40 times for each
density of the surface S1, as opposed to 20 times in the



previous experiment. The validation of the ALS data is
shown in Figure 5.
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Figure 5: ALS data cross-validation

4.2 Experiment results

Figure 5(a) shows that the curve of the means of the match-
ing residuals is similar to the one obtained with synthetic
data (Figure 2(a)). However, the curve of the means of the
mismatches is not as smooth as with the synthetic data, and
displays large error bars (Figure 5(b)).

As in Section 3, curves were fitted on the experimental val-
idation curves, as shown in Figure 6. The fitting of a hy-
perbolic model to the means of the mismatches was not as
good as with synthetic data: Figure 6(b) shows that the fit-
ting residuals were approximately one order of magnitude
larger than with synthetic data.

Finally, predictions were made using the hyperbolic curves
to assess the mean of the residuals of matching and the
mean of the mismatches for given densities (number of
points) exceeding the 7000-point surface used for the val-
idation. The predictions were then checked by matching
the surface S2 to reference surfaces of the same densities.
The comparisons are tabulated in Table 3 and Table 4.
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Figure 6: Experimental and fitted curves for ALS data

The predictions of the mean of the matching residuals were
accurate to the sub-millimetre in all the cases but two (9000
and 10000 points), where the differences between predicted
and matched were approximately 4mm. By contrast, the
predictions for the mismatch do not reflect the results ob-
tained by the matching program in an accurate manner,
with differences between predicted and obtained ranging
from 9mm to 134mm. The mismatch results obtained for
a density of 11000 points highlight the fact that the closest
fit for the least squares adjustment does not always corre-
spond to the best registration, due to the fact that the sur-
face fitting uses a triangulated model of the true surface,
and not the true surface. The correspondence improves

Mean matching residuals (m)
No of points predicted obtained ∆

8000 0.1204 0.1213 -0.0009
9000 0.1164 0.1208 -0.0044

10000 0.1130 0.1166 -0.0036
11000 0.1100 0.1097 +0.0003
12000 0.1074 0.1080 -0.0006
13860 0.1034 0.1025 +0.0009

Table 3: Predicted and experimental means of residuals
obtained with ALS data



Mean mismatches (m)
No of points predicted obtained ∆

8000 0.1288 0.0306 +0.0982
9000 0.1142 0.1575 -0.0433

10000 0.1019 0.1154 -0.0135
11000 0.0914 0.2260 -0.1346
12000 0.0824 0.1264 -0.0440
13860 0.0683 0.0593 +0.0090

Table 4: Predicted and experimental mismatches obtained
with ALS data

with the density of the reference surface, as the model
becomes a better representation of the true surface. The
most accurate prediction is obtained with the denser data
set (13860 points).

Many parameters can influence matching results and match-
ing predictions. Two possible explanations that come to
mind to justify the difference between predicted and ob-
tained mismatch are that the reference data used for the
validation is not dense enough, nor is the data used for the
testing. This resulted in poor confidence in the means of
the mismatches. This would explain why the best predic-
tion is obtained with the denser data set. Another expla-
nation is the lack of texture of the data. Software which
minimises the heights along the z axis is more appropri-
ate to match surfaces in flat terrain, while better matching
is obtained in hilly terrain with algorithms that minimise
normal distances (Schenk et al., 2000).

5 CONCLUSION

Experimental curves which relate accuracy of matching to
the density of the reference data were generated, using a
validation method. Matching a cloud of points to a refer-
ence surface whose density is changed repeatedly by elim-
inating randomly chosen data allows plotting of mean re-
sults and confidence error bars as a function of the density
of the reference data. Two curves were generated with the
same data set. One was the mean of the means of the sur-
face matching residuals versus the density. The second one
relates the mean of the mismatches to the density. The term
mismatch denotes the difference between the spatial posi-
tion of a matched point and its true position in the surface.

The experimental curves were modelled as curves of the
hyperbolic family. The mathematical models obtained were
used to predict accuracy for denser reference data than that
used for the validation.

Two experiments were undertaken. The first one used ar-
tificial data. The second one was undertaken with an ALS
data patch. The curves obtained with the validation of
the artificial data were successfully fitted with hyperbolic
curves, with small fitting residuals for both curves. The
differences between predictions and matching results were
under 2mm for the mean of the means of the residuals and
under 1mm for the mean of the mismatches.

The curves generated in the second experiment were also
modelled as hyperbolic functions. The hyperbolic model

proved to be an efficient prediction tool for the mean of
the surface matching residuals: 4 out of 6 predictions were
within one millimetre of the matching results. The accu-
racy of the predictions of the mismatch were ranging from
9mm to 134mm, and were therefore not as accurate as the
other predictions. The predictions improve with increas-
ing density to the lowest difference (9mm) at the highest
density (13860 points). The difference between the regis-
tration accuracy of both experiments can be attributed to
the difference of roughness of the terrains: the topography
of the ALS data is rather flat and the lack of texture results
in the automatic registration needing a denser reference set.
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