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ABSTRACT

Perceptual organization is to group sensory primitives arising from a common underlying cause by imposing structural organi-
zation on sensory data. It has been emphasized as a robust intermediate-level grouping process toward object recognition and
reconstruction since it imparts robustness and computational efficiency to the perceptual process. Sarkar and Boyer (1993)
proposed a classificatory structure for perceptual organization and clarified what should be done under each class. Despite
intensive research on 2D data, 3D perceptual organization is still in its infancy, however. Increasing research efforts are needed
to understand 3D data from various range sensors such as laser altimetry systems. Therefore, the purpose of this research
is to develop a robust approach for constructing 3D perceptual organization from irregularly distributed 3D points acquired
from laser altimetry systems. The scope of perceptual organization presented in this paper is limited to signal, primitive and
structural levels. At the signal level, we organize raw 3D points into spatially coherent surface patches. Then, at the primitive
level, we merge the patches into co-parametric surfaces and detect breaklines and occlusions. Finally, at the structural level,
we derive useful surface combinations such as polyhedral structures. The approach has been successfully applied to real laser
altimetry data. The organized output is on a much more abstract level than the raw data and makes information explicit.
Thus, it serves as a valuable input to higher order perceptual processes, including the generation and validation of hypotheses
in object recognition tasks.

1 INTRODUCTION

Perception is the process by which organisms interpret and
organize sensory stimulus to produce a meaningful description
of the world. Especially, the ability to impose organization on
sensory data in human perception started to be emphasized
by Gestalt psychologists from the early 20th century (Koffka,
1935; Khler, 1929). It has been recognized as a crucial com-
ponent that makes human perception powerful and volatile.
Hence, many systems in computer vision organize primitive
sensor data into perceptually meaningful groups before ad-
vancing to higher-level processing such as object recognition.
These grouping processes are known as perceptual organiza-
tion, formally defined as a process that groups sensory prim-
itives arising from a common underlying cause by imposing
structural organization on sensory data (Sarkar and Boyer,
1993).

Since the roles of perceptual organization were emphasized
as a robust intermediate-level vision process by Witkin and
Tenenbaum (1983) and Lowe (1985), many researchers have
demonstrated the importance of perceptual organization in
the tasks under many levels and domains of computer vi-
sion, e.g., figure-ground discrimination (Herault and Ho-
raud, 1993), motion-based grouping (Allmen and Dyer, 1993;
Chang and Aggarwal, 1997), object recognition (Havaldar
et al., 1996; Modayur and Shapiro, 1996; Nelson and Selinger,
1998; Zisserman et al., 1995), building detection (Henrics-
son, 1998; Lin et al., 1994) and change detection (Sarkar
and Boyer, 1998).

Sarkar and Boyer (1993) propose a classificatory structure of
perceptual organization based on the dimension over which
organization is sought and the abstraction level of features
to be grouped. The structure has two axes: one axis denotes
2D, 3D, 2D plus time and 3D plus time; and the other axis

represents signal, primitive, structural and assembly level. For
example, surface segmentation from laser altimetry data can
be classified into 3D signal level perceptual organization. In
addition, further grouping of the segmented surfaces falls un-
der 3D primitive or structural level perceptual organization.

Even though they suggest what should be done under every
class, the previous work has mainly concentrated on 2D or-
ganization, dealing with all the abstraction levels and empha-
sizing the structural level. In addition, some researchers also
consider 2D plus time (Sarkar, 1995) but profound research
is still required for successfully applying the organization to
interpreting motion sequences. In 3D organization, most pre-
vious studies falls under signal level only, particularly focusing
on range image segmentation. However, the need of percep-
tual organization in the various levels of 3D will significantly
increase because 3D sensors become cheaper and more avail-
able. Hence, ”perceptual organization in 3D” are emphasized
as one of the most important research directions (Boyer and
Sarkar, 1999).

The most important 3D sensors recently widely used in many
photogrammetric applications are laser altimetry systems. A
chain of photogrammetric processes traditionally starts from
images. Inference of 3D information from images involves
a matching process to find conjugated features from images
(Schenk, 1999). However, matching is a highly intelligent
process that cannot be easily archived by computers in spite
of the astonishing development in artificial intelligence and
computer vision during the last several decades. Therefore,
the automation of the entire processes is still extremely chal-
lenging.

Laser altimetry data have been thus recently noticed as al-
ternative or supportive to images, since laser altimetry sys-
tems produce 3D points by sampling directly physical sur-
faces. They provide a cloud of irregularly distributed raw sur-



face points consisting of the x, y, z coordinates for each laser
footprint without radiometric information. In addition, mul-
tiple echo data, radiometric values at the laser wave length,
the waveforms of returned laser pulses are also available de-
pending on the systems but not considered in this research.

Applications using the laser altimetry data are rapidly increas-
ing, ranging from DEM (Digital Elevation Model) construc-
tion to urban modelling. Many post-processing algorithms
are reviewed by Tao and Hu (2001). Most of the algorithms
typically involve interpolating into regular grid data, separat-
ing the ground surface, detecting upper-ground objects such
as buildings (Gamba and Houshmand, 2000; Maas and Vos-
selman, 1999), trees (Hyyppa et al., 2001) and other objects
(Axelsson, 1999) and further identifying their changes (Mu-
rakami et al., 1999).

Instead of introducing another application oriented algorithm,
we intend to establish a middle-level process which are less
dependent on an application and hence sufficiently general
for various applications. Using this process, we will derive
a robust, explicit and computationally efficient description
from raw data, which usually include many redundancies and
outliers. As the most suitable approach to perform this, we
propose 3D perceptual organization, which has been proved
as a robust intermediate process for various tasks in computer
vision.

We significantly benefit from the use of 3D perceptual orga-
nization as an intermediate step toward various applications
of laser altimetry data. Main advantages are summarized as
follows:

• Explicitness: perceptual organization provides more
abstract and explicit description of raw data. For ex-
ample, we do not need 50 points sampled from a pla-
nar roof of a building and prefer to have explicitly the
boundary and the parameters of the plane.

• More information available: according to the princi-
ple of Gestalt laws, one plus one is not just two but
much more than two. We can compute from a seg-
mented surface various additional information, which
is not meaningful to a point, such as point density, sur-
face roughness, outlier ratio, area, orientation, surface
normal and so on.

• Robustness: a grouping process contributes to identi-
fying outliers since it tries to group mutually consistent
entities and non-grouped entities usually corresponds
to outliers. Hence, grouped entities are a robust de-
scription of the original data.

• Reduced complexity: perceptual organization signifi-
cantly reduces the number of entities thanks to its ex-
plicitness and abstractness. For example, when we de-
tect buildings from laser altimetry data, if we search
from perpendicular surface combinations rather than
from all surfaces (or extremely all points), the num-
ber of entities that we should check with a building
hypothesis is much smaller.

In summary, the objective of this research is to present a
framework that computes 3D perceptual organization from
laser altimetry data. Here, the computed organization should
be a robust, explicit and computationally efficient description
of the original data so that they can be flexibly used as an
input for various higher-level processes. The problem is more
formally stated in the next subsection.

The problem statement is followed by three sections which
describe the proposed approach, show the experimental re-
sults and conclude with discussion and future research, re-
spectively.

1.1 Problem Statement

Given a set of irregularly distributed 3D surface points ac-
quired from laser altimetry systems, compute perceptual or-
ganization at signal, primitive and structural levels. At the
signal level, we organize the raw points into spatially coherent
surface patches with their boundaries. Then, at the primitive
level, we merge the patches into co-parametric surfaces, re-
fine the boundaries and identify breaklines and occlusions.
Finally, at the structural level, we derive useful surface com-
bination such as parallel surfaces and continuous surfaces,
identify the ground surface and generate hypothesized sur-
faces for the occluded areas. Table 1 summarizes the inputs
and outputs at each organization level.

Table 1: Inputs and outputs at each organization level

Level Inputs Outputs

Signal Points Patches with their boundaries

Primitive Patches Surfaces with refined boundaries,
breaklines and occlusions

Structural Surfaces Surface combinations with hy-
pothesized surface

2 THE PROPOSED APPROACH

As acknowledged from the objective of this research presented
in section 1, we have been focusing on developing an overall
framework rather than inventing a new specific algorithm to
constitute the framework. It is because the use of perceptual
organization for the post-processing of laser altimetry data
has been rare with our best knowledge and also the 3D per-
ceptual organization is still in infancy although tremendous
research has been performed for 2D data (Boyer and Sarkar,
1999). Thus, our fundamental strategy for this work is to re-
view various research efforts in 2D data and extend them for
3D data, particulary in the domain of laser altimetry data,
even though we developed inevitably new pieces in several
cases.

Despite the lack of previous studies, we managed to intro-
duce two representative studies. At the signal level, Ahuja
and Tuceryan (1989) extracted perceptual organization from
irregularly distributed 2D points called dot patterns. They
classified dots into interior dots, border dots, curve dots, and
isolated dots using their relationships with the neighborhood
defined by Vornoi diagram. They also used a probabilistic re-
laxation process to produce a globally optimal result. At the
primitive and structural level, Fisher (1989) grouped surfaces
reconstructed from 2D images into ’surface clusters’, that
is, perceptually meaningful surface combinations. Since the
surfaces are reconstructed from 2D images, they have many
different aspects from those from 3D laser points. However,
his research is a valuable basis for this work.

Based on the relevant studies including not only these repre-
sentative studies but also many valuable research regarding
2D perceptual organization, range image segmentation and
unsupervised point clustering, we establish a framework com-
prised of three grouping processes at the signal, primitive, and



structural levels, where the inputs and outputs at each level
are previously summarized in Table 1.

The process at each level includes preprocessing, main pro-
cessing and postprocessing. Preprocessing performs the task
supportive to grouping such as defining the adjacency among
features and computing the attributes of features. Postpro-
cessing complements grouping outcomes, for example, by fill-
ing gaps, determining boundaries, identifying breaklines and
occlusions, adding hypothesized surfaces, and inferring more
complex entities such as the ground surface.

The main processing at each level is designated as segmen-
tation, merging, and grouping, respectively. Although we use
three different terms so that they can be more appropriate
for the features to be grouped at each level, all of them are
actually classified to grouping processes.

The grouping process consists of three components which
should be deliberately selected mainly based on the features
to be grouped and the groups to be sought. The compo-
nents are ”grouping cues”, ”testable feature subsets”, and
”cue integration method” (called grouping mechanism here),
as described by Berengolts and Lindenbaum (2001). Group-
ing cues are the information that indicates whether two or
more entities arise from an object, such as proximity, connect-
edness, continuity, similarity, parallelism, symmetry, common
region and closure (Sarkar and Boyer, 1994b). Testable fea-
ture subsets indicate a subset of features, inside of which
we examine the validity of the grouping cues. The size of
the subset can be determined by considering the meaningful
range of the cues and the computational complexity. Group-
ing mechanism is the means by which we produce globally
optimized grouping of the entire set by integrating the group-
ing cues locally computed inside the testable feature subsets.
The method is frequently implemented as an optimization
process that minimizes a cost function.

One should also determine how to represent the perceptual in-
formation being processed during the grouping process. Rep-
resentation using a graph structure where nodes indicate the
entities to be grouped and arcs describe perceptual informa-
tion between the entities is a promising choice as indicated by
many other researchers (Zahn, 1971; Geman et al., 1990; Her-
ault and Horaud, 1993; Matula, 1997; Shaashua and Ullman,
1988; Shapiro and Haralick, 1979; Wu and Leahy, 1993).

2.1 Signal Level

At the signal level, we group raw 3D surface points into sur-
face patches (or point clusters). The process is summarized
in Figure 1.

Adjacency: neighborhood of a point Adjacency defining
the neighborhood of a point is required for a grouping pro-
cess, which often access the neighborhood to compute multi-
feature grouping cues and check them with grouping criteria.
Neighborhood in a set of irregularly distributed points is not
obvious, however. Various neighborhood concepts are well
reviewed early by Ahuja and Tuceryan (1989) and recently by
Chaudhuri (1996). We describe several examples here. The
best one among them is determined according to the size and
distribution of a data set.

The Delaunay triangulation is a acceptable choice since the
region of influence of a point is determined by the Voronoi di-
agram and the adjacency of the regions is then expressed by
the edges of the Delaunay triangulation. Some researchers
use 2D Delaunay triangulation considering only horizontal

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Establish adjacency among points. 
• Compute the attributes of points in robust ways. 
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attributes. 
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grouping mechanism. 
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• Fill patches using the isolated points. 
• Determine the boundaries of the patches. 

Postprocessing 

Figure 1: Signal level process

coordinates (Maas and Vosselman, 1999) while others also
use 3D Delaunay triangulation (Lee and Schenk, 2001). The
computational requirement constructing the Delaunay trian-
gulation is the hindrance to its use in a large data set.

Simple approaches such as selecting the k nearest points and
the points inside a sphere of a fixed radius are thus useful in
such sets. In addition to proximity considered by these ap-
proaches, the distribution of neighboring points is important.
With the idea that neighborhood should be not only as near
but also as symmetric as possible, Chaudhuri (1996) propose
’nearest centroid (or median) neighborhood’.

Attributes of points Attributes of points are the funda-
mental information which we can use to examine grouping
hypotheses. The most primitive attribute of a point is its 3D
coordinates. We frequently require more complex informa-
tion such as point density, roughness, surface normal, plane
parameters, outlier ratio and other properties which can be
defined with a set of points rather than a single point. Such
complex attributes are meaningful since the laser footprint of
a point is actually not a zero-dimensional point but a two-
dimensional elliptical area.

Although they can be considered as the attributes of a point,
they cannot be defined or computed from only a point. There-
fore, we compute them from a small patch defined around a
point. The patch should be large enough to include the points
from which the attribute can be computed. For example, at
least three points are required for determining surface normal.
Contrarily, the patch should be small enough to represent a
point and its local area. In addition, the patch should consist
of the neighboring points which locate not only near to its
representing point but also symmetrically around the point.
The nearest centroid (or median) neighborhood can be thus
a strong candidate.

To compute an attribute of a patch, we establish a system
of the equations, which formalizes the contribution of the
interior points to the attribute. For example, if we compute
plane parameters from a patch, each equation shows a plane
equation substituted by the three coordinates of a point with
the noises associated with each coordinate.



The computation of the attributes from this established sys-
tem (usually overdetermined) should be equipped with a ro-
bust estimation approach rather than the least mean squares
approach, because every small patch can include outliers,
which result in an significantly different attribute compar-
ing to the others. For example, Least Median Square Error
(LMedS) estimation is a promising alternative since it allows
up to 50 % outlier ratio in theory (Koster and Spann, 2000).

In addition, we measure the tendency of a point to be an
outlier from every computation of the attribute. After the
computation of all the attributes, we conservatively classify
some points into outliers by synthesizing the outlier tendency
measured from each computation.

Refined adjacency The points classified as outliers with
significant evidence should not maintain its adjacency to at
least the representing point of the patch. Accordingly, we
refine the adjacency established before so that the outliers
cannot be linked to the inliers.

Isolated points Based on the refined adjacency, we classify
isolated points by the connected component analysis. This
analysis produces groups of connected points based on the
adjacency. Some of the groups may include very small num-
ber of points, which can be labelled isolated points.

Grouping cues among points Another aspect of grouping
is the selection of grouping cues. At the signal level, prox-
imity, similarity and continuity are typically considered. It is
natural to group points which locate near to each other and
show similar attributes. Grouping cues can be defined on at
least two points. The more entities considered, the stronger
cues can be realized. For example, if we intend to group the
points expected to be on the same plane, we can check the
similarity of the fitted plane parameters of the points. If we
have more points involved, the similarity is stronger evidence
for grouping. However, such multi-feature cues cannot be
explicitly represented in a graph structure, since it can only
include as arcs the bi-feature cues. To overcome this, Amir
and Lindenbaum (1998) propose a procedure that enhances
the strength of the bi-feature cues based on the multi-feature
cues founded. They increase the strength of a bi-feature cue
of two entities if multi-feature cues around the entities sup-
port the bi-feature cues and decrease them otherwise.

Testable feature subsets If we compute the grouping cues
from all the points in a set, we would be confronted with
the combinatorial explosion. Furthermore, some cues such
as proximity are meaningless for two distant points. Hence,
we have to specify a certain range named testable feature
set, only the entities inside which we consider to compute
these grouping cues. The range is deliberately determined
by considering the validity of the cues and the computational
complexity. At the signal level organization, a point and its
connected points in terms of the refined adjacency are con-
sidered as the testable feature set.

Grouping mechanism Another component to be deter-
mined for a grouping process is grouping mechanism. The
mechanisms range from optimized processes such as simu-
lated annealing and probabilistic relaxation, usually involving
heavy computation, to the connected component clustering
of only linear time complexity.

According to the performance of the connected component
clustering assessed by Berengolts and Lindenbaum (2001), it
can be suitable for many practical applications requiring less

computation complexity and medium quality of grouping. It-
erative growing is also a strong candidate, which is similar
to connected component clustering since it also follows the
connection among the entities. Its uniqueness comes from
performing iteratively testing a new point, including (or dis-
carding) the point, and updating the attributes of a growing
group (Lee and Schenk, 2001). In addition, some researchers
use scalar or vector voting (Sarkar and Boyer, 1994a; Guy and
Medioni, 1997; Tang and Medioni, 1998; Lee and Medioni,
1999) and graph spectral partition (Sarkar and Soundarara-
jan, 2000).

Although the selection of a mechanism depends on the
allowable computation complexity and the application to
be sought, we are not willing to choose a complex time-
consuming process in general. It is because grouping as a
middle-level process should reduce the overall complexity of
a whole process. Consequently, iterative growing is a reason-
able choice.

Segmented patches: point clusters Based on the group-
ing cues, the testable feature sets, and the grouping mecha-
nism considerately selected, the segmentation process is ap-
plied to a set of points. The segmented outputs are spatially
coherent surface patches represented by the interior points
and the surface parameters shared by them.

Filling The segmented patches may have small holes. Some
of them are filled if they are matched to their close isolated
points. Similar approach is used by Boyer et al. (1994).

Boundaries Additional useful description of the segmented
patches are their boundaries which can be computed as a
post-processing from the distribution of the interior points.
It is a intricate problem that many researchers have attacked
because the interior points are irregularly distributed on a 2D
surface locating in 3D space.

An option is the convex hull (Berg, 2000), which represents
the outlines of the minimum convex area covering all the inte-
rior points. It is good for representing an overall coverage of
a patch but weak for describing the actual boundaries which
may include concave shapes and holes. To accommodate
concave shape and holes in a certain degree, Richards and
Mullins (1977) presented the space filling hull defined as the
union of the discs, each of which is associated with a point.
The radius of the disc is a parameter to be determined and
can be selected as the half distance between a point and its
nearest point (Toussaint, 1988). Edelsbrunner et al. (1983)
proposed α-shape as a general description of the boundaries.
It is a family of graphs, each of which is a subset of Delau-
nay triangulation (Berg, 2000). The parameter α varies ∞
to 0 and controls the level of details. It conceptually corre-
sponds to the radius of the space filling hull. It is extended to
weighted α-shape for accommodating the variable density of
points (Edelsbrunner, 1992). By synthesizing the ideas of the
space filling hulls and α shapes, Melkemi and Djebali (2000)
and Melkemi and Djebali (2001) propose more sophisticated
description such as ”A-shapes” and ”weighted A-shapes”, re-
spectively. While most of these description are subsets of the
Delaunay triangulation or a regular triangulation, Chaudhuri
et al. (1997) propose ”r-shape” based on a regular grid de-
fined over the points with the intervals prudently selected by
considering the point density.
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Figure 2: Primitive level process

2.2 Primitive Level

At the primitive level, we merge the patches segmented at
the signal level into co-parametric surfaces, refine the bound-
aries of the merged surfaces and identify the breaklines and
occluded areas, as shown in Figure 2

Adjacency: neighborhood of a patch The adjacency es-
tablished among points at the signal level is extended for
defining the adjacency between edges and between patches.
If at least a point of an edge is adjacent to a point of another
edge, we define that the two edges are adjacent each other.
The boundaries of a patch computed at the signal level are a
set of the edges, each of which links two boundary points. If
at least a boundary edge of a patch is adjacent to a bound-
ary edge of another patch, we define that the two patches
are adjacent each other. Furthermore, we define the ratio
between the total length of adjacent boundary edges and the
total length of all boundary edges as a measure indicating the
degree of adjacency between patches.

Attributes of patches The attributes of patches are vari-
ous, ranging from those already described at the signal level
such as point density and roughness to those associated with
the shape of the boundaries such as the orientation and the
aspect ratio. The most useful attributes for the merging pro-
cess are the surface parameters indicating the shape of the
patch (for example, plane parameters) and their associated
fitting errors.

Merging cues among patches The merging cues we se-
lected are proximity and similarity so that we can merge two
patches which are sufficiently near and shows the similar at-
tributes, that is, the surface parameters and their fitting er-
rors.

Testable feature sets Testable feature sets are simply de-
fined based on the adjacency among patches. We intend to
check every pair of adjacent patches with a merging hypoth-
esis.

Merging mechanism We use iterative growing approach
similar to the approach that Koster and Spann (2000) utilize
for range image segmentation. It iteratively proceeds until no
adjacent patches meet merging criteria. At each iteration, it
investigates every pair of adjacent patches and computes a
measure indicating how well each pair satisfies the merging
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Figure 3: Structural level process

criteria. For example, if we use a statistical test such as F-test
to check a merging hypothesis, the p-value is the measure.
Then, merging starts from the pair with the largest measure
in a descending order of the measure. This contributes to
producing a globally optimal merged set.

Merged surfaces The iterative growing approach equipped
with the merging criteria based on adjacency and similarity
produces a set of merged co-parametric surfaces. Their pre-
liminary boundaries are computed using the same method as
at the signal level. Based on the boundaries, we refine the
adjacency among them.

Refined boundaries Refined boundaries are interesting out-
comes supporting the Gestalt argument that one plus one is
much more than two. Since no laser pulse can be reflected
from only 0 or 1-dimensional entities in general (extraordi-
narily, from electrical power transmission lines, see (Axelsson,
1999)), we never directly extract from a set of laser points
such information as the boundary of a roof. However, we can
accurately infer the boundaries from two adjacent surfaces
produced under the Gestalt principles. The boundaries of all
adjacent surfaces are refined using their intersections.

Breaklines and occlusions The boundary edges of a sur-
face which are not adjacent to other surface are identified
as breaklines. Every breakline invokes a hypothesis for oc-
clusion. The empty space between the breaklines and the
nearest boundary of other surfaces are thus hypothesized as
occlusions.

2.3 Structural Level

At the structural level, we group the merged co-parametric
surfaces organized at the primitive level into useful surface
combinations. Furthermore, we identify the ground surface,
add hypothesized surfaces over occlusions and extract poly-
hedral structures. The process is summarized in Figure 3.

Adjacency: Neighborhood of a surface The adjacency
among surfaces is also defined using the adjacency among
their boundaries, which is already computed during the post-
processing stage at the primitive level. In addition to the 3D
adjacency, we establish in a similar way the 2D adjacency,
that is, the adjacency defined by considering only the hori-
zontal locations.



Attributes of surfaces All the same attributes as defined
at the primitive level are meaningful at this level. Roughness,
surface normal and many parameters describing the shape of
the boundary are particularly useful.

Grouping cues among surfaces Several cues can be se-
lected from various choices such as proximity, connectedness,
continuity, similarity, parallelism, symmetry, common region
and closure depending on the properties of the group to be
sought. For example, proximity, connectedness and conti-
nuity are particularly useful to group the surfaces into the
ground surface.

Testable feature subsets While we use just the adjacent
features at the signal and primitive level, we should define
the testable subsets by deliberately considering the selected
attributes and cues. For example, the range where we check
parallelism should be proportional to the area of the surface
rather than just constant.

Grouping mechanism The mechanism can be also selected
among the various ones described at the signal level. The
connected component analysis is very useful in many appli-
cations such as identifying the ground surface and polyhedral
structures.

Connected surfaces They are easily found by the con-
nected component analysis on the 3D adjacency graph.

Parallel surfaces We define for every surface a testable fea-
ture subset, the size of which is proportional to the area
of each surface. We examine the parallelism based on the
similarity of the surface normal with every entity inside this
subset. Based on the result, we construct a parallelism graph
where an arc indicates the parallelism of the two surface linked
through the arc. Parallel surfaces are thus identified by the
connected component analysis on the parallelism graph.

The ground surface We examine continuity with the same
testable feature subset as used for parallel surfaces and con-
struct a continuity graph. The largest connected components
of the graph is detected as the ground surface.

Hypothesized surfaces For each occlusion detected at the
primitive level, we add a hypothesized surface and update the
adjacency. For example, a roof of a building is adjacent to
the ground surface not in 3D but in 2D. This inconsistency
triggers a hypothesis of a vertical surface between them.

Polyhedral structures We perform the connected compo-
nent analysis on the graph constructed by subtracting the
detected ground surface and the very rough surfaces from
the adjacency graph. Each connected surfaces corresponds a
polyhedral structure.

3 THE EXPERIMENTAL RESULTS

The proposed approach was applied to constructing percep-
tual organization from a real data set. As a test area we
selected a sub-site of the Ocean City test site. A more de-
tailed description of this test site is presented by Csatho et al.
(1998). The sub-site includes 4633 points with a point den-
sity of 1.2 points/m2.

The data set, acquired by an airborne laser altimetry system,
covers a small portion of an urban area in Ocean City. As
Figure 4 illustrates, the sub-site contains a large building with
complex roof structures.

The patches segmented at the signal level are visualized with

the boundaries in Figure 5. The adjacency is defined by a
sphere of a fixed radius (2.5 m) and then refined by eliminat-
ing the links between the outliers and inliers. The similarity
of the plane parameters and the roughness are used as the
grouping criteria. Each patch thus indicates a plane with cer-
tain roughness. The boundaries are then computed using the
α-shape algorithm with α = 2.5.

The merged surfaces with the preliminary and the refined
boundaries are shown in Figure 6. The similarity of plane
parameters and roughness with less strict threshold is used
as merging criteria. The criteria are checked with the F -test
and the resulting p-value is used for a measure indicating
the tendency of merging. Merging starts from the patches
with the highest measure. The merging process iteratively
repeats until no adjacent patches can satisfy the criteria. The
boundaries are also refined based on the intersections between
surfaces. The breaklines and the occlusions are also identified.

The ground surface and polyhedral structure organized at the
structural level are shown in Figure 7. The ground surface are
polyhedral structures are identified based on the continuity
graph and the 2D adjacency graph, respectively.

4 CONCLUSIONS

We recognized the need of an intermediate process common
toward various applications using laser altimetry data. As the
common process, we proposed generating a robust, abstract
and explicit description from the raw data, called perceptual
organization. For the process, we established a framework
comprised of three organization processes at the signal, prim-
itive and structural levels, represented as segmentation, merg-
ing and grouping, respectively. Furthermore, we elaborated
the diverse components constituting the framework, inspired
by the previous work on perceptual organization in various
levels and domains.

The experimental results based on real data illustrate the out-
comes expected at each level, demonstrate the good perfor-
mance of the proposed approach and emphasize the need of
perceptual organization as an intermediate process. A com-
plete quantitative and computational analysis using various
synthetic and real data will be performed for a reliable assess-
ment about the performance. Furthermore, we will demon-
strate the effectiveness of the proposed perceptual organiza-
tion to higher-level processing by applying them to building
reconstruction from urban data.
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