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ABSTRACT

Elements of accuracy of LIDAR systems and the corrections of systematic errors have received growing attention in recent
years. The expected level of accuracy and the additional processing that is needed for making the raw data ready to use are
affected directly by the systematic errors in the laser data. It is evident that calibration of the LIDAR system, both laboratory
and in-flight, are mandatory to alleviate these deficiencies. This paper presents an error recovery model that is based on
modeling the system errors and on defining adequate control information. The association of the observations and control
information, and configurations that enhance the reliability of the recovered parameters, are also studied here in detail.

1 Introduction

Laser altimetry has emerged in recent years as a leading tech-
nology for capturing data of physical surfaces. Properties like
the relatively high accuracy, the expected short turnout time,
and a detailed and almost ready-made digital surface model
(DSM) that is generated by the system, ensure the growing
interest in this technology. While a detailed coverage of the
surveyed surface is achieved by an increased system sampling
rate and thereby the point density, achieving the expected
level of accuracy and ensuring a short turnout time depend
in large on maintaining the potential quality of the data. A
major factor that affects the data quality is the existence, and
thus removal, of the systematic errors in the data.

A growing number of publications in recent years report the
existence of systematic errors in the laser data and their ef-
fect on the accuracy and on the processing of laser data.
For example, Huising and Gomes Pereira (1998) report
about systematic errors of 20 cm in elevation and of several
meters in position between overlapping laser strips, Crom-
baghs et al. (2000) and Vosselman and Mass (2001) iden-
tify systematic trends between overlapping strips, and Hofton
et al. (2000) report about identifying systematic errors in
NASA’s Scanning Lidar Imager of Canopies by Echo Recov-
ery (SLICER) (Blair et al., 1994). The systematic errors have
several effects on the laser data. Clearly they degrade the ac-
curacy of the geolocation of the laser footprint. Furthermore,
they distort the surface that is reconstructed by the laser data
in several ways, some of them linear (shifts and rotations) but
others not. One consequence of the distortions is that sur-
veyed objects in the overlapping areas of different laser swaths
may not coincide. Corrections then require a relatively long
preprocessing time that, in turn, increases the turnout time.
Reducing the effect of such errors requires pre-flight system
calibration (Krabill et al., 1995; Ridgway et al., 1997) as well
as in-flight calibration.

To eliminate the effect of the systematic errors, several pro-
cedures have been proposed so far. One group can be cat-
egorized as data driven. The motivation is to correct the
laser points by transforming them so that the difference be-
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tween their values and the reference control information is
minimized, namely,

‖ (xw, yw, zw)− T (xl, yl, zl) ‖= min (1)

where the subscripts l, w denote laser and world respectively,
and ‖ ‖ is the l2 norm. Mostly, the corrections are modeled
by means of the similarity transformation (Postolov et al.,
1999; Crombaghs et al., 2000; Mass, 2000), which involves
translations and rotations of the laser points. Another ap-
proach is based on recovering the systematic system errors.
Several authors report recovering the errors by conducting
different flight patterns over flat locally horizontal surfaces
and “flattening” the surface as a function of the systematic
errors (Vaughn et al., 1996; Ridgway et al., 1997; Hofton
et al., 2000). Others (e.g., Kilian et al., 1996) base their
calibration procedure on control, height, and tie points, in
a fashion similar to photogrammetric block adjustment, or
propose to reconstruct the elevation model (Burman, 2000)
around distinct landmarks to tie the overlapping strips.

The correction of laser points by means of a linear transfor-
mation focuses on the effect of the systematic errors but not
on their causes. This may not always be appropriate; an anal-
ysis of the similarity transformation (Filin et al., 2001) reveals
that not all error effects can be modeled, and thus removed,
by this transformation. Therefore, some accuracy may be
lost, and more complicated algorithms may be needed. Cal-
ibration approaches that are based on flying over flat locally
horizontal surfaces have their own limitations. For one, pla-
nar surfaces are not always available, and furthermore they
cannot model the effects of several error sources, like the
positional offsets. In general, the concept of control informa-
tion has not been fully explored. The information carried by
laser points is rather limited as it consists of the 3–D coor-
dinates of the laser point without any additional information
such as radiometric intensity. The laser points position is,
however, distorted by the errors, and identifying the footprint
location (the actual location of the laser point) is practically
impossible. Flattening the reconstructed surface is one way
to circumvent the lack of information and identifying distinct
control landmarks is another one. The limitations are, how-
ever, clear; both approaches require the existence of such
objects, and in the case of distinct control features, they also
depend on the altimeter sampling rate.



The strategy presented in this paper is based on utilizing
natural and man-made surfaces to recover the calibration pa-
rameters. The approach has several advantages. It is rel-
atively simple to apply even in areas that traditionally are
not considered favorable for calibration, and does not require
control points or flat locally horizontal surfaces. The algo-
rithm also simplifies the sought correspondence between the
laser points and ground control information and offers a more
general solution that does not depend on well-defined control
landmarks. In addition, the formulation enables one to model
the outcome of different systematic effects and to analyze the
preconditions for their recovery. Thereby, an analytical look
into the potential recovery of different biases is made possi-
ble.

The paper is organized as follows. The next section presents
the approach for the error recovery, it consists of the error
modeling and the recovery model. Following is an analysis
of the model properties, and of elements that enhance the
reliability of the recovered parameters. Results and discussion
conclude the presentation.

2 Error recovery

In-flight calibration of laser systems is complicated. The error
model involves the intrinsic errors of each system component
as well as errors that are a consequence of their integration.
A detailed error model is provided by Schenk (2001), but it
is clear that the error model is not yet fully understood. In
addition, the calibration procedure involves more than the
formulation of an analytical error model. System calibration
belongs, in general, to the class of inverse problems. For many
of them knowledge about the relation between the target and
domain data (dubbed here correspondence) is assumed to be
known, so the focus is on solving the inverse problem. With
laser mapping, however, it is impossible to know the exact
footprint location, and thus establishing a relation between
the domain (a laser point) and the target data (the foot-
print). Solving the inverse problem requires to find first the
correspondence by some method. This problem indicates that
the calibration is in fact a strategy rather than a formulation
of the calibration equation. The geometric realization of the
data acquisition system poses another problem. In general,
from each firing point only one beam is being transmitted and
therefore leaves no intrinsic redundancy. One potential effect
of this configuration is an increased correlation of the cali-
bration parameters that implies that not all the systematic
errors may be recovered independently. Therefore, another
question is which errors can be recovered and how to solve
for them.

The approach taken here is focused on the geolocation of
the laser footprint. The goal is finding the best geolocation
of the laser points in terms of minimizing the l2 norm of
the differences between the laser point coordinates and the
ground. Two spatial relations are involved in this modeling
– the laser geolocation equation and the surface model. The
geolocation and the error modeling are presented first.

2.1 Footprint geolocation and error modeling

The laser geolocation equation models the incorporation of
the different components of a laser altimeter system by means
of the transformations between the different reference frames.
The form is well established (see e.g., Vaughn et al., 1996;
Schenk, 2001) and is given in eq. 2.
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where:

xl, yl, zl – location of the footprint in WGS-84 geo-
centric coordinate system.

X0, Y0, Z0– location of the phase center of the GPS
receiver.

RW – rotation from the local ellipsoidal sys-
tem into the WGS-84 geocentric reference
frame.

RG – rotation from reference system defined by
the local vertical, to the ellipsoidal refer-
ence frame.

RINS – rotation from body reference frame to ref-
erence frame defined by local vertical. Ro-
tations are defined according to the INS
angles.

δx, δy, δz – offset vector between the phase center of
the GPS antenna and laser firing point,
defined by the body frame.

Rm – the mounting bias, which designate rota-
tion between the altimeter and the body
frame.

Rs – rotation between laser beam and laser sys-
tem defined by scanning angles.

ρ – range measured by laser system.

The systematic errors are analytically modeled by their effect
on the geolocation equation. A standard error model is yet
to be set, and the literature shows that the type of modeled
errors vary from one author to another. Schenk (2001) lists as
many as six potential groups of error sources. They include (i)
ranging errors, (ii) scan angle errors that consist of an error in
the swath angle, and in the determination of the scan plane,
(iii) mounting errors that consist of errors in determining the
alignment between altimeter and the INS, and of an error
in the determination of the offset between the phase center
of the GPS antenna and the laser system, (iv) INS errors
(v) position errors, and (vi) timing errors. Some of these
errors may be fixed during the flight mission, while others
may vary over time or as a function of position. Identifying
the effect of each error source is not always possible and under
given conditions several groups of the errors can have similar
effects. A detailed study of the effects and conditions for the
recovery of the errors can be found in Schenk (2001) and Filin
(2001). In this paper, two error sources that are considered
to have the major effect on the geolocation (see e.g., Vaughn
et al., 1996; Hofton et al., 2000; Ridgway et al., 1997) are
studied. They consist of the mounting bias and the range
bias. The effect of the mounting bias was modeled already in
eq. 2, and the range bias models a constant offset in the range
determination. An interesting effect of the range bias is that it
may result in a nonlinear surface deformation. The mounting
bias can be approximated, in general, by measurements prior
to the mission and can be treated as composed of a measured
part and am unknown part (thus modeled as ∆RmRm, with
∆Rm as the unknown part). For simplicity it is modeled here
as a single entity with the measured part considered as a first



approximation. The modified geolocation equation with the
two error sources, and the effect of the random errors is given
in eq. 3
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with δρ – the range bias, ēx, ēy, ēz – and the random errors
for the x, y, and z coordinates respectively. The mounting
bias can be described by the three Euler angles, and, together
with the range bias, there are four unknowns. Performing the
following derivations in a geocentric reference frame does not
contribute much to the problem formulation. As the term
RWRG can be approximated by a constant for a relatively
large surface size, it is multiplied out and the reference frame
is also shifted to the surface elevation, thereby forming a local
reference frame.

2.2 Error recovery model

To recover the systematic biases the surface is introduced as
a constraint. A general expression for a surface is given in
eq. 4

f(x, y, z) = 0 (4)

The footprint coordinates can be viewed as a vector-valued
function g of the observations – Y , the systematic errors –
Ξ, and the random errors - e that is written in the following
form – l = g(Y,Ξ, ē), with l = [xl, yl, zl]

T . Consequently,
the following relation can be written

f(xl, yl, zl) = h(Y,Ξ, ē) = 0 (5)

with h the implicit representation of the surface as a function
of the observations, and the systematic and the random er-
rors. The obvious target function is minimizing the l2-norm of
the residual vector, which also has the property of providing
the best linear uniformly unbiased estimate for the parame-
ters.

An explicit form of the surface function is, in general, not
known. It is more realistic to assume that the surface consists
of a set of surface elements, each with its analytical form. The
current modeling assumes that the surface can be represented
by a set of a planar surfaces

s1x+ s2y + s3z + s4 = 0 (6)

although any other surface model can be used. In this form
s = [s1, s2, s3] is the surface normal direction and s4 is the
intercept point. The surface parameters are considered here
to be known a priori. Incorporation of the surface constraint
and geolocation equation (eq. 3) is given in eq. 7

s
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+ s4 = 0 (7)

The relation in eq. 7 is the scalar product between the repre-
sentation of the laser point in homogeneous coordinates and
the surface, namely,

s̄ · l̄ = 0 (8)

with s̄ =
[

s1 s2 s3 s4
]

and l̄ =
[

xl yl zl 1
]

.

Linearization of this form is given in eq. 9. First approxi-
mations can either be set to zero or to the prior information
values if ones exist.

s̄ · ¯̄l = (sRINSU)1×3
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with ω, φ, κ, the bias angles along the x, y, and z-axes,
respectively; ¯̄l, the approximation for the geolocation of the
laser point (according to the current knowledge of the biases),
and U3×3 a matrix of the form

U =
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Notice that each laser point contributes one equation. The
model parameters are recovered via the Gauss-Helmert model,

wn = An×mξm +Bn×3ne3n , e ∼ {0, σ2
0P

−1} (12)

with w, the transformed observation vector; A, the coefficient
matrix; B, the conditions matrix; ξ, the vector of unknowns;
e, the observational noise; P , the weight matrix; σ2

0 , the
variance component; n, the number of laser points; and m,
the number of unknowns. The least-squares criterion results
in

ξ̂ = (AT (BP−1
B

T )−1
A)−1

A
T (BP−1

B
T )−1

w (13)

with:

D̂{ξ̂} = σ̂
2

0(A
T (BP−1

B
T )−1

A)−1 (14)

σ̂
2

0 =
(Bẽ)T (BP−1BT )−1(Bẽ)

n−m
, Bẽ = w −Aξ̂. (15)

Notice that with this formulation the essence of the problem
is modeled; the 3–D laser points and the surface are con-
strained. Furthermore, an explicit surface model incorporates
additional information about the terrain, such as slopes, into
the calibration model. In addition, with this formulation, no
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Figure 1: The iteration process – second level

restriction on the surface type, e.g., flat locally horizontal
surfaces, is needed. The approach is also independent of
the altimeter system sampling rate. Instead of focusing on
the reconstructed surface the model concerns the laser points
themselves. Therefore, distinct landmarks such as breaklines
and corners are not needed; the focus, here, is on minimizing
the distances between the points to the ground, the density
of the laser points is, therefore, not as significant.

Extension of this model to accommodate for other types of
errors can be carried out by modifying the laser geolocation
equation. The extension however does not mean that all
the errors are recoverable; further analysis of recoverability
conditions is required.

3 Model Analysis

The construction of the error recovery model enables one to
study of several aspects in greater detail. One aspect is estab-
lishing a more general model for the correspondence between
the laser points and the surface. Another is analyzing the
configurations that enhance the reliability of the parameter
recovery.

3.1 Detection of the correspondence

The proposed model simplifies significantly the detection of
the correspondence between the laser points and the control
information; the association here is between the laser points
and the surface elements that contain the footprint. That is
a subtle but important difference between association of the
laser points and their corresponding ground position. The
current association is less restrictive insofar as it does not
require well-defined 3–D landmarks for calibrating the system.
In fact, laser points that fall “inside” ordinary surfaces (i.e.,

not “on” or near breaklines) are as good or even better than
any other points in terms of accuracy.

Nevertheless, simplifying the correspondence does not guar-
antee that the initial association between the laser points, be-
fore being corrected for the systematic errors, and the surface
elements is indeed correct. It is still possible that the laser
points will fall inside wrong surface elements; see, for example
the initial estimations in Figure 1. Here, point 1 is initially
associated with surface element A instead of surface element
B, point 2 is correctly associated with surface element C, and
point 3 is, again, wrongly associated with surface element D
instead of E. The approach presented here solves this prob-
lem by an iterative convergence to the true solution. The
approach resembles the concepts of deformable templates,
and the Iterative Closest Point (ICP) algorithm (Besl and
McKay, 1992). The algorithm works as follows. Correspon-
dence is established by the initial location of the laser points;
surface parameters are then derived for each laser point. Af-
ter construction of the observation and condition matrices
and the transformed observation vector, the parameters are
estimated by the Gauss-Helmert model (eq. 12). In the fol-
lowing iteration the correspondence is updated according to
the modified position of the laser point, and the computation
of the systematic errors repeats itself. Convergence is reached
when the errors are not updated further, which occurs when
the points fall on the true surfaces, see the penultimate iter-
ation in figure 1. The algorithm below summarizes the steps
that are taken

1. initialize Ξ̂ and ξ̂

2. while ξ̂ 6= 0, do

3. for each laser point, lj , do

4. compute the incident point –
{xj , yj , zj} = g(lj , Ξ̂i)

5. compute sj = f(xj , yj , zj)

6. Solve for ξ̂i using eq. 13

7. Ξ̂ = Ξ̂ + ξ̂

8. endwhile

9. declare convergence,

Problems may be encountered with points near breaklines be-
tween surfaces with a relatively big height discontinuity. The
large differences are likely to bias the solution to compensate
for the differences. This problem can be circumvented either
by robust estimation techniques, or by removing error prone
points prior to the adjustment, for example, by evaluating the
homogeneity of points’ neighborhood.

3.2 Configuration and Reliability

The analytical error recovery model that was derived in Sec-
tion 2.2 provides a closed form that incorporates the laser
points, the errors and the surface parameters. It enables the
analysis of the elements that influence the recovery of the
systematic biases and the study of configurations that pro-
vide a better and more reliable estimation of the systematic
errors. The analysis begins with the linearized form of the
observation equations given in equation 9. An explicit form
is given by

w = −(c2ωi + c3)δρ+ (−c1v + c2u)κ+ (c1w − c3u)φ+

(−c2w + c3v)ω + s1ēx + s2ēy + s3ēz (16)



with c :=
[

c1 c2 c3
]

= sRINS . The vector c can be
viewed as a modified surface slope determined as a function
of the aircraft attitude and the surface slope. The values for
u, v, w are defined by eq. 11.

The form in equation 16 is general and can be applied to
different types of scanning systems. We analyze it with re-
spect to a linear scanner configuration which is widely used
in laser mapping. For a linear scanning system the rota-
tion matrix Rs is given by Rs = Rx(ωi). Consequently
the laser beam pointing direction can be approximated by
[

u v w
]

≈
[

0 −ωiρ −ρ
]

. Equation 16 can be written
then as

w = −(c2ωi + c3)δρ+ c1ωiρκ− c1ρφ+

− (c2 + c3ωi)ρω + s1ēx + s2ēy + s3ēz (17)

The recovery of the calibration parameters depends in large
on the modified surface slope and on the scanning angle; the
positional dependency shows itself only through the range,
but this effect is not big. The dependency on the angu-
lar quantities vary, however, from one parameter to another.
Equation 17 shows that the pitch bias, φ, depends on the
modified slope c1 along the flight direction while the coeffi-
cients for the mounting bias in the roll direction, ω, depends
on the modified surface slope across the flight direction. This
coefficient can be viewed as the sum of the surface tilt across
the flight direction and the scanner pointing angle. The coef-
ficient for the heading bias, κ, depends on the product of the
slope along the flying direction and the pointing angle and is
expected to be smaller by an order of magnitude compared
to the other two. The coefficient for the range bias can be
regarded fixed up to variations as a function of surface slope
along the flying direction and the scanning angle.

To recover the four biases simultaneously, the observation
matrix, A, should have neither zero nor linear dependent
columns. Equation 17 shows that zero columns can occur
if the modified surface slopes in the roll direction c1 is con-
stantly equal to zero, namely a zero slope along the flying
direction. It is very unlikely to encounter situations in which
the roll bias coefficients are all zero or close to zero, unless
c2 and ωi constantly cancel one another. The scanner angle
contribution indicates that no slope variation across the fly-
ing direction is needed to recover the roll bias. Notice also
that the slope variations can be achieved by aircraft maneu-
vers, so theoretically the recovery of the four parameters can
be performed by flying over a flat horizontal surface. This
is however not an optimal configuration because maneuvers
may introduce additional errors that will degrade the quality
of the estimated parameters. It is, therefore, recommended
to recover the errors by using observations taken over sloping
surfaces. Configurations that result in a linear dependency or
in columns that are almost similar are possible to construct.
One example, is using observations in which the value of the
scan angle, ωi is almost fixed. With this configuration the
coefficients for κ and φ are similar. Another configuration
that may result in similar columns occurs when calibrating
the system over a single surface or surfaces with almost the
same slope. Under such configuration high similarity is ex-
pected between the range and the pitch bias coefficients, and
if c2 is equal to zero, also between the heading and the roll
bias. It is therefore recommended to use observations from

Conf. Slope Cond.

s1 s2 Number tr{N−1}

I 0.01 0 236758.035 243.1

-0.01 0

II 0.1 0 13834.425 10.3

0.2 0

III -0.1 0 2309 2.4

0.1 0

IV -0.15 0 1050 1.1

0.15 0

V -0.2 0 587 0.6

0.2 0

VI -0.2 0.1 580 0.6

0.2 -0.1

VII -0.2 0.1 650 0.6

0.2 0.1

Table 1: Effect of slope distribution

the two sides of the swath and to use surface elements with
different slopes.

Configurations that enhance the reliability of the recovered
parameters should minimize the trace of the dispersion matrix

tr{D{ξ̂}} = min (18)

and results, in general, in a relatively small condition number
and small correlation between the estimated parameter. The
term configuration refers here to the slopes of the surface
rather than to their spatial organization. Big surface slopes,
and surface slopes in different directions have the effect of in-
creasing the diagonal elements of the normal equations while
reducing the off diagonal ones. Thus, smaller correlations
and a smaller trace can be achieved this way.

The effect of different surface configurations is demonstrated
in Table 1. The configurations are analyzed by the con-
ditions number and by the trace of the cofactor matrix,
N−1 := (AT (BP−1BT )−1A)−1. With the first configura-
tion the errors are recovered by flying over a surface with very
mild slopes (one percent). The condition number is large and
so is the trace of the cofactor matrix; the results are therefore
less reliable. With the second configuration the errors are re-
covered by flying over surfaces with relatively big slopes, but
ones that are pointing in the same direction. Comparing the
results to those obtained by the third configuration demon-
strates the effect of using surfaces that point in opposite
directions. The trace of the cofactor matrix for configuration
III is five times smaller than the one for configuration II, even
though the surface slopes in configuration II are bigger. Con-
figurations III-V show the effect of using steeper slopes. As
can be seen, the trace decreases from 2.4 to 0.6 as the slopes
change from 10 percent to 20 percent. In general, steeper
slopes are preferable than smaller ones, however, the rang-



1.00 0.94 -0.08 0.08
0.94 1.00 -0.08 0.08
-0.08 -0.08 1.00 -0.94
0.08 0.08 -0.94 1.00

Table 2: Correlation matrix for configuration II, surface slopes
pointing in the same direction

1.00 -0.10 -0.08 0.02
-0.10 1.00 -0.02 0.09
-0.08 -0.02 1.00 -0.04
0.02 0.09 -0.04 1.00

Table 3: Correlation matrix for configuration III, surface
slopes pointing in positive and negative directions

ing accuracy decreases as a function of the slope increase, so
the effect of steeper slopes is balanced by smaller weights.
Configuration VI and VII show that surface slopes across the
flight direction do not contribute to the quality of parameter
estimation. The effect of the estimation of the κ angle on
the condition number and the trace was evaluated in regards
to configuration III. When recovering only the three parame-
ters (assuming no bias in the heading direction) the condition
number was reduced to 25 and the trace to 0.4. Eliminating
other angular biases did not change much the original values.

The effect of the pointing direction of the surface slopes on
the parameters correlation is demonstrated with respect to
configurations II and III. Tables 2 and 3 list the correlation
matrices of the estimated parameters for these two configu-
rations. The order of parameters is - the range, the pitch, the
roll, and the heading biases. The results show that the use of
surfaces that point in positive and negative directions has also
the effect of reducing the correlation, and thus making the
recovery of each systematic error almost independent. Notice
also that the high correlation in configuration II is between
the range and the pitch bias and the heading and the roll bias.
This type of correlation was anticipated when calibrating the
system over surfaces with similar slopes (see the discussion
above about configurations that result in high similarity be-
tween columns). The results show that even when variations
in the surface slope are significant (but in the same direc-
tion) the similarity between the coefficients of the different
parameters is high.

4 Discussion and results

The results of the analysis show that recovering the system-
atic error of LIDAR system is a manageable task, and one that
can result in reliable estimates. The results show that by fairly
simple means, like surfaces pointing in different directions so-
lutions with a low condition number, and low correlation can
be generated. Utilizing natural surfaces or man-made ob-
jects to resolve the systematic errors make this formulation
advantageous to the existing methods as it neither limits the
solution to flat surfaces nor requires distinct control features.
Notice that the need for preliminary knowledge about the cor-
respondence between laser points and the ground is removed;
the proposed formulation solves for the calibration parameters
and the correspondence simultaneously. In addition, with this
model the solution to the correspondence problem is an in-

Figure 2: Frequency of residuals after removal of systematic
errors

tegral part of the calibration model; no additional algorithms
are needed to solve this part.

Experiments with the recoverability of the potential error
sources shows that solutions with a minimum correlation and
small variance can be achieved. The approach was applied
to recover the calibration parameters of the NSF-SOAR (Na-
tional Science Foundation Support Office for Aerogeophysical
Research) laser altimetry system. The NSF-SOAR system is
a unique suite of geophysical, mapping and navigational in-
struments, mounted in a ski-equipped aircraft. The system
was flown in Antarctica to map surface elevation changes on
the West Antarctica Ice Shelf (WAIS) ice streams (Spikes et
al., 1999). The calibration of the NSF-SOAR laser system
posed a challenge for existing calibration approaches since
the whole mission was performed in the interior of the WAIS
where neither flat surfaces nor distinct features were available.
The profiling configuration also meant a relatively sparse sam-
pling – one point per eight meters – and the comparison of a
two dimensional object to a three dimensional one. Ground
control information was available from snowmobile-mounted
GPS surveys that was conducted along the skiways and their
surroundings. Control surfaces were formed by a triangulation
of the points, and planar surface parameters were computed
using plane fitting. The site was overflown several times in-
cluding flights with constant attitude as well as with pitch or
roll maneuvers. Data from flight segments that contributed
to achieving the optimal configuration were used as observa-
tions. The parameters were recovered in a fairly high level of
accuracy. Figure 2 presents the residual distribution after the
system calibration. Evaluating the statistical characteristics
shows that σ̂0 = 0.06m, the condition number for this cali-
bration configuration is C = 800, and the highest correlation
is 30 percent and the others are less than ten. These values
validate the analysis in Section 3.2 and show than solutions
with small variance and low correlation can be achieved even
under less than optimal conditions.

5 Concluding remarks

This research studied the calibration of a laser altimeter sys-
tem. An analysis of the data characteristics and the data
acquisition concept has indicated a need for a model that is
different from the traditional data registration concepts, e.g.,



the ones applied in photogrammetry. It was identified that
the two prevailing problems are the nonredundant determina-
tion of laser points and the unknown correspondence between
laser points and the spot they illuminate on the ground.

By analyzing the properties of the proposed method, it has
been demonstrated that moderate slopes are sufficient to gen-
erate reliable solutions. The only requirement consists in hav-
ing the surface elements oriented in different directions. The
compelling conclusion is that natural terrain will yield results
that are accurate and reliable.
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