
Comparing Probabilistic and Geometric Models On Lidar Data

Roberto Fraile and Steve Maybank
The University of Reading, UK

September 2001

Abstract

A bottleneck in the use of Geographic Information Systems
(GIS) is the cost of data acquisition. In our case, we are in-
terested in producing GIS layers containing useful information
for river flood impact assessment.

Geometric models can be used to describe regions of the data
which correspond to man-made constructions. Probabilistic
models can be used to describe vegetation and other features.

Our purpose is to compare geometric and probabilistic models
on small regions of interest in lidar data, in order to choose
which type of models renders a better description in each re-
gion. To do so, we use the Minimum Description Length prin-
ciple of statistical inference, which states that best descrip-
tions are those which better compress the data. By comparing
computer programs that generate the data under different as-
sumptions, we can decide which type of models conveys more
useful information about each region of interest.

1 Introduction

High density sources of information, such as lidar, compare
with traditional topographic surveys on the vast amount of
information available. Automation in the processing of lidar
data is not only required for reasons of speed and accuracy,
but it also helps to find new ways of understanding the data.
The initial assumption is that the best descriptions of objects
are the shortest ones, when those descriptions are built taking
into account the context information required to reproduce
those objects [4, 5] Our purpose is to produce constructive
models, in the form of computer programs, that can repro-
duce the data, are as compact as possible, convey the knowl-
edge we have about the data, and which we can compare
using a single measure, their length in bits. This approach is
based in the theory of Kolmogorov Complexity, most popular
under the perspective of the Minimum Description Length
(MDL) principle [8].

A proportion of past work in reconstruction from range im-
ages [1, 2] starts from the assumption that the range data
represented surfaces with continuity properties. This is not
the case with the lidar data we have, representing not only
topographic features of terrain but also buildings and vege-
tation, which are not suitable for representation in terms of
curvatures.

In this paper present work towards the selection of appropri-
ate models, with examples on the classification of lidar data
using a narrow family of models. Similar work in applica-
tions of MDL has spanned over a wide range of applications,
for example [3] is a review of MDL from the point of view
of machine learning. See [6] for an application to computer
vision.

The interest of this approach is in the way it could help to
handle increasingly complex models, by helping in the com-
parison between heterogenous families of models, and in the

explicit use of prior knowledge.

We introduce the principle and report an application in which
lidar images are segmented in quadtrees [9] and the resulting
cells are classified.

2 Model Selection

Constructive models allow us to compare between very het-
erogenous alternatives. A constructive model leads to a de-
scription of the data, which has a length in bits. This length
is weakly dependent on the language in which the descrip-
tion is written. If that description is close enough to the
Kolmogorov complexity [4] of the data, which is the result
of compressing the data as much as possible, then we are
obtaining a measure of the complexity of the data.

The data D is represented by a program that corresponds
to its structure P , and some error E which we expect to be
small. The description of D is P together with S. It is the
size of P and S what we use as measure of complexity. If
the structure chosen to represent the data is the appropriate
one, then the size of the error should be small. But it could
be the case that the structure is not very correct but very
simple, and still leading to a small description.

These are the families of models we are looking at

geometric representing buildings, dykes and any other fea-
ture usually formed by straight lines combined in simple
forms. Our aim is to describe geometric features us-
ing programs that reconstruct the features, and short
codes to represent the error.

probabilistic representing vegetation, areas that are better
described by giving the probability distribution, with
non-zero standard deviation, that generated them. Our
aim is to identify the distributions involved.

The features of interest in our data are characterised in very
simple geometric and probabilistic terms, compared to the
study of range images in general [1]. But the models that
represent such types of features are fundamentally very dif-
ferent: a geometric model that describes well the shape of
a building in terms of facets and edges, will fail to describe
accurately the shape of vegetation; a probabilistic distribu-
tion, more appropriate for vegetation, will not capture most
essential characteristics of built environment.

In order to compare such models, they must be defined in
a generative form: in our case, we have implemented them
as computer programs that can generate the data. The data
is described using a computer program to generate it. That
means that the model itself is encoded, and its size taken
into account. This is an important feature of this method.
When the models to compare are fairly similar, the size of
the model is irrelevant, and reduces to Maximum Likelihood.
This method departs from plain Bayes when the size of the
model varies and affects our decision on which model is best.



Probabilistic models consist on data that is draw from a par-
ticular distribution. This is equivalent to assume that the
data is described in shorter form by a code that associates
shortest programs to the data with higher probability. For ex-
ample, we use a uniform distribution in our experiments, and
we implement it by encoding all data using the same amount
of bits.

In the case of geometric models, in particular, we expect the
model to approximate the data fairly well. In our experiments
we consider flat surfaces. To encode the errors for such a
model we use the log∗ code [7], which is just one case of
a code that associates shorter programs to shorter numbers
while filling the tree of codewords.

3 Experiments

The pilot site of our project is a 25 km stretch of the river Váh
in Slovakia, chosen for the purpose of flood simulation and
impact assessment. Our experiments are centered in a patch
of terrain around the canal that include in a cross section.
The features under consideration are industrial buildings and
vegetation.

These experiments were carried in two steps. First the image
was segmented into a quadtree using a homogeneity crite-
rion, then the resulting quadtree cells, of different sizes, were
classified according to a description length criterion.

4 Segmentation

The first step in the labeling is the segmentation of the im-
ages. The segmentation structure are quadtrees, which are
recursive division of a cell c into four equal cells c1, c2, c3, c4,
whenever a homogeneity test is negative over the cell. The
first cell is the complete image. Quadtrees were chosen ex-
pecting to obtain somehow a transition between probabilis-
tic models (quadtrees with small cells) to geometric models,
which in our case correspond to flat areas of the terrain and
large tiles.

Two main types of homogeneity test were tried in the seg-
mentation (see Figure 1 and below); the simplest one is the
variance test, v(c), in which the cell is divided whenever the
variance is above a threshold. The second type of test consists
on describing the area as if it was flat with small perturba-
tions, log∗(c), and dividing the cell if the amount of bits per
pixel is above a threshold. The third type of test consists on
describing the cell c as if it a flat area with small perturba-
tions, log∗(c), encoding the mean value and the small pertur-
bations using a special code, then doing the same considering
now the four sub-cells independently log∗(c1) . . . , log∗(c4).
Both descriptions of the same data are compared and those
shortest one is chosen: if dividing the cells leads to a shortest
description, then the recursion goes on.

Only the first two tests lead to significant results, both v(c)
and log∗(c) produce clusters of small cells in the vegetation
areas and lines of small cells in the edges. The log∗ de-
scription did not lead to a significative improvement over the
variance.

This leads to an illustration of the fact that a variety of com-
mon model selection methods are in fact computable approxi-
mations of the Kolmogorv Complexity. The variance function
v(c) corresponds to an encoding in the similar way that our

Figure 1: Lidar tile 100 meter side

Figure 2: Quadtree segmentation of Figure 1 based on vari-
ance, cells with variance below 20000 are not split



Figure 3: Quadtree segmentation of Figure 1 based on de-
scription size using log∗ , cells with 14 bits per pixel or less
are not split

log∗(c) encoding:

v(c) =

∑
i
(si − µ)2

n

(where µ is the mean and c = {si, . . . , sn} the data avail-
able), is the code length when each datum is represented
using (si − µ)2 bits. The actual log∗ function we have used
is:

log∗(c) =

∑
i
log∗(si − µ)2

n

5 Classification

For the classification, a wider family of models were com-
pared: each of them was used to describe the cells, and the
model that produced the shortest description of the cell was
used to label it. Two families of models were considered: the
data was produced by a uniform distribution, which means
that it is evenly distributed within its range of values, or the
data was flat with small perturbations, subject to short de-
scription by log∗.

Two models were dominant, and are used to label Figure 5.
The cells that correspond to the vegetation and building cor-
ners were better described by the log∗ code. The rest of the
cells, including flat areas, were better described by the as-
sumption of a uniform distribution. This fact contradicts the
fact that log∗ should encode better flat areas, and it is just
a direct effect of the size of the cell.

6 Conclusion

We are applying the concept of length of description to com-
pare very heterogenous models when interpreting lidar data.
This method would also help in handling models of varying
complexity.

Figure 4: A lidar tile (100 meter side) after variance-based
segmentation into a quadtree

Figure 5: A classification of the pixels from the segmenta-
tion in Figure 4, according to the shortest description. Large
(lighter) blocks are better represented by a uniform distribu-
tion, small (darker) blocks’s description is shorter when using
a log∗ code



Applications of this technique are in the development of ex-
tensible, flexible methods for off-line feature extraction, as a
result of the ability of this algorithm to compare between very
heterogenous models.

We also expect this sort of metrics to be robust against out-
liers, a requirement for automatic feature extraction.

We are also looking for alternatives for the segmentation,
such as region growing, that produce structures with a clearer
geometric meaning. This would produce complex models that
better represent the reality, while keeping a grasp on a wider
range of models by means of the code length metric.
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