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ABSTRACT:

In this contribution we describe a method to assess the activity of vehicles based on airborne image sequences taken by an infrared
camera. Active vehicles often appear as a configuration of a dark and a bright spot close to each other. The sensor movement is
inferred from image sequences. Due to the fast velocity of the platform estimations of vehicle movements require a precise
measurement of the sensor movement. The camera may be tilted with the aircraft giving arbitrarily oblique views. Camera
movements are treated as projective 2D-homographies. For the search of a subset of image point correspondences that is free of
outliers and gives a precise estimate of the movement we use a production system implementing good sample consensus (GSAC).
This new method is derived from the well known RANSAC-decisions and improves them by preferring good samples to random
samples. As assessment criterion for minimal samples the area of the smallest triangle in the sample is used. We motivate the
criterion for the quality of samples by error propagation through the estimated homography. A comparison is made with other
robust estimation techniques namly RANSAC and iterative re-weighted least squares.

1. INTRODUCTION

1.1 Vehicle detection

Vehicle detection has been an important topic in computer
vision for a long time (Dreschler & Nagel, 1982). Optical flow
helps a lot in segmenting the moving vehicle from the
stationary background. Such successful approach is still being
pursued, even if a geometric model of the vehicle is utilized
(Haag & Nagel, 1999). If not only the vehicle is moving, but
also the camera, the advantage of using videos and a simple
threshold on the optical flow will disappear. But a scene fixed
camera will only capture the activity in a certain very limited
area. An airborne camera is much more flexible and can cover
large areas. Vehicle detection from airborne videos has also
been addressed by Partsinevelos et al. (2000).

Apart from movement temperature is another important cue to
active vehicles. Furthermore, thermal images provide the
opportunity to reveal the activity in an urban area by day and
night. We propose to use an aircraft with a thermal camera for
estimating the vehicle activity in urban terrain. The appearance
of vehicles with this sensor depends on many factors, e.g. the
daytime and the engine temperature. Passive vehicles often
appear as single spots darker than the surroundings. They
appear grouped into rows along the margins of roads or in
parking lots (Michaelsen & Stilla, 2001). Active vehicles often
appear as a pair of spots. This configuration consists of a bright
spot resulting from the engine and a darker spot close to it
resulting from the rest of the vehicle. In urban areas other
objects may have the same property. But, the evidence for a car
will be high, if such a pair of spots is moving along in the
scene in the direction given by the spot pair.

1.2 Automatic Estimation

It is desirable to do the extraction, recognition and estimation
without human interaction. This opens the way to do a large
portion of the work on the fly in the aircraft. If we do not
transmit all the images but only the estimations of what we
want to investigate, we spare a lot of transmitting channel
capacity. On the other hand this approach needs prior attention
to robustness. Users will only trust in the results of automatic
procedures if they are convinced of the robustness and
precision of the outcome. Major sources of breakdown are to
our experience the presence of un-modelled objects and clutter
in the scene and erroneous correspondences between images
due to partial occlusion. However, changes of lighting which
are a problem in the visual spectral domain are not so serious
in the thermal domain. Estimating 2D-projective homographies
from grey-value templates or other features is rather instable.
Lately, however, there have been proposed new estimation
methods that yield a remarkable robustness (Jurie & Dhome,
2002). This paper makes a new proposal in this direction.

2. COMPARING EXISTING ROBUST ESTIMATION

METHODS

The choice of an estimation technique preliminarily has to
decide which kind of error function is to be minimized. Then
the algorithmic approach for the given minimization problem is
chosen.
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2.1 Error Functions for Homography Estimation

Although we treat only 2D-projective homographies here, the
assertions on the error function to be minimized easily
generalize to problems like the estimation of similarities,
fundamental matrices and trifocal tensors.

One straight forward possibility for an error function is the sum
of absolute errors. Unfortunately, Euclidian point to point
distance is not linear and not even differentiable. But there is,
e.g. the point to line distance. Ben-Ezra et al. (1999) see an
advantage in using such error function. Their approach leads to
systems of linear in-equations that can be handled by simplex
algorithms. Compared to quadratic errors, linear errors are less
sensitive to outliers.

Another possibility for the choice of the goal function is the
sum of the squared errors. Since the days of Gauss this has
become the scientific standard approach known as LMSE (least
mean square error). It has proven very useful in many domains.
Moreover, LMSE will be the only correct optimal choice if the
distribution of the errors is assumed to be normal. The sum of
squares of the errors is a continuous and differentiable entity.
Its analytic handling usually leads to linear equation systems
that may be solved by standard techniques. For the remainder
of this contribution we will therefore follow this line.

2.2 Robustness in the Presence of Outliers

Robust estimation of entities like homographies, fundamental
matrices and trifocal tensors from sample correspondences has
gained considerable attention. If outliers (erroneous
correspondences) can not be avoided, a simple least square
error approach will suffer severely even from a small
percentage of outliers. Due to the square in the error, an
extreme outlier will have an enormous impact on the
calculations.

A straight forward approach to avoiding these difficulties is
iterative re-weighting least squares (IRLS - Holland & Welsch,
1977). To this end the inverse of the residual of the least
squares solution of each correspondence of the complete
sample is used to re-weight the influence of it.
Correspondences yielding a large residual error will be
punished and correspondences yielding a small error will gain
more influence. If a large portion of the correspondences is
expected to be wrong, this may lead to local minima. The
convergence of IRLS to the desired minimum is theoretically
not guaranteed. It may end up with zero-error and thus infinite
weight on an arbitrary minimal sample (quadruple with
homographies) and random small weights on all other
members. However, in practice we found that it does converge
slowly but robustly to good solutions. IRLS-estimation of 2D-
homographies is available in publicly code libraries (ISBE,
2003). Proposals are made how to handle occlusion outliers
and lighting changes within the IRLS-method (Jurie & Dhome
2002). The main advantage of IRLS is the avoidance of
decisions.

Another approach frequently found is the random sample
consensus method (RANSAC) (Fischler & Bolles, 1981). To
this end the calculation is performed on small – often on
minimal – samples. These are picked at random from the
complete sample of correspondences. The result of the

calculation is tested on all the other correspondences giving a
residual error. If this error is sufficiently small, the
correspondence will be termed to be in consensus with the
actual sample. After repeating this procedure for a
predetermined number of such samples the search is
terminated. The sample with the highest consensus is chosen
and the corresponding consensus set is used to determine the
estimation by mean squared error minimization. The
disadvantage of performing early decisions is diminished by
the use of decision theory for determining the threshold from
statistics of relevant data and by using multiple decisions and
the consensus principle. There is an elaborated theory for the
choice of the two parameters (number of samples and
threshold) from the usual portion of outliers, a standard
deviation of the error of the position of inliers and a
significance level (Hartley & Zisserman, 2000).

3. GSAC: A NEW STRATEGY FOR ROBUST

ESTIMATION OF HOMOGRAPHIES

The quality of the estimation of homographies depends on the
mutual positioning of the corresponding features. For
improving the quality of the estimate we suggest to use good
samples of corresponding features instead of random samples.
We call this strategy "Good SAmple Consensus (GSAC)".  To
this end an assessment for samples has to be defined.

3.1 Motivation of GSAC by Considering Error

Propagation

For airborne detection of vehicle movement in urban areas
camera orientations close to nadir are used. For this situation
we will not loose generality if we assume the true 2d
homography H to be the identity. Let us assume a configuration
of five points that are given as
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where 0≤a<1 is a parameter. The minimal sample size of four
point correspondences is used. There are five possibilities to
draw such a sample from the configuration characterized by the
element that is not contained in the sample. One of the four
sample points is assumed to be disturbed by a small error ε
(see Fig. 1).

a

ε

a
ε

a                                            b
Figure 1. Quality of samples. a) benign configuration, b)

unstable configuration. The sample is drawn as
solid dots, while the test point is indicated as empty
dot.

The influence of this error on the estimation of the homography
He and on the displacement it causes for the test point is
calculated. As test point we use the point that is not contained
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in the sample. The first sample (Fig 1a) consists of the points
P1,…,P4 (leaving out P0). We disturb the corresponding point
for P4 in its second component by subtracting ε and get the
estimation
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This estimate is tested with the identity on P0 setting a0=0,
a1=0.1 and a2=0.5. Assuming ε=0.001 we get for a0 a
displacement error of zero (the x-axis is a fix point straight of
He). The displacement error for a1 is approx. 0.000054 and for
a2 approx. 0.00037. We may average the squared displacement
σ within the margins of our picture (e.g. x,y ∈ [-1,1]) using
Eq. 2 and obtain a very small value σ≈0.00000016. We
ascertain that such sample configuration is benign.
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The second sample (Fig. 1b) consists of the points P0,…,P3.
(leaving out P4). Now we disturb the corresponding point for P0

in its second component by subtracting ε. This gives a
homography estimation of the same matrix form
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For a0=0 this will obviously not work. In fact the equation
system will have a defect if three points of the sample are
collinear. In this case the solution will not be unique. We test
displacements with the identity on P4 for the other settings of
parameter a. Setting a1=0.1 gives a displacement error of
approx. 0.018 and for a2=0.5 approx. 0.0027. That means,
configurations with one point close to a straight through two
other points should be avoided.

Also for this σ we may evaluate the integration within the
image using Eq. 2. We obtain much larger mean squared errors
than for the benign setting, namely σ≈0.00000115 for a2=0.5
and σ≈0.00005376 for a1=0.1. The latter is more than 300
times bigger than with the benign setting. Even if we consider
that this is a squared entity and take the root, there will still
remain a factor of approx 18 for the standard deviation.

Pure RANSAC will treat all samples equal. Two samples
(leaving out P1 or P3) contain collinear triples and thus lead to
a defect in the equation system. Two samples (leaving out P2 or
P4) are instable. We did not treat the sample leaving out P2 but
it is similar to the one leaving out P4. At least for small settings
of the configuration parameter (e.g. a1=0.1) the test point will
be falsely rejected from the consensus set, because the
residuum is 18 times larger then σ. Only the fifth possibility
(leaving out P0) leads to the correct consensus set of all five
points. If the random choice of a RANSAC run happens to
contain this sample, it will succeed. Otherwise it will fail.

In the GSAC strategy the samples are assessed according to the
value q which is proportional to the area covert by the smallest

of the four triangles contained. It can be calculated from the
difference vectors (di,x, di,y)T=Pi-P(i-1) mod 4  using
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These triangles are shaded grey in Fig. 1. For the first sample
leaving out P0 all four triangles have equal content one. The
instable samples leaving out P4 or P2 contain the triangle P0P1P3

which has area a. For a small value of parameter a this will
give a bad assessment. This assessment criterion also prefers
samples that cover large areas of the image. The samples
leaving out P3 or P1 contain collinear triples. They will gain
assessment q=0. Finding the correct consensus is guaranteed.

3.2 Implementing GSAC in a Production System

The GSAC strategy is implemented in a production system
(Stilla 1995). The interaction and interdependencies between
objects in the store and productions is displayed by the
production net (see Fig. 2).

…
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CORR_QUADCQ

SPOT_PAIRSP

IP

Figure 2. Production nets for GSAC-estimation of homo-
graphies and vehicle movement detection

Production p1 combines clusters of objects INT_PIXEL of the
image resulting from an operator introduced by Foerstner
(1994). The resulting objects INT_POSI are located with sub-
pixel accuracy due to averaging over the positions in a cluster
weighted by the strength of the participating objects
INT_PIXEL. The objects INT_POSI are assessed according to the
overall mass of the underlying cluster. Production p2 performs
the search for corresponding objects INT_POSI from the other
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frame of the image pair. If there is a suitable prior estimation
of the homography (e.g. from the processing of preceding
frames or external information), there may be quite narrow
search regions to avoid excessive computation effort. The
frames must not be  directly adjacent in time. The resulting
object INT_POSI_CORR is assessed using normalized grey-level
correlation. These objects are used for estimations with IRLS
and RANSAC, too.

Production p3 and p4 construct quadruple objects CORR_QUAD.
Objects CORR_PAIR are used as intermediate step. They are
assessed according to their distance, so that wide
configurations covering as much of the image as possible are
preferred. Objects CORR_QUAD are assessed using the area
criterion q (Eq. 4). The estimated homography matrix resulting
from their position correspondences is stored as attribute.
Production p5 operates on this matrix attribute domain and
searches for a consensus set, i.e. a set of objects CORR_QUAD
with similar matrix attributes. The matrices are stored with h33

scaled to unity to remove the homogenous ambiguity. The
neighbourhood for the similarity relation is defined
logarithmically. This is preferred due to the different sizes of
the entries. The translation entries h13 and h23 can be fairly
large. The projective entries h31 and h32 are usually quite small,
but their sign is important.

The resulting object HOMOG is assessed according to the
number and assessments of its predecessors. The estimation of
the homography itself is done using squared error sum
minimization over the set of correspondence objects preceding
the quadruples that directly contributed to the cluster.

Productions p6 to p8 search for vehicle cues. The corresponding
objects SPOT_PIXEL are based on a different pre-processing
filter. Cars are formed from spot shaped objects which are
extracted by a spot detector (own citation).

Productions p6 and p8 are similar to productions p1 and p2.
Production p7 assembles configurations of a cold and a hot spot
close to each other into objects SPOT_PAIR. IR-images of urban
areas contain many of these objects which do not result from
vehicles. The evidence for objects CAR_CORR to represent a
vehicle depends highly on its residual movement with respect
to the best current estimation object HOMOG.

GSAC requires a data-driven control on the processing
sequence. The application of productions is purely bottom-up.
But, there is one exception. An object CAR_CORR that had a
considerable residual movement earlier in the search may be
rejected later, because an improved estimation object HOMOG
reveals it as being stationary.

3.3 Exploitation of Context and Additional Knowledge

The combination of production systems with robust estimation
of geometric entities allows including additional data,
constraints, and knowledge into the estimation.

3.3.1 Digital Maps:  Often there will be GIS-information
available for the terrain which is observed. The building layer
of such maps can be utilized to determine the correct setting in
world coordinates. The road layer can be utilized to construct
regions of interest for the vehicle search.

3.3.2 Data from Inertial Systems and the Flight Control:
Often there will be data available about the aircrafts current
position and heading, flying height and speed over ground,
angular positions and changes in all three rotation axis. These
data can be transformed into a priori homographies from one
image to another and between images and GIS data. These can
be used as expectations focussing the search on calculations
that are probably less erroneous. Particularly, if there is
evidence for no roll or nod rotations from the flight control, we
may only accept small projective entries h31 and h32.

4. RESULTS AND DISCUSSION

4.1 Comparing IRLS, RANSAC and GSAC

We applied different strategies to video sequences taken by a
thermal camera from an aeroplane cruising over an urban area.

Figure 3.  All correspondences in two example frames from a
thermal image video (note the outlier at the moving
car)

Fig. 3 displays a set of correspondence objects INT_POSI_CORR
between two images with a time difference of 10 frames. The
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slow moving vehicle on the horizontal road caused two
outliers. Recall that correspondence of objects INT_POSI must
not be unique. In this example we obtained two
correspondences from one interest position. The vehicle is
moving fast enough and the frames are far enough apart, so
that these correspondences are easily detected as outliers by all
three strategies. We assess the methods due to their choice of
the correct correspondences they tend to reject.

4.1.1 IRLS: In Fig. 4 we displayed correspondences that
have at least 1/7 of the weight of the best correspondence. The
iterations were stopped after 20 steps. It shows that IRLS
tended to put the highest weights on correspondences in the
upper right triangular area.

One important correct correspondence on a bright spot (see
Fig. 4, lower left area) gains a weight of less than 1/9 of best
correspondence. The resulting homography-estimation yields
highest precision in the middle of the region covered by the
displayed sample. The moving car is located outside of this
region. Still it is sufficient to detect the movement.

Figure 4. Correspondences preferred by IRLS

4.1.2 RANSAC: Vehicles may move arbitrarily slow.
Therefore, a reasonable threshold for RANSAC-decisions
needs statistic investigation on velocities of cars in the
observed region. The behaviour of RANSAC highly depends on
the choice of the threshold parameter.

For the run displayed in Fig. 5 we chose a threshold of 4 Pixel
for the maximal displacement. 21 quadruples of
correspondences were chosen at random. The one with the
highest consensus is highlighted by surrounding the bright
lines with a black margin. The white lines mark the consensus
set. One important correspondence on the building roof vertex
(Fig. 5, upper right area) is missing in this set (comp. Fig. 3
and Fig. 4). Recall that RANSAC is performing hard decisions.
All correspondences in the set gain equal weight, while the
others don’t count at all. This makes such a rejection more
serious than with the soft weighting in IRLS. For the purpose
of estimating the velocity of the vehicle this set happens to be

quite good, because the vehicle is within the convex hull of the
positions of the correspondences.

Figure 5. RANSAC consensus set with underlying sample
emphasized

4.1.3 GSAC: Fig. 6 shows the correspondence objects
INT_POSI_CORR preceding the homography estimation object
HOMOG which has the best assessment.

Figure 6. GSAC consensus cluster

This sample only contains 12 correspondence objects
INT_POSI_CORR, but these are spread all over the image. The
homography estimation from this sample is very well suited for
detecting moving vehicles.

4.2 Discussion

For robust estimation the standard deviation of the positioning
of features has to be determined. The accuracy of the
correlation supported location procedure should be below one
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pixel. But there are other error sources, e.g. distortions from
the camera system and effects from de-interlacing the video.
From practical experience we assume a standard deviation σ ≈
1.5 Pixel. Hartley & Zisserman (2000) recommend a threshold
of 6σ for the RANSAC method. In this application such a
threshold will sometimes collect outliers into the consensus
set. Occasionally, experiments have shown such inclusions
even with the threshold set to 6 Pixel. We admit, that in most
cases with a threshold of 8 or 9 Pixel the outliers on the car
where removed and the consensus contained all other
correspondences.

A disadvantage of RANSAC for our task is the hard
partitioning of the set of correspondences into two disjunct
subsets, the inliers and the outliers. Many of the  interest
points result from 3D structures that will vary in appearance
slightly with the view direction. Jet the scene has not enough
depth to justify a 3D reconstruction e.g. using fundamental
matrix estimation. Some of the interest points are very good for
the estimation of 2D-homographies, especially if they are well
spread all over the image. Some of them are still good enough
to be considered. They improve the result. Some of them are
surplus. Omitting them will not significantly change the result.
And some of them look good at first glance but contradict the
others (real outliers).

IRLS is a rather crude way to avoid the hard discrimination
into inliers and outliers. The assessment of correspondences for
the decision whether they should be included in the error
minimization or should not be included should rather consider
a combination of evidence. This includes evidence on the
correspondence itself, quality or strength of the interest points
on which it is based, and worth of it for the computation due to
its position in the image. GSAC strategy is tailored to this
combination of evidence.

Lately, there are several groups working on the improvement of
RANSAC. A key issue is the assessment of samples according
to their worth for the task at hand. In fact many
implementations of RANSAC may already contain tacit
preferences e.g., avoiding collinear or narrow samples. There
are also publications treating this topic explicitly. Torr &
Davidson (2003) adapt a method known from numerical
integration as SIR (sampling – importance – re-sampling) to
the task of fundamental matrix estimation using probability
calculus.

Chum et al. (2003) provide a version of RANSAC which is
`locally optimized´. A promising high scoring consensus
sample is again re-searched for an `optimal´ minimal sub-
sample. Particularly if the ratio of outliers to inliers is bad and
if the error on the inliers is high, this will speed up the process
dramatically. Besides, they recommend to use correspondences
of image structures instead of simple points. Such a
correspondence of what they call `distinguished regions´
provides also a local affine mapping. Thus only three
correspondences form a minimal sample for fundamental
matrix estimation.

For a proper selection of one of these different new assessment
criteria and strategies for picking samples a comparison on
common data sets from different tasks is necessary.

REFERENCES

Ben-Ezra, M., Peleg, S., Werman, M., 1999.  Real time motion
analysis with linear programming. CVIU, Vol.78, pp. 32-52.

Chum, O., Matas, J., Obdrzalek, S., 2003. Epipolar geometry
from three correspondences. In: Drpohlav, O. (ed.): Computer
vision – CVWW´03, Czech Pattern Recognition Society,
Prague, pp. 83-88.

Dreschler, L., Nagel, H.-H., 1982. Volumetric model and
trajectory of a moving car derived from monocular TV frame
sequence of a street scene. CGIP, Vol. 20, pp. 199-228.

Foerstner, W., 1994.  A framework for low level feature
extraction. In: Eklundh J.-O. (ed). Computer vision – ECCV

94. Vol. II, B1, pp. 383-394.

Fischler, M. A., Bolles, R. C., 1981.  Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Comm. Assoc.

Comp. Mach., Vol. 24, pp. 381-395.

Haag, M., Nagel, H.-H., 1999. Combination of edge element
and optical flow estimates for 3D-model based vehicle tracking
in traffic image sequences. IJCV, Vol. 35:3, pp. 295-319.

Hartley, R., Zisserman, A., 2000. Multiple view geometry.
Cambridge University Press, Cambridge.

Holland, P. W., Welsch, R. E., 1977. Robust regression using
iteratively reweighted least-squares. Comm. Statist. Theor.

Meth., Vol. 6, pp. 813-827.

Jurie, F., Dhome, M., 2002. Real time robust template
matching. BMVC-2002, pp.123-132.

Michaelsen, E., Stilla, U., 2001. Estimating urban activity on
high-resolution thermal image sequences aided by large-scale
vector maps. In: IEEE/ISPRS Joint Workshop URBAN´01, pp.
25-29.

Partsinevelos, P., Agouris, P., Stefanidis A. 2000. Modelling
movement relations in dynamic urban scenes. International

archives of photogrammetry and remote sensing. Vol. 33, part
B4, pp. 818-825.

Robust Estimation Library, ISBE, university of Manchester
http://www.isbe.man.uk/public-vxl_doc/contrib/rpl/rrel/html/
(accessed 12 Mar. 2003)

Stilla, U., 1995. Map-aided structural analysis of aerial
images. ISPRS Journal of Photogrammetry and Remote

Sensing, Vol. 50, No. 4, pp. 3-10.

Torr, P. H. S., Davidson, C. 2003. IMPSAC: Synthesis of
importance sampling and random sample consensus. PAMI,
Vol. 25, No. 3, pp. 354-364.

ISPRS Archives, Vol. XXXIV, Part 3/W8, Munich, 17.-19. Sept. 2003
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

130


	Table of Contents



