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ABSTRACT

In this paper, we present a method for the automated generation of 3D building models from directly observed point clouds generated
by LIDAR. First, building regions are detected automatically. After that, roof planes are detected by applying a curvature-based
segmentation technique. These roof planes are grouped in order to create polyhedral building models. In this grouping process, the
shapes of the roof plane boundaries are determined, and the whole model is improved by an overall adjustment using all available sensor
information and, if possible, geometric constraints. We describe the existing modules and those still in the implementation phase, and
we discuss the issue of integrating aerial images into the reconstruction process to increase the geometric quality of the reconstructed
models. Intermediate results are presented for a test site located in the City of Vienna, Austria.

1 INTRODUCTION

1.1 Motivation and Goals

The progress in sensor technology for airborne laser scanning has
rendered possible the acquisition of very dense point clouds, so
that the generation of 3D building models from LIDAR data has
become feasible. It is possible not only to detect buildings and
their approximate outlines, but also to extract planar roof faces
and, thus, to create models that correctly resemble the roof struc-
ture. In many approaches for building extraction from LIDAR
data, ground plans of the buildings are required to give the pre-
cise location of the building outlines (Haala et al., 1998, Brenner,
2000, Vosselman and Dijkman, 2001). If no such data are used,
the algorithms rely on regular structures such as orthogonal walls,
thus restricting their applicability (Vosselman, 1999).

It is the goal of this paper to present a method for the automatic
creation of polyhedral building models in densely built-up areas
from high-resolution LIDAR data without using ground plans
or geometric restrictions with respect to the mutual relations of
neighbouring planes. It is an improved version of the method
described in (Rottensteiner and Briese, 2002). Roof planes are
extracted by a hierarchic segmentation technique based on the
statistic behaviour of the normal vectors of a digital surface model
(DSM) computed from the LIDAR data. The neighbourhood re-
lations of these roof planes are detected, and the roof polygons
are computed by analysing the mutual configurations of pairs of
roof planes. We present a method for the consistent estimation
of all model parameters by hybrid adjustment, optionally intro-
ducing geometric constraints for a regularisation of the resulting
model. We also plan to integrate digital aerial images into the
process to improve the geometric quality of the building models.
The examples presented here were computed using the LIDAR
data captured by TopoSys in the course of a pilot project for the
Municipality of Vienna (Figure 1a). Though our method is still
work in progress, our preliminary results, obtained in a densely
built-up area characterised by irregular building shapes with non-
rectangular walls and roofs that are not symmetric, show its po-
tential.

1.2 Related Work

It is the first step in building extraction to detect building candi-
date regions in the sensor data. This is essentially a classification
task, commonly solved by applying morphologic filters for com-
puting a digital terrain model (DTM) and applying a threshold
to the height differences between the DSM and the DTM (Weid-
ner, 1997). The initial classification has to be improved in order
to remove vegetation areas. In (Rottensteiner and Briese, 2002),
we have presented an algorithm for building detection from LI-
DAR points based on DTM generation by hierarchical robust lin-
ear prediction (Briese et al., 2002) and the evaluation of a texture
roughness criterion for the elimination of vegetation (Figure 1).

a) b)

Figure 1: Building detection in a test site in Vienna. Original
resolution: 0.1 m (in-flight) by 0.9 m (cross-flight). a) DSM
(0.5× 0.5 m2; extent: 410× 435 m2). b) Building regions.

The geometrical reconstruction of the buildings in previously de-
tected regions of interest has been tackled in two ways. First,
parametric primitives can be instantiated and fit to the data if suf-
ficient evidence is found, e.g. in rectangular regions derived by
splitting a 2D ground plan (Brenner, 2000, Vosselman and Di-
jkman, 2001). Second, planar segments can be detected by a
segmentation of a DSM created from the LIDAR points, e.g. by
an analysis of surface curvature (Brenner, 2000), and polyhe-
dral building models can be derived by grouping these planar
segments. As the building outlines are difficult to be located
precisely, ground plans are often used, too (Haala et al., 1998,
Brenner, 2000, Vosselman and Dijkman, 2001). (Weidner, 1997)
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has tackled the problem of precise determination of the building
outlines from LIDAR data by applying the minimum description
length principle for deciding on regularisations.

As soon as planar segments have been detected, neighbouring
segments are grouped, and the polygons delineating the borders
of these segments have to be found (Baillard et al., 1999). These
border polygons have to be combined in order to obtain consistent
building models, and the models are completed by vertical walls
and by a floor. A coarse-to-fine strategy can be applied by first
searching for the most relevant structures in the data and using
refined methods for modelling the buildings in regions not being
“explained” sufficiently by the initial models (Vosselman and Di-
jkman, 2001). (Vosselman, 1999) describes a method for the ge-
ometric reconstruction of buildings from LIDAR data alone. He
relies on assumptions on the orthogonality of walls to determine
the building outlines.

It is another possibility to improve the results of building extrac-
tion to combine LIDAR data with aerial images. (Schenk and
Csatho, 2002) give a method for fusing LIDAR data and aerial
images to obtain a more complete surface description without ex-
plicitly reconstructing buildings. (Ameri, 2000) propagates a seg-
mentation in image space to object space using LIDAR data, and
he matches the resulting object edges with image edges to im-
prove their geometric quality. A similar technique for wire frame
fitting has been used for measurement of parametric primitives
in semi-automatic building extraction (Rottensteiner, 2001). It is
general enough to be applicable to any polyhedral model.

1.3 Overview of the Proposed Method

In this paper, we only deal with the geometric reconstruction of
buildings. As far as the LIDAR data are concerned, except for
parameter estimation, we use a regular DSM grid derived from
the original LIDAR points by linear prediction using a straight
line as the covariance function, thus with a very low degree of
smoothing (Rottensteiner and Briese, 2002). Sampling the DSM
in a regular grid renders possible the application of fast segmen-
tation algorithms. The grid width of the DSM should correspond
to the resolution of the LIDAR data. In our example, the origi-
nal LIDAR points were characterised by point distances of 0.1 m
in-flight and 0.9 m cross-flight. The grid width of 0.5 m chosen
for the DSM was a compromise, resulting in an interpolation in
cross-flight direction and in a higher degree of smoothing in flight
direction.

The work flow for building reconstruction consists of four steps:

1. Detection of roof planes: In the building regions, a segmen-
tation based on an analysis of the variations of the DSM normal
vectors is applied to find planar segments which are expanded by
region growing algorithms. This method is described in section 2.

2. Grouping of roof planes and model generation: Neigh-
bouring roof segments being co-planar have to be merged, and a
further analysis of neighbourhood relations gives hypotheses for
lines of intersection and/or step edges. The resulting polyhedral
model consisting of a conglomerate of (mostly: roof) planes is
completed by walls and by a floor. Grouping and model genera-
tion are described in section 3.

3. Consistent estimation of the model parameters: Having
generated initial building models, their geometric parameters have
to be improved by a consistent estimation procedure taking into
account all the available (sensor) information.

4. Model regularisation: Finally, the models are improved
by introducing hypotheses about geometric constraints between
planes, and parameter estimation is repeated. Parameter estima-
tion and model regularisation are described in section 4.

The level of detail of the building models thus derived and the
accuracy of the positions of step edges are limited by the reso-
lution of the LIDAR data, which is still below the resolution of
aerial images. In section 5 we will discuss strategies for integrat-
ing digital aerial images into the work flow of building extraction
in order to overcome these limitations.

2 DETECTION OF ROOF PLANES

(Fuchs, 1998) describes a method for polymorphic feature extrac-
tion aiming at a classification of texture as being “homogeneous”,
“linear”, or “point-like”, by an analysis of the first derivatives of
a digital image. That classification is based on a significance test
of the squared gradient of the digital images, the most impor-
tant parameter being the significance levelα of that test, from

a)

b)

c)

d)

Figure 2: Detection of planar segments in one of the building re-
gions from Figure 1. a) and b) Classification results using differ-
ent significance levels. White: “homogeneous” pixels. c) Planar
regions obtained by applying a connected component algorithm
and region growing to a). d) Final segment label image.
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which the threshold for classification is derived. We apply this
method to the first derivatives of the DSM. “Homogeneous” pix-
els are surrounded by pixels having similar components of the
surface normal vectors, thus, by co-planar points. Figures 2a and
2b show the homogeneous pixels in one of the building regions
from Figure 1, derived by using two different significance lev-
els. In (Rottensteiner and Briese, 2002), we applied a connected
component analysis to the binary image of homogeneous pixels
to detect seed regions for region growing. In order to compensate
for classification errors, we proposed an iterative strategy for roof
plane detection, splitting the connected components of homoge-
neous pixels into smaller parts by morphologic filtering and only
allowing well-fitting planes to grow. Although the results thus
achieved were already quite satisfactory, the procedure failed if
the initial segments were shaped in a way that parts belonging to
different planes in object space could not be separated.

We have improved the method to put it on a better statistical ba-
sis. Again, roof plane detection is carried out in an iterative way,
but this time we iterate over different significance levels in tex-
ture classification. We start by texture classification using a very
tight threshold, thus a very small significance levelα. Statisti-
cally this means that we accept a large percentage of homoge-
neous pixels erroneously classified as non-homogeneous, and a
small percentage of non-homogeneous pixels erroneously classi-
fied as homogeneous. Only the pixels in the “most significantly
planar” regions are actually classified as “homogeneous” (Fig-
ure 2a). We use connected regions of homogeneous pixels as
seed regions for region growing, allowing only regions achieving
a good planar fit (indicated by a low r.m.s. error) to grow. New
pixels adjacent to a region are added if their distances from the
adjusting plane is below a certain threshold. This step is repeated
until no additional pixel can be added to any segment. Figure 2c
shows the segment label image derived from growing the seed
regions from Figure 2a. About 50% of the pixels of the building
region have been assigned to one of these planes, each plane hav-
ing an r.m.s. error of planar fit better than±15 cm. After that, the
classification is repeated, using another threshold (thus, accept-
ing a larger percentage of non-homogeneous pixels erroneously
classified as homogeneous) and applying our procedure for seed
region selection to connected components of homogeneous pix-
els not yet assigned to a planar segment. In this way, a certain
number of iterations is carried out, in each iteration taking into
account less and less significantly homogeneous areas. Figure 2b
shows the classification results of the last iteration, and Figure 2d
shows the resulting segment label image. About 64% of the pix-
els in the building region are assigned to one of these segments.
All segments have an r.m.s. error of planar fit better than±15 cm.

Figure 3a shows the pixels of the building region in Figure 2d not
yet assigned to a planar segment. Most of these “unclassified”
pixels are pixels at the borders of the planar regions, but there are
also larger patches corresponding either to small roof structures
not yet detected, to roof parts not being planar (e.g. roof gar-
dens), or to regions not being parts of the building at all (trees).
We try to find additional planes in the unclassified regions and to
eliminate objects not belonging to the building. First, we search
for connected components of unclassified pixels having a small
height gradient strength. As the kernel size for computing the
height gradient is much smaller than the size required for texture
classification, it is possible to find smaller seed regions. We ap-
ply region growing to these regions, allowing larger residuals, so
that the additional planar segments have a worse planar fit than
the original ones. Thus, we might get segments generalising the
actual shape of a building part, a limitation caused by the res-
olution of the LIDAR data. After that, we eliminate connected
components of pixels not belonging to any planar segment and

having a great percentage of pixels classified as “point-like” in
polymorphic feature extraction, an indicator for vegetation areas
(Rottensteiner and Briese, 2002). Figure 3b shows the final seg-
ment label image, and Figure 3c shows the pixels not assigned to
any planar segment after eliminating the vegetation areas.

The results of roof plane detection for all the building regions
detected in Figure 1 are summarised in Table 1. 69.9% of all
“building pixels” are assigned to a planar segment. 92.1% of
these pixels (or 64.4% of all building pixels) are in a planar seg-
ment having an r.m.s. error of planar fit better than±15 cm. The
remaining 9.9% of the pixels assigned to a planar segment mostly
correspond to planes added to the model in the second segmenta-
tion phase, generalising more detailed building shapes.

a)

b)

c)

d)
Figure 3: Post-processing of the segmentation results. a) Pixels
not yet assigned to a planar segment in the building region in
Figure 2. b) Segment label image with additional planar segments
after post-processing. c) Pixels not assigned to a planar segment
after post-processing. d) Voronoi diagram of b) after merging
co-planar segments.

3 GROUPING OF ROOF PLANES AND GENERATION
OF ROOF POLYGONS

The neighbourhood relations of the planar segments are derived
from a Voronoi diagram of the segment label image (Ameri, 2000):
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r.m.s. [m] 0.00-0.05 0.05-0.10 0.10-0.15 0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45
Planes [%] 19.5 57.3 15.3 6.5 0.8 0.3 0.2 0.0 0.1

All [%] 13.6 40.1 10.7 4.5 0.7 0.2 0.1 0.0 0.0

Table 1: Distribution of the r.m.s. errors of the planar fit for all building regions in Figure 1. Planes: percentage of pixels in planar
segments having the respective r.m.s. error compared to the number of all pixels in all planar regions. All: percentage of pixels in planar
segments having the respective r.m.s. error compared to the number of all pixels inside the building regions. 69.9% of the pixels in the
building candidate regions are classified as belonging to a planar segment.
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Figure 4: Mutual relations between two planesε1 andε2. Left: intersection. Centre: step edge. Right: intersection and step edge.

each pixel inside the region of interest not yet assigned to a planar
segment is assigned to the nearest segment. After having found
the neighbourhood relations, co-planar segments are merged. The
co-planarity test is based on a Fisher test comparing the r.m.s. er-
rors of planar fit obtained by applying two different mathematical
models (two separate planes vs. one compound plane). Figure 3d
shows the Voronoi diagrams after merging co-planar segments.

The neighbourhood relations of the remaining segments are anal-
ysed. The boundary polygons of the Voronoi regions give a first
estimate for the planimetric positions of the segment outlines
(Figure 5a). Each portion of the boundary separating two planar
segments has to be classified according to the geometric configu-
ration of these segments (Figure 4): There might be an intersec-
tion, a step edge, or both an intersection and a step edge.

a) b)

Figure 5: A part of the roof polygons of the building in Figure 2
super-imposed to the DSM. a) The original pixel chains from Fig-
ure 3d. b) After finding intersections and step edges.

In order to perform this classification, the intersection lines of all
pairs of neighbouring planar segments are computed. For each
pair we look for parts of the original edge pixel chain separating
the two segments that fit to the intersection line (i.e., where the
r.m.s. error of the original edge pixels with respect to the inter-
section line is below a certain threshold). If the whole edge pixel
chain fulfills that criterion, the intersection line is the actual bor-
der between these planar segments, and the edge pixel chain is
replaced by the intersection line. If the criterion is fulfilled for
parts of the original edge pixel chain, the edge pixel chain is split
into several parts, each of them being handled individually. For
the parts that fit to the intersection line, the edge pixel chain is
replaced by the intersection line, too.

For all the other parts and for edge pixel chains not having a part
that fits to the intersection line, we assume a step edge. To locate
the step edge, we approximate the original edge pixel chain by
a polygon and then search for the positions of maximum height
change in the direction perpendicular to the polygon. We evaluate
the norm of the inner product of the DSM gradient and the normal
vector of the polygon (i.e. the gradient component perpendicular

to the proposed step edge) for that purpose. We obtain an im-
proved edge pixel chain. If this edge pixel chain can be approx-
imated by a straight line segment, it is replaced by that segment.
Otherwise, it has to be approximated by a polygon, the polygon
giving the final position of the step edge. Currently, no further ef-
forts are performed to improve the shapes of these polygons that
might be rather irregular, which is partly caused by outliers (large
gradients actually corresponding to another step edge).

Having replaced the original edge pixel chains separating two
planar segments either by intersection lines or by polygons corre-
sponding to step edges, the polygon delineating a planar segment
has to be put together from these individual parts. We compute
the intersection points of neighbouring straight line or polygon
segments. Where the intersection point is consistent with the
model (in the sense that it is not too far away from the original
vertices), it is accepted to be a vertex of the boundary polygon.
Where it is inconsistent, a straight line segment is used as an edge
connecting the two original vertices. Thus, for each planar seg-
ment, we get one or more closed border polygon(s).

After having generated the roof polygons, the polyhedral models
have to be created. The planar segments become the roof faces
of the model, the vertices of the boundary polygons become the
building vertices, and the edges of these polygons become the
edges of the polyhedral model. A vertical face corresponding to
a wall is inserted for each polygon edge classified as a step edge,
especially at the building outlines. Finally, a floor is added to
complete the polyhedral model.

Figure 6: The roof polygons of the building in Figure 2 back-
projected to an aerial image. Ground pixel size: 15 cm.

The modules for grouping and model generation are still work in
progress. Figure 5b shows preliminary results of computing in-
tersections and step edges. The polygon parts being the results of
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Figure 7: VRML visualisation of a model created from vertical prisms bordered by the boundary polygons and the floors.

step edge extraction still have to be be improved by eliminating
outliers and by more sophisticated methods for thinning, e.g. sim-
ilar to the one proposed by (Weidner, 1997) for simplifying the
shapes of the polygons describing the building outlines.

Figure 6 shows the reconstructed roof polygons super-imposed
to an aerial image of scale 1:7000. The roof structure is resem-
bled quite well by the model. Smaller roof details such as the
chimneys could not be reconstructed given the resolution of the
LIDAR data, and there are still planimetric offsets in the images
that correspond to about 5 image pixels, thus 1-1.5 times the grid
width of the DSM. The somewhat ragged appearance of some
polygon segments is caused by outliers in step edge detection.

As the computation of intersection lines and step edges moves the
positions of the borders between neighbouring faces, the neigh-
bourhood relations might change. This means that it would be
desirable to repeat the analysis of neighbourhood relations after
generating the polygons.

Figure 7 shows a visualisation of a 3D model created from ver-
tical prisms bounded by the roof polygons and the floor. The
structure of the roofs is correctly modelled. These preliminary
results are very encouraging, and they show the high potential of
high-resolution LIDAR data for building extraction.

4 ESTIMATION OF THE BUILDING PARAMETERS

In the previous phases of reconstruction, the parameters of the
planar segments were determined individually. The building ver-
tices were determined from the intersections of adjacent planes or
by step edge extraction. An overall adjustment including all avail-
able sensor information is important to get geometrically consis-
tent building models and to consider geometric constraints.

We use our hybrid adjustment program ORIENT (Kager, 1989)
for the estimation of the model parameters. It is the idea of our
method to find a “mapping” between the boundary representa-
tion (B-rep) of a building and a system of “GESTALT” obser-
vations representing that B-rep in adjustment. GESTALT obser-
vations are observations of a pointP being situated on a poly-
nomial surface. The polynomial is parameterised in an observa-
tion co-ordinate system(u, v, w) related to the object co-ordinate
system by a shiftP0 and three rotationsθ = (ω, ϕ, κ)T . The
actual observation is a fictitious observation of the largest com-
ponent of the distance vector to be 0. Using(uR, vR, wR)T =
RT (θ) · (P − P0), with RT (θ) being a transposed rotational
matrix parameterised byθ, and restricting ourselves to vertical
planes for walls and tilted planes for roofs, there are three possi-
ble formulations of GESTALT observation equations:

ru = mu · uR + a00 + a01 · (mv · vR)

rv = mv · vR + b00 + b10 · (mu · uR) (1)

rw = mw · wR + c00 + c10 · (mu · uR) + c01 · (mv · vR)

In equation 1,ri are the corrections of the fictitious observations
of co-ordinatei andmi ∈ {−1, 1} are mirror coefficients. An
application is free to decide which of the parameters (P, P0, θ,
surface parametersajk, bik, cij) are to be determined in adjust-
ment and how to parameterise a surface. In addition, different
GESTALTs can refer to identical transformation or surface pa-
rameters, which can be used to enforce geometric constraints. For
building extraction, we declare the rotations to be 0 and constant.
P0 is situated inside the building and constant. For each face of
the B-rep of the building model, we define a set of GESTALT
observations, taking one of the first two equations 1 for walls
and the third one for roofs. The unknowns to be determined are
the object co-ordinates of each pointP and the plane parameters
(ajk, bik, cij). As each building vertex is neighboured by at least
three faces, the object coordinates of the vertices can be deter-
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Figure 8: Three possible geometrical constraints between two planesε1 andε2. Left: a horizontal ridge. Centre: two orthogonal walls.
Right: a horizontal eave.

mined from GESTALT observations for these vertices. We use
the sensor data to determine the unknown plane parameters for
all the planes of the building:

• LIDAR pointsare assigned to roof planes. For each LI-
DAR point, one GESTALT observation will be introduced,
as well as three direct observations for the point’s LIDAR
co-ordinates to avoid singularities with respect to the object
co-ordinatesP.

• Direct observationsfor the planimetric co-ordinates of build-
ing vertices at step edges (the results of step edge detection)
are introduced in order to make the parameters of the wall
faces determinable.

Using this mathematic model, we get a highly redundant adjust-
ment system. It is possible to apply robust estimation (Kager,
1989) to eliminate false or contradicting observations. The weights
of the observations depend on their a priori standard deviations.
The most important parameter of the stochastic model is the a pri-
ori standard deviation of the GESTALT observations, because in
robust estimation, it decides about the “rigidity” of the building
model. Typically, we select it in the range of a few centimetres.

4.1 Regularisation of Polyhedral Models

Up to now, we have not yet introduced geometric constraints. In
the future, we will develop a module that has to analyse the poly-
hedral model and introduce geometric constraints where suffi-
cient evidence for their occurrence is found. If two planesε1 and
ε2 are found to fulfil a geometric condition, additional GESTALT
observations will be added to adjustment, taking advantage of
specific definitions of the observation co-ordinate system and spe-
cific parameterisations of the planes. Figure 8 shows three such
constraints. In all cases, one of the axes of the observation co-
ordinate system is defined to be the intersection ofε1 andε2, and
one of the vertices of the intersection line is the reference point
P0 of both planes. The rotationsω andϕ are 0 and constant,
but there is one additional unknown rotational angleκ. For each
vertexvi of the planes, GESTALT observations are added forε1

and/orε2. These planes are parameterised in a specific way:

• The intersection of two planes is a horizontal ridge:
ε1 : rw = wR + c1

01 · vR andε2 : rw = wR − c1
01 · vR.

There is only one tilt parameterc1
01. Symmetry is enforced

by selectingmv = −1 for ε2.

• Two walls are perpendicular:ε1 : ru = uR, ε2 : rv = vR.
There is no additional surface parameter to be determined.

• A wall and a roof plane intersect in a horizontal eave:
ε1 : rw = wR + c1

01 · vR andε2 : rv = vR. There is an
additional unknown roof tiltc1

01.

The stochastic model of these constraints is described by the a
priori standard deviations of the GESTALT observations. Af-
ter creating these additional observations, the estimation of the
model parameters has to be repeated.

5 INTEGRATION OF LIDAR AND AERIAL IMAGES

The quality of the building models derived from LIDAR data is
restricted by the ground resolution of the LIDAR sensor. As the
resolution of aerial images is still much better than that, it would
be desirable to integrate aerial images into the process of build-
ing extraction. As we have seen in the previous sections, the
most relevant roof structures can be extracted well from LIDAR
data. There are two stages where the aerial images can help to
improve the quality of the resulting models: They can help to de-
tect additional planar segments, and they can be used to improve
the geometric quality of the model edges by matching model and
image edges.

5.1 Detection of Planar Segments

In section 2, we have described that we accept segments having
r.m.s. errors planar fit that indicate that small roof structures have
been generalised, and there are still some unclassified pixels. In
both cases, it is possible to improve the segmentation results us-
ing the information provided by the aerial images.

We use polymorphic feature extraction for finding segments of
homogeneous grey levels in each digital image. Figure 9 shows
one of the areas containing pixels in the LIDAR DSM not yet as-
signed to a planar segment (from Figure 3a), the corresponding
area in an aerial image, and the results of a grey level segmenta-
tion of that aerial image. In the LIDAR DSM, that area only has
a width of about 5 pixels. It is impossible to separate the two roof
planes obviously connecting two larger building parts on the up-
per and the lower margins of the figure, because the sizes of the
filters involved in seed region selection limit the size of detectable

a) b) c)

Figure 9: a) The DSM in one of the areas not yet assigned to
a planar segment in Figure 3a. b) The corresponding area in an
aerial image. c) Result of a grey level segmentation in that aerial
image.
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planes. However, in the aerial image, the grey level segmentation
gives two segments corresponding to two roof planes. Thus, Fig-
ure 9 shows that it makes sense to use the image segmentation
results in the areas where no planes can be detected in the LIDAR
data. It is possible to project the image segments to the DSM to
get a first estimate for the plane parameters. In addition, homolo-
gous segments from different images can be matched, so that the
segmentation results from different images can be combined. In
the future, the most significant segments, (those obtaining support
in multiple images), will be selected for further processing. They
can be added directly to the list of planar segments, or they can
be used as new seed regions for region growing in areas where no
such regions could be derived from the LIDAR data alone due to
the restrictions imposed by the sizes of the involved filters.

5.2 Wire frame fitting

Wire frame fitting is a good approach for improving the geomet-
ric quality of the polyhedral models created from LIDAR data:
Unlike with LIDAR data, the grey level edges corresponding to
the building outlines can be extracted very precisely in the im-
ages. It is the idea of wire frame fitting to project the polyhedral
model derived in the way described in sections 2 and 3 back to
the images (Figure 6), where its edges can be matched with im-
age edges. In each image, the projected position of an object edge
gives us a region of interest, and we search for image edges inside
that region of interest that are almost parallel to the projected ob-
ject edge. Image edges fulfilling this condition are supposed to be
matching candidates, and they are considered in the estimation of
the model parameters by an expansion of the adjustment model
described in section 4: In addition to the observations described
there, the image co-ordinates of the end points of the image edge
segments are assigned to a roof edge. For each end point, we get
two image co-ordinates and two GESTALT observations (one for
each face being neighbour of the object edge), and three addi-
tional unknown object co-ordinatesP.

Whereas we search for matching candidates for all roof edges
independently in all images, parameter estimation is performed
in an overall robust estimation process in a hybrid adjustment
of the GESTALT observations representing the object model, the
LIDAR points, the positions of the step edges, and the image co-
ordinates of image features. Robust estimation is applied in or-
der to determine false matches between image and object edges.
We have first used this model fitting algorithm for automatic fine
measurement of parametric building models in a system for semi-
automatic building extraction from aerial images (Rottensteiner,
2001). In a test project in the context of semi-automatic building
extraction (image scale 1:4500, six-fold overlap) we have shown
that results with an accuracy in the range of a few centimetres can
be achieved using that method.

6 CONCLUSION AND FUTURE WORK

We have presented a method for building extraction from high-
resolution LIDAR data in densely built-up areas. Preliminary re-
sults from a test site in the City of Vienna have shown the high
potential of the method, and we have also discussed the issue of
integrating aerial images into the work flow to obtain better re-
sults by what could be called “multi-sensor-grammetry” rather
than photogrammetry. Future work will not only include the im-
plementation of the modules still missing, but also the assessment
of quality parameters for the results. With respect to the building
outlines, this can be accomplished by a comparison to existing
GIS data of our test area.
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