
BUILDING RECONSTRUCTION FROM N UNCALIBRATED VIEWS 
 
 

S. Cornou1,2,*, M. Dhome1 and P. Sayd2. 
 

1LASMEA, UMR 6602 du CNRS – Université Blaise Pascal – Clermont-Ferrand – FRANCE 
2CEA Saclay – DRT/LIST/DTSI/SLA/LCEI – Gif-Sur-Yvette – FRANCE 

 
Commission V, WG V/4 

 
 
KEY WORDS:  Building reconstruction, bundle adjustment, uncalibrated views, constrained modeling  
 
 
ABSTRACT: 
 
We present a supervised approach to recover 3D models of buildings from multiple uncalibrated views. With this method the user 
matches 3D vertices in the images and defines the 3D model of the building with the help of elementary and intuitive geometric 
constraints. At the same time, a graph describing relationships between vertices is built. Then, unknown parameters of this graph are 
estimated non-linearly through a bundle adjustment to recover the building model and the camera parameters. This method asserts 
that geometric rules are perfectly respected. This approach is used to recover independently 3D parts of the building with suitable 
images. Then all these independent 3D models are merged to obtain a full multi-scale model of the building. An example on real 
images is given. 
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1. INTRODUCTION 

In this work, our objective is to present a semi-automatic 
building reconstruction method. Our main contribution is an 
easy-to-use modeling method based on the definition of 
intuitive geometric constraints. The method yields a 3D model 
with the smallest description in term of the number of 
parameters, the absolute certainty to respect the geometric rules 
defined by the user, and the possibility to merge easily several 
models to obtain a full and multi-scale global 3D building 
model. 
3D modeling of buildings from images is an active area in 
computer vision. Many methods already exist and can be 
divided in three categories: the low-level features approaches, 
the primitives-based approaches and the hybrid ones that 
combine the two others.  
The low-level features approaches describe buildings as a low-
level features set. Most of the time, an automatic features 
matching is performed between images of a sequence to 
calibrate cameras and to compute the 3D structure. Features’ 
matching has widely been studied (especially in the case of 
points) and is particularly efficient in the case of small baseline 
between images (cf. [10] [12] [13]). This method is used by M. 
Pollefeys [15] on video sequences, and T. Werner and A. 
Zisserman [20] on static images. F. Schaffalitzky and A. 
Zisserman address in [17] the case of widely separated and non-
ordering views. Nevertheless, the model surface needs to be 
defined from the resulting 3D clouds of low-level features to 
perform a photo-realistic rendering or measurements with these 
approaches. Several strategies exist, Werner and Zisserman [20] 
automatically obtain a planar segmentation, Pollefeys [15] 
meshes the object with the help of a dense matching and Morris 
and Kanade [16] exploit image information to determine a 
triangulation.   
In the primitives-based approach, the user provides parametric 
primitives to model the building. These 3D primitives are 
located in images. The non-linear minimisation of the distance 
between the primitive detected in images and the back-projected 
model is performed to estimate the structure and the motion of 

the scene. This approach is used in [5] [9]. An advantage of 
such an approach is that simple geometric rules are implicit in 
the definition of primitives (e.q. orthogonality and length 
equality in a cube…). Nevertheless, this method is limited by 
the number of 3D elements available in the library. 
Lastly, hybrid approaches try to merge the advantages of these 
two approaches. Cipolla and Robertson [2] present a method 
based on statistical estimators. Bartoli and Sturm [1] suggest a 
strategy in the case of multi-coplanarity constraints and, 
Grossman and Santos-Victor [7] implicitly describe constraints 
to estimate the model as an unconstrained optimisation 
problem. Our approach is close to the Grossman’s approach 
except that we define a larger set of constraints, we use a bundle 
adjustment method that does not require an initialisation of 
camera motions (previously published by the authors in [3]), 
and our method can easily merge 3D models with different 
scales (e.g. an accurate window model added to a low resolution 
building model). 
In this paper, we describe the modelization of the building. 
Then, the bundle adjustment algorithm is described. Finally, a 
real sequence is used to recover the 3D model of a castle. 
 

2. CONSTRAINED MODELING 

In this section, we explain our method to implement constraints 
in the building model. First, we give an overview of the 
elementary geometric constraints used. Then, we describe the 
full data structure with relationships between vertices and 
geometric constraints, and we discuss its drawbacks and its 
advantages. Finally, we explain how to simply merge two 3D 
models to obtain a more complex 3D model (with multiple scale 
levels for example). 
 
2.1 Elementary geometric constraints 

In this work, the building model is described as a cloud of 3D 
points. Elementary geometric rules are defined to organise and 
to structure this 3D cloud. This is a major difference with 
feature-based algorithms that recover 3D cloud from low-level 
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features matching without a global organisation. In our method, 
each new point of the model is defined with a geometric 
constraint in relation to already existing points (named 
antecedents). Geometric constraints and their associated 
antecedents are described in Table 1. This table indicates the 
equations checked for each rule and the degrees of freedom left 
to the new vertex. These degrees of freedom correspond to 
parameters that need to be estimated non-linearly with the help 
of 3D-images matching.  The total number of unknown 
parameters, describing the building model, is the sum of the 
degrees of freedom associated to each vertex.  
 

Name Antecedents Equations 
(constraints) 

Degrees of 
freedom 

Free point None A(x,y,z) 3  
(coordinates) 

Vectorial 
equality A,B,C CD=AB 0 

Parallelism A,B,C CD=λAB 1 
(1 length) 

Single 
orthogonality A,B (AC) ⊥ (AB) 

2 
(1 length 
1 angle) 

Double 
orthogonality A,B,C 

(AD) ⊥ (AB) 
and 
(AD) ⊥ (AC) 

1 
(1 length) 

Planarity A,B,C AD= 
αAB+βAC 

2 
(coordinates) 

Distance 
equality A,B,C ||CD||=||AB|| 2 

(2 angles) 

Tableau 1. The set of geometric constraints. The degrees of 
freedom indicate the number of parameters that needs to be 
estimated with the help of 3D-image matching to completely 
position 3D vertices. (Couples of bold letters correspond to 
vectors, the underlined letters correspond to the constrained 
points) 

 
2.2 The global model structure 

The model structure used in our method is an oriented graph. In 
this oriented graph, a node represents a 3D vertex, and each set 
of branches arriving to this node represents the geometric rules 
used to define this 3D vertex. The branches origins are the 
antecedents described in the previous section. One can notice 
that free points do not have antecedents, and their 3D position 
can directly be computed without knowing the positions of the 
other vertices. Figure 1 describes the relationships between 
vertices. If the 3D positions of A and B are known, we use the 
geometric rule linking C to A and B to compute the 3D position 
of C. The position of C depends on its associated geometric rule 
and on the 3D positions of its antecedents (A and B). 
Recursively, the position of B depends on the positions of its 
own antecedents… Our method yields a constraint model 
described with a minimum of parameters, but the 3D position of 
a vertex depends on the position of many others (except for free 
points such as A). 
In figure 2, we give an example of a graph representing a 
rectangular parallelepiped. This graph is not unique and 
depends on the user description of the model. Two free points 
(1 and 2) are the seed of this model, and the parallelepiped 
model has only 9 degrees of freedom (6 for the parallelepiped 
poses in 3D space and 3 for the internal lengths of the model). 

This graph is a description of a parametric object and is close to 
the primitive-based approaches. 
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Figure 1. A graph describing the links between C and its 
two antecedents A and B. B has also three antecedents. 
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.3 Merging of different model 

Figure 2. Graph description of a rectangular 
parallelepiped. The numbers indicate the vertex 
references. The vertices n°1 and n°2 are the seed of 
this graph, each of them can be evaluated without 
knowledge of the others. 
 the previous section, we defined a graph description of 3D 
bjects. To build a realistic model of a building, it is easier to 
esign independently several models such as doors, windows, 
uilding body… Once all these models have been defined, each 
art has to be located in a unique framework to constitute a 
omplete and coherent final model. Imagine that we want to 
omplete a model A with a model B. Our goal is to define the 
ale factor between A and B and the rigid transformation 

etween the A framework and the B one. This is obtained by 
efining three points of the model B into the model A. First, the 
ser defines three new points in the model A. These new points 
re matched in images and reconstructed as any other points. 
hen, these 3 points are matched with vertices in the model B. 
his is enough to compute the scale factor and the rigid 
ansformation between A and B. This merging approach keeps 
e accuracy of each model (up to a scale factor), and the model 
 position is geometrically constrained due to the use of 
eometric constraints to define the three common points (the 



 

user can impose windows corners to be in the frontage of the 
building).   
 

3. BUNDLE ADJUSTMENT 

3.1 General case 

We address the case of a cloud of 3D points without constraints. 
Knowing some 2D projection of these 3D points in the images 
we try to recover the positions of the 3D points and the camera 
parameters (poses and intrinsic parameters). A classical answer 
is a non-linear optimisation method called bundle adjustment 
([6] [8] [11] [18] [19] [21]). Bundle adjustment aims to 
minimize distance between 2D points detected in images and 
projection of the associated 3D points. More precisely, the 
criterion C to minimise is ( i: 3D points index, j: cameras index, 
Pr : projection matrix, int : intrinsic parameters, f : projection 
function, (Tx, Ty, Tz): translation vector, (α, β, γ): angle of 
Euler, δij: 0 when the 3D point i is not visible in the image j, 1 
otherwise): 

 
With this approach, the 3D scene is described by extrinsic (6N) 
and intrinsic (kN) parameters of N cameras and by P parameters 
associated to the 3D model. 6N+kN+P parameters are estimated 
with this method. 
In fact, the knowledge of the position of the 3D points and the 
knowledge of the intrinsic camera parameters are enough to 
calculate camera poses. From this observation, we suggest a 
new algorithm for bundle adjustment (already published in 
[XXX]), which hides parameters of camera poses and does not 
require any initialization of these parameters. Furthermore, this 
approach requires evaluating kN+P parameters, offers a larger 
convergence area, and is faster than the classical approach 
(previous results).   
With this algorithm, we minimise the criterion C: ( i: index of 
cameras, j: index of 3D points, f2: camera poses estimation 
function, E: extrinsic matrix estimated with a pose estimation 
algorithm f2, f1: function that expresses the intrinsic matrix in 
function of the intrinsic parameters, I: intrinsic matrix estimated 
with the function f1, foc: focal length, (x,y,z) 3D coordinates of 
vertices P3D, δij: 0 when the 3D point i is not visible in the 
image j, 1 otherwise): 
 
 
 
 
 
 
 
 
In practice we use the Levenberg-Marquard algorithm to lead 
the non-linear optimisation and the Dementhon algorithm [4] 
(function f2) to estimate camera poses. 
Some experiments has been led to evaluate performance of this 
approach. To compare the classic method and this new 
approach we have used synthetic data. The 3D scene is a cloud 
of free 3D points. These points have been chosen in a sphere of 
one distance unit radius and 5 (more for the second experiment) 
images have been taken around this scene. The camera model 

has been reduce to a unique focal length. The principal point is 
supposed to be at the centre of the image and the skew 
parameter is equal to zero. They are no distortion .  
The convergence rate and the duration of the convergence in 
function of the number of images have been studied for the 
classical approach and our new one.  

 
The figure 3 gives the convergence rate in function of the initial 
error on the 3D cloud of points (it explain how far from the 
solution the initialisation of the 3D shape is done). The 
Dementhon algorithm is used to define initial image poses. We 
can notice that close to the solution the 2 methods converge, 
then when the noise increase (close to the sphere radius value) 
the convergence rate tumble down to zero for the classical 
approach and fall to 40% for the new approach. We can give a 
first but incomplete explanation it is that the new approach 
evaluate a new pose for each image at each iteration while the 
classic method conditioned the next pose by the previous one 
(has rotation and translation are non-linearly estimated). 

 
We have show previously that our approach hide the pose 
parameters. The figure 4 compares the computing time in 
function of the number of image. The benefit is evident! 
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Figure 3. Convergence rate in function of the error on the 
3D initialisation. 

Figure 4. Computing time in function of the number of 
images. 
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3.2 Constrained model estimation 

In the previous section, we gave an overview of our bundle 
adjustment algorithm in the case of unconstrained cloud of 3D 
points. In the specific case of constrained models, the bundle 
adjustment is more complicated. The measurements used are the 
projection of 3D vertices located in images. The parameters 
estimated are the degrees of freedom existing in the building 
model. There are no direct relationships between the unknown 
parameters and the measurements such that a modification of 
one parameter can modify many measurements. This is due to 
the constraints introduced in the model, and the consequence in 
the optimisation process is a non-sparse and non-diagonal 
Jacobian matrix (a contrario, in the case of unconstrained cloud 
of 3D points the Jacobian matrix is sparse and closed to a 
diagonal form).  
Nevertheless, the optimisation process searches the vector of 
parameters that minimised the sum of distances between back-
projected vertices and their 2D projections in images. With our 
modelization, the geometric constraints are always perfectly 
respected, this yields a reduction of the number of parameters 
associated to the building model but this introduction of hard 
constraints modifies the underlying topology of the non-linear 
criterion (defined section 3.1) and can generate local minima. 
Experimentally, this method converges to a good solution when 
the model is well balanced. Nevertheless, if we try to 
reconstruct a multi-scale model (e.g. the body of a building and 
a window), we meet difficulties because some parts heavily 
weight due to the large number of measurements available 
(window), while others are neglected (frontage (only 4 
corners)). Our solution is to build each element independently, 
using adapted images, and to merge them in a final model. 
 

4. BUILDING RECONSTRUCTION FROM A REAL 
SEQUENCE 

The “Château de Sceaux” has been chosen as an example. It is a 
French XVII century castle. Some specific elements have been 
selected. 22 photographs of these elements have been taken 
with a digital camera and 2 focal lengths 28 mm and 135 mm 
have been used. The image resolution is 2000x3008 pixels, the 
distortions have not been corrected and the focal lengths are 
unknown. The photographs have been taken from the ground 
and no information on the camera poses is available. If we look 
in detail at the castle elements, it appears a wide variety of 
details (windows, gutters, bas relief…). The user has to choose 
the details he wants to reconstruct (in function of the needs), 
because it would be too costly to reconstruct each detail of the 
building. Nevertheless, it is always possible to complete the 
model later by adding new part of the building reconstructed 
with a new set of images (section 2.3).  

 

4.1 The reconstruction process and the results 

Here, we present the reconstruction of the castle body, the 
downstairs and upstairs windows, one sort of dormers windows, 
and the central advance of the frontage (figure 5).  

 
Each element has independently been reconstructed from 
adequate images. The figure 6 presents the example of a 
downstairs window. With only three images available for 
downstairs windows, we define a constrained model using our 
graph description (section 2) and we apply our bundle 
adjustment method (section 3) to recover the 3D structure and 
the camera parameters. After a manual surface definition (see 
[14] for an automatic extraction algorithm), textures have been 
extracted from the images. This process has been applied to 
each element.  
Then, all the elements have been merged together to obtain a 
full model of the castle. For example, to locate the downstairs 
windows, window corners have been defined in the frontage 
with geometric constraints and reconstructed with the help of 
images (the body ones). These windows are located up to the 
castle body resolution, but their proportion and their texture 
have previously been defined with close-range images. For 
repetitive elements, unique models have been used. This 
merging process has been applied to each detail and the results 
are shown in figures 7 and 8. 
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Figure 5. Images of the sequences describing each selected
elements of the castle. 
 
 

130
Figure 6. Example of the downstairs window. The 3 
initial images are on the top-left. On the top-right, there 
are the wire-frame and the surface model. On the 
bottom, the final model of the windows with accurate 
texture. 
Figure 7. Global model without texture. All the specific 
elements have been merged to obtain a multi-scale 
model. 



 

 
Two days were necessary to obtain these results and the 2D 
RMS error was around 8 pixels. Difficulties to detect the 
buildings corners (hidden by glutters…) and the non correction 
of distorsion may explain this RMS error. Nevertheless, with 
such a stratified approach, we have been able to recover a 
complete model while conserving the accuracy of each element 
(up to a scale factor) and extracting the texture from the better 
images available. Furthermore, we can improve the model with 
new elements, if needed, and we can adapt the reconstruction 
time and the accuracy to the need. 
 

 
4.2 Texture extraction 

The extraction of texture from images to obtain a realistic 3D 
model has been obtain with a simple algorithm. As we know a 
surfaced 3D model of the building and the position of each 
image we extract the real color of part of the building while 
taking into account the occultation. This ray-tracing texturing 
process is timez consuming as it need to detect each occultation. 
Nevertheless, the resulting texture is as good as possible for a 
given set of images. The texture of each part of the building are 
extract for dedicate images and the result is a building model 
with multiscale resolution for length and texture. Such an 
approach allow to introduce data in a full 3D model. The user 
can reconstruct the interesting part of the building with high 
accuracy and a very detailled texture (in the case of the Sceaux 
castle we can see the nail in the wood of the windows) while 
obtaining a low resolution model of the other parts.  
 

5. CONCLUSION 

In this study, a new approach for building reconstruction has 
been presented here. We suggest a method using constraints on 
3D points features with simple and intuitive geometric rules. 
This result is an easy-to-use tool that offers the flexibility of 
low-level features approaches and the modularity of primitive-
based methods. Moreover, a new bundle adjustment approach 
(without camera poses initialisation) has been used to estimate 
these models. Finally, this method has successfully been applied 
to a real sequence, and a multi-scale model of the “Château de 
Sceaux” obtained.  
Further work will increase the quality of the camera calibration 
with the help of an automatic interest features matching based 
on this initial reconstruction. The merging step will also be 
updated to obtain a better accuracy. 
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