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ABSTRACT

The last decade saw tremendous progress in the area of structure-and-motion. Techniques have been developed to compute
the camera trajectory and reconstruct scenes in 3D based on nothing but a video or a set of closely spaced images. No
extra information or calibration is needed to perform the reconstruction. This paper presents extensions on the traditional
shape-from-video pipeline in order to deal with wide-baseline conditions, i.e. views that are much farther apart. The
algorithms for both the sparse and dense correspondence search need to be upgraded for the system to deal with these
wide-baseline views. These new techniques are discussed inthis paper and results are shown.

1 INTRODUCTION

During the last few years user-friendly solutions for 3D
modeling have become available. Techniques have been
developed (Armstrong 1994, Heyden 1997, Hartley 2000,
Pollefeys 1998) to reconstruct scenes in 3D from video or
images as the only input. The strength of these so-called
shape-from-video techniques lies in the flexibility of the
recording, the wide variety of scenes that can be recon-
structed and the ease of texture-extraction.

This paper presents ongoing work on extensions on the
shape-from-video system that has been under development
in our institute for the last years.

Typical shape-from-videosystems require large overlap be-
tween subsequent frames. This requirement is typically
fulfilled for video sequences. Existing systems can also
deal with still images, provided they are sufficiently close
together. Often, however, one would like to reconstruct
from a small number of stills, taken from very different
viewpoints. Based on local, viewpoint invariant features,
wide-baseline matching is made possible, and hence the
viewpoints can be further apart.

This paper is organized as follows. First an overview of
the typical Shape-from-video pipeline is described. Sec-
tions 3 and 4 describe the extensions to the pipeline that
allow for wide-baseline matching during both sparse and
dense correspondence search. Section 5 shows some ex-
periments and results after which some conclusions are be
drawn and some directions on future work are given.

2 SHAPE-FROM-VIDEO PIPELINE

2.1 Description

In the last decade, the computer vision community has
witnessed the appearance of self-calibration methods in
structure-from-motion. Based on a series of images as its
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Figure 1:Typical shape-from-video pipeline

only input, such systems can determine the camera mo-
tion and the evolution of the camera settings as well as
the 3D shape of the scene up to an unknown scale (a so-
called metric reconstruction). Several approaches for such
self-calibration have been developed and several systems
have been proposed (Armstrong 1994, Heyden 1997, Hart-
ley 2000, Pollefeys 1998). All approaches basically fol-
low the same pipeline although specific implementation
choices or strategies can differ. The pipeline that has been
implemented in our shape-from-video system is shown in
figure 1.

The pipeline starts with tracking or matching interest points
throughout a sequence of views. This is often the most
crucial step in the processing since the result of the rest
of the pipeline depends on the quantity and quality of the
matched features. The consistency of the matched fea-
tures with a rigid 3D structure imposes constraints that
are employed to reconstruct the camera parameters of each
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view and a 3D point cloud representing the scene. The
matching of these initial interest points is referred to as the
sparse correspondence search. The projective reconstruc-
tion which is the output of the first step in the pipeline is
upgraded to a metric one using the self-calibration tech-
niques mentioned before. In our system we employ an al-
gorithm that is primarily based on the absolute quadric ap-
proach proposed by Triggs (Triggs 1997) with some adap-
tations by Pollefeys (Pollefeys 1998).

Once the calibration of the cameras has been extracted strong
multi-view constraints between the images are available.
These are employed in the search for many more corre-
spondences. A typical example is the epipolar constraint
which limits the correspondence search to a single line.
In the approach described in (Van Meerbergen 2002) we
search for pixelwise matches. This stage is referred to
asdense correspondence search. The result of the dense
matching step (dense depth maps for each view) allows for
dense, textured reconstructions of the recorded scene.

2.2 Wide-baseline matching

Although 3D reconstructions can in principle be made from
a limited number of still images, structure-from-motion
systems like the ones described above only tend to work
effectively if the images have much overlap and are offered
to the system as an ordered continuous camera sequence.
This is underlined by the name ’shape-from-video’. Our
system has been used in many areas and applications. For
instance we have tested our system to make 3D records
of archaeological, stratigraphic layers during excavations.
A large part of the scene consists of sand and there is a
general lack of points of interest. When walking around
the dig, it proved necessary to take images less than 5◦

apart, or record a continuous video stream for the system
to be able to match the images. In such an application, this
is not always possible due to obstacles and it disturbs the
normal progress of the excavations as the image acquisi-
tion takes too much time. It would be very advantageous
if the number of images can be limited to about 10 or so.
These images would still cover the whole scene but would
be taken from substantially different viewpoints. Record-
ing ’wide-baseline’ images could also be done with a digi-
tal photo camera rather than a video camera, improving the
resolution of the imagery by an order of magnitude.

For the shape-from-video pipeline to be able to deal with
wide-baseline imagery, the crucial parts of the system must
be successful: both the sparse and dense correspondence
search. The existing approaches can not deal with wide-
baseline conditions and new strategies have to be devel-
oped. The self-calibration procedure itself remains essen-
tially identical. Next, we describe the adapted versions of
the two correspondence steps.

3 SPARSE CORRESPONDENCE SEARCH

Consider the wide-baseline image pair of figure 2. The
two images have been taken from very different viewing
directions. Stereo and shape-from-video systems will most

Figure 2: Two images of the same scene, but taken from
very different viewing directions.

often not even get started in such cases as correspondences
are very hard to find.

3.1 Detection of features

As already mentioned, the shape-from-videopipeline splits
the correspondence problem into two stages. The first stage
determines correspondences for a relatively sparse set of
features, usually corners. In the traditional shape-from-
video approach, corners are matched from one image to
another by searching for similar corners around the same
position in the other image. The typical similarity measure
used is the normalized cross-correlation of the surround-
ing intensity patterns. Two problems arise if one wants to
deal with the intended wide-baseline conditions. The cor-
responding point may basically lie anywhere in the other
image, and will not be found close to its original posi-
tion. Secondly, the use of simple cross-correlation will
not suffice to deal with the change in corner patterns due
to stronger changes in viewpoint and illumination. The
next paragraphs describe an alternative strategy, based on
affinely invariant regions that is better suited.

When looking for initial features to match, we should fo-
cus on local structures. Otherwise, occlusions and chang-
ing backgrounds will cause problems, certainly under wide
baseline conditions. Here, we look at small regions, con-
structed around or near interest points. These regions need
to be matched, so they ought cover the same part of the
recorded scene in the different views. Because the im-
ages are taken from very different angles, the shape of
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Figure 3:The regions, extracted by the affine invariant re-
gion detector for the images in fig. 2. Only regions that
were matched between the two images are shown. The ex-
traction, however, was done independently for each image.

the regions differs in the different views. The extraction
method needs to take this into account. Some extraction
and matching algorithms select features in an image, try
to find a match by deforming and relocating the region in
other images until some matching score surpasses a thresh-
old. In order to avoid this slow and combinatoric search,
we want to extract the regions for each image indepen-
dently. The most important characteristic of the region ex-
traction algorithm is that it is invariant under the image
variations one wants to be robust against. This is discussed
next.

On the one hand the viewpoint may strongly change. Hence,
the extraction has to survive affine deformations of the re-
gions, not just in-plane rotations and translations. In fact,
affine transformations also not fully cover the observed
changes. This model will only suffice for regions that are
sufficiently small and planar. We assume that a reason-
able number of such regions will be found, an expectation
borne out in practice. On the other hand, strong changes in
illumination conditions may occur between the views. The
chance of this happening will actually grow with the angle
over which the camera rotates. The relative contributions
of light sources will change more than the frame-to-frame
changes in a video. Our local feature extraction should also
be immune against such photometric changes.

If we want to construct regions that are in correspondence

Figure 4: Three wide-baseline views of the ‘bookshelf ’
scene. The top two images show image 1 and 2 with the
corresponding invariant regions. The bottom two images
show the same for image 1 and 3.

irrespective of these geometric and photometric changes
and that are extracted independently in every image, ev-
ery step in their construction ought to be invariant under
both these transformations just described. A detailed de-
scription of these construction methods is out of the scope
of this paper, and the interested reader is referred to pa-
pers specialized on the subject (Tuytelaars 1999, Tuyte-
laars 2000).

As mentioned before, these constructions allow the com-
puter to extract the regions in the different views com-
pletely independently. After they have been constructed,
they can be matched efficiently on the basis of features
that are extracted from the color patterns that they enclose.
These features again are invariant under both the geomet-
ric and the photometric transformations considered. To be
a bit more precise, a feature vector of moment invariants
is used. Fig. 3 shows some of the regions that have been
extracted for fig. 2. We refer to the regions as ‘invariant
neighborhoods’. Recently, several additional construction
methods have been proposed by other researchers (Baum-
berg 2000, Matas 2001).

3.2 Increasing the multi-view matches

The previously described wide-baseline matching approach
is well suited for matching pairs of images. In the shape-
from-video or shape-from-stills pipeline, however, one needs
correspondences between more than two images in order
to compute the camera calibration. In practice it is actually
far from certain that the corresponding feature in another
view is found by the wide-baseline matching algorithm.
This means that the probability of extracting all correspon-
dences for a feature in all views of an image set quickly
decreases with the amount of views. Moreover, there is a
chance of matching wrong features. In practice, if one is
given 3 or more views, the method will mostly find suf-
ficient matches between each pair but the sets of matches
will differ substantially and a small number of common
features between all views may result.
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Figure 5: The three images of the bookshelf scene, show-
ing the features that could be matched in each of the three
views. This intersection of the pairwise matching sets is
quite small: only 16 features remain.

Figure 4 shows 3 views and the matches found between the
pairs〈1, 2〉 and〈1, 3〉. Fig. 5 shows the matches that these
pairs have in common. Whereas more than 40 matches
were found between the pairs of fig. 4, the number of matches
between all three views has dropped sharply, to only 16.
When we consider 4 or 5 views, the situation can deteri-
orate further, and only a few, if any, features may be put
in correspondence among all the views (even though there
may be sufficient overlap between all the views). Recently
we have developed and tested algorithms to counteract this
problem. The approach is founded on two main ideas,
namely propagation of matches using neighborhood infor-
mation and based on transitivity.

The first idea, propagation based on neighborhood infor-
mation, makes use of the information supplied by a correct
match to generate other correct matches. Consider a fea-
ture A1 in view v1 with its matching featureA2 in view
v2, and a featureB1 in v1 which was not matched with its
corresponding featureB2 in v1. The matching could have
failed because of different reasons: maybeB2 was not ex-
tracted during the detection phase or maybe the matching
failed. The matching pairA1−A2 gives us the affine trans-
formation mappingA1 to A2. If B1 andB2 are spatially
close and lie on the same physical surface, this affine trans-
formation will also mapB1 to B2 or to a point close by.
Therefore, we can use this mapping as a first approxima-
tion of B2. We then search inv2 for for the realB2 by
maximizing the similarity betweenB1 andB2. We call
this processregion propagation. If B1 is not close toA1,
or not on the same physical surface, a good similarity is un-
likely to arise between the generated region andB1, so this
case can be detected and the propagated region rejected.
The propagation approach strongly increases the probabil-
ity that a feature will be matched between a pair of views,
as it suffices that at least one feature in its neighborhood
is correctly matched. As a result, also the probability of
finding matches among all images of a set increases.

The second idea to increase the quality of multiview fea-

ture correspondences is to take the transitivity property of
valid matches into account. In our 3 view example, in-
stead of only matching between the view pairs〈1, 3〉 and
〈1, 2〉, we can also match 2 to 3. If, for example, a feature
gets matched in〈1, 3〉 but not in 〈1, 2〉, we can look if it
is matched in〈2, 3〉. If it is, we can decide that either the
matching or the matching failure was wrong. Following
a majority vote, we might conclude that the match should
have been found in〈1, 2〉 and obtain a correct feature cor-
respondence along the three views.

In summary, starting from pairwise matches, many more
can be generated. Of course, the validity of propagated
and implied matches is an issue, and one has to be careful
not to introduce erroneous information. Research is being
done at the moment to achieve this. The strategies pro-
posed here are akin to recent work by Schaffalitzky and
Zisserman (Schaffalitzky 2002). In contrast to their work,
there is less emphasis on computational efficiency. In par-
ticular, adding transitivity reasoning to the propagationof
matches renders our approach slower, but it also adds to
the performance. The combined effect of propagation and
transitivity reasoning for our example is illustrated in fig. 6.
The number of matches along the three views has more
than tripled.

4 DENSE CORRESPONDENCE SEARCH

As shown in figure 1, the sparse point-cloud reconstruc-
tion and self-calibration stages are only the first part of the
pipeline. These stages were in need of the improved spare
correspondence search to overcome wide-baseline views
as explained in the previous section. The following step in
the pipeline deals with the problem of finding dense match-
ing information, i.e. finding matches between image pairs
for almost every pixel in the images. Our traditional shape-
from-video approach uses a dynamic programming algo-
rithm to search for dense correspondences along epipolar
lines (Van Meerbergen 2002). Given the information from
the sparse reconstruction, it can deal with images that are
farther apart than in a typical video sequence. It has diffi-
culties, however, to handle more extreme cases.

Under wide baseline conditions, disparities tend to get larger,
a smaller part of the scene is visible to both cameras, and
intensities of corresponding pixels vary more. In order to
better cope with such challenges, we propose a scheme that
is based on the coupled evolution of Partial Differential
Equations. This approach is described in more detail in a
paper by Strechaet al.(Strecha 2002). The point of depar-
ture of this method is a PDE-based solution to optical flow,
proposed earlier by Proesmanset al. (Proesmans 1994).
In a recent benchmark comparison between different op-
tical flow techniques, this method performed particularly
well (McCane 2001).

An important difference with classical optical flow is that
the search for correspondences is ‘bi-local’, in that spatio-
temporal derivatives are taken at two different points in the
two images. Disparities or motions are subdivided into a
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Figure 6:The features that could be matched in each of the
3 views of fig. 5 after propagation and transitivity reason-
ing. The number of matches has increased to 58.

current estimate and a residue, which is reduced as the it-
erative process works its way towards the solution. This
decomposition makes it possible to focus on the smaller
residue, which is in better agreement with the linearisa-
tion that is behind optical flow. The non-linear diffusion
scheme in the Proesmanset al approach imposes smooth-
ness of nearby disparities at most places – an action which
can be regarded as the dense counterpart of propagation –
but simultaneously allows for the introduction of disconti-
nuities in the disparity map.

The method of Strechaet al. (Strecha 2002) generalizes
this approach to multiple views. The extraction of the dif-
ferent disparities is coupled through the fact that all cor-
responding image positions ought to be compatible with
the same 3D positions. The effect of this coupling can be
considered the dense counterpart of the sparse transitivity
reasoning. Moreover, the traditional optical flow constraint
that corresponding pixels are assumed to have the same in-
tensities, is relaxed. The system expects the same inten-
sitiesup to scaling, where the scaling factor should vary
smoothly between neighboring pixels at most places.

5 EXPERIMENTS

Throughout this paper images of has been shown of a book-
shelf with some books and a bottle. The original images
are too far apart for our traditional shape-from-video pipe-
line to process. As shown in figures 3 and 6 enough invari-
ant regions can be extracted and matched for the sparse
reconstruction process to succeed. The PDE based dense
correspondencescheme of section 4 delivers dense 3D mod-
els of the scene. Figure 7 shows this resulting reconstruc-
tion. Both textured and untextured views of the resulting
3D model are shown.

Fig. 8 shows three images of an excavation layer, acquired
at the Sagalassos site in Turkey. This is one of the largest
scale excavations currently ongoing in the Mediterranean,
under the leadership of prof. Marc Waelkens. These im-
ages have less structure than the ones of the bookshelf and
are too far apart for our shape-from-video process to get
its corner matching started successfully. Again, invariant
neighborhoods haven been matched and the PDE-based
dense correspondence search succeeded in finding matches
for most other pixels. A side view of the resulting 3D
model is shown in fig. 9, with and without the texture.

6 CONCLUSIONS AND FURTHER WORK

Three-dimensional reconstruction from still images often
introduces ‘wide baseline’ problems, especially when one
wants to limit the amount of images to be taken. The tra-
ditional shape-from-video approach is in need of improve-
ments to deal with these wide-baseline problems. This pa-
per presented solutions for two crucial stages in the pipeline,
namely the sparse and dense correspondence search. On-
going work is mainly focused on issues of efficiency.

5



Figure 7: Textured and untextured views of the dense re-
construction of the bookshelf scene shown in figure 3. The
images are too far apart for our traditional shape-from-
video pipeline to match.

Figure 8: Three input images of an excavation layer at
an archaeological site. The images are too far apart for
our shape-from-video process to match features between
the views.
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Figure 9:The reconstruction extracted from the relatively
wide baseline images of fig. 8, with and without texture.
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