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ABSTRACT
This paper reports theory and examples about the calibration and orientation of fixed but freely rotating cameras with possible
changes of the interior parameters. We consider cameras that are generally rotating, without any special adapter to remove the
eccentricity between perspective center and rotation axis. That is the typical case of surveillance cameras or sport videos. Projective
and perspective camera model are analyzed and between the reported examples, self-acquired images and old monocular videos of
sports events are considered. We also show the possibility to achieve 3D object reconstruction using rotating cameras. Finally we
will report the mosaic generation from images acquired with a rotating system.

1. INTRODUCTION

Camera calibration has always been a topic of great interest in
the field of photogrammetry and machine vision and many
methods and camera models have been proposed. In this work
we consider cameras which are rotating and changing their
interior parameters. This is the case of image streams acquired
with a camera mounted on a tripod or rotated on the shoulder of
a camera-man or like pan-tilt zooming surveillance cameras,
panoramic acquisition with a single camera or sport events
videos. Usually the problem is formulated within a projective
framework because of the absence of camera and object
information. In fact, when existing videos are analyzed, it is
very difficult to recover accurate 3D scene information and the
camera parameters, mainly because of (1) low image quality
(interlaced video), (2) almost no information concerning the
camera, (3) often absence of baseline and (4) possible
variations of the internal parameters.
In the vision community many algorithms have been presented
to calibrate image sequences acquired with a stationary but
freely rotating camera [Hartley, 1994; De Agapito et al., 1998;
Seo et al., 1999]: they rely on the homography (8-parameters
projective transformation) between the images and they retrieve
the camera parameters with linear or iterative methods. Usually
changes of the internal parameters (mainly zooming) are also
allowed but they often assume zero-skew or known pixel aspect
ratio without a statistical check on the determinability of the
parameters.
In the photogrammetric community, camera calibration by
rotation (often called ‘single station calibration’) has been
investigated by many authors [Wester-Ebbinghaus, 1982;
Brown, 1985, reported in Fryer, 1996; Stein, 1995; Pöntinen,
2002], even if the process cannot be considered robust and
accurate as conventional convergent self-calibration bundle
adjustment.
In this paper we describe theory and examples concerning the
calibration (and orientation) of cameras that are fixed in a
location (e.g. tripod) but can freely rotate and maybe change
their internal parameters (Figure 1). We will not use cocentric
images as the cameras have no special adapter to minimize the
eccentricity of the perspective center respect to the rotation axis

but, in same cases, the eccentricity will be neglected. Projective
and perspective camera model are revisited while self-acquired
sequences and existing videos are analyzed. The self-acquired
images are taken always with the same camera, which is
calibrated with a testfield to validate the results (Appendix 1).
In the last section of the paper we also report about the
generation of mosaics created stitching and registering together
different images.

Figure 1: Videocamera mounted on a tripod (left) or rotated on
a shoulder (right). The eccentricity between rotation axis and
plane of the perspective center in same cases can be neglected.

2. CAMERA CALIBRATION AND ORIENTATION

All applications that deal with the extraction of precise 3D
information from imagery require accurate calibration and
orientation procedures as prerequisites of reliable results. The
early theories and formulations of orientation procedures were
developed in the first half of the 19th century and today a great
number of procedures and algorithms are available. A
fundamental criterion for grouping the orientation procedures is
based on the used camera model (Table 1):
• perspective camera model: camera models based on

perspective collineation have high stability, require a
minimum of three corresponding points per image and a
stable optics; they can include non-linear lens distortion
function; they often contain non linear relations, requiring
initial approximations of the unknowns.

• projective camera model: these approaches can handle
variable focal lengths but need more parameters, a minimum
of six correspondences and are quite instable (equations



often need normalization); they cannot easily deal with non-
linear lens distortion, but contain often linear relationship.

Geometry Projective Perspective
Camera
model

pi’ = A  ·  pi
(3x1)  (3x4)  (4x1)

pi’, pi are projective
coord.

 pi’ = λi · R  ·  pi +  t
(3x1)          (3x3)  (3x1)  (3x1)

pi’, pi are cartesian coord.
λi scale factor of pi

Parameters 11 (relevant) in
matrix A

6 for EO
3 for IO
other correction functions

Relationship Often Linear Always Non-linear
Table 1: Orientation approaches and related parameters.

In [Wrobel, 2001] a good review of many orientation
approaches is presented. The choice of the camera model is
often related to the final application and the required accuracy.
Photogrammetry deals with precise measurements from images
and accurate sensor calibration is one of its major goals. Both
camera models have been discussed and used in close-range
photogrammetry but generally a sensor calibration is performed
with a perspective geometrical model by means of the bundle
method.

2.1 Approximations for the camera parameters

Most of the calibration and orientation solutions are based on
non-linear algorithms, requiring initial approximations of the
unknown parameters. Moreover we often need to recover
metric results from image streams (e.g. 3D models, movement
information), without any typical photogrammetric information.
Therefore information about (1) the camera (interior and
exterior parameters) and (2) the images (pixel size) are required
to perform the adjustment. We assume that we can always
define a scale factor or some control points, knowing the
dimensions of some objects in the imaged scene.
The pixel size is mainly a scale factor for the camera focal
length. Its value can be recovered from a set of corresponding
object and image coordinates distributed on a plane.
The camera interior parameters can be recovered with an
approach based on vanishing point and line segments clustering
[Caprile et al., 1990; Remondino, 2002] or with orthogonality
conditions on line measurements [Krauss, 1996; Van den
Heuvel, 1999]. If the image quality does not allow the
extraction of lines, the decomposition of the 3x4 matrix of the
projective camera model can simultaneously derive the interior
parameters given at least 6 control points [Hartley et al., 2000;
Remondino, 2003].
Concerning the exterior parameters, an approximate solution
can be achieved with a closed form space resection [Zeng et al.,
1992] or the classical non-linear space resection based on
collinearity, given more than 4 control points. The DLT method
can sequentially recover all the 9 camera parameters given at
least 6 control points [Abdel-Aziz et al., 1971]. DLT contains
11 parameters, where two mainly account for film deformation:
if no film deformation is present, two constraints can be add to
solve the singularity of the redundant parameters [Bopp et al.,
1978]. Other approaches are also described in [Slama, 1980;
Criminisi, 1999; Foerstner, 2000; Wolf et al., 2000].

3. THE PROJECTIVE CAMERA MODEL

Projective geometry is widely used, in particular in the vision
community, to recover camera and scene information from
images. As shown in Table 1, a general projective camera maps
an object point X to an image point x according to x = P X,

with P a 3x4 matrix which can be decomposed as P = K [R | t],
where:
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is an upper triangular matrix with the
interior parameters of the camera (fx

and fy are the focal length along x and
y axis, s the skew factor, (x0, y0) the

principal point position); R is a rotation matrix and t is
translation vector.
If the camera is fix and undergoes only rotations (cocentric
images or negligeble eccentricity), we can eliminate the vector t
and express the mapping of X onto x as [Hartley, 1994]:

x = K R X (1)
as P = K [R | 0], i.e., P = K R.
Given 2 images, the projection of X onto them will be given by:
xi = Ki Ri X and xj = Kj Rj X. Therefore, eliminating X, we get:

xj = Hij xi (2)
with:

Hij = Kj Rj Ri
-1 Ki

-1 = Kj Rij Ki
-1 (3)

or, if the camera parameters are constant:
Hij = K Rij K-1 (4)

where Hij is the inter-image homography containing the
element of the 8-parameters projective transformation. Given
n>4 image correspondences, we can recover the H matrix with
a least squares solution. H can be multiplied with an arbitrary
scale factor without altering the projective transformation
result.
Thus, constructing the homography H from image
correspondences is an easy job. However, unpacking K and R
from H is more elaborate. From (3), considering only one
camera, we get:

Hij K =  K Rij (5)
and postmultiplying the two sides by their transposes yields

HijK(HijK)T = KRij (KRij)T (6)

HijKKTHij
T = KRij

TRijKT = KKT (7)
where the last simplification is due to R being orthogonal.
Using the substitution A = KKT, with
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equation (6) becomes
Hij A Hij

T = X (9)
or

Hij A – A Hij
-T = 0 (10)

which is a linear homogeneous Sylvester equation in the 9
entries of A [Bartels et al., 1972]. A is symmetric and can only
be determined up to a constant factor. To solve for its entries,
we need N (>2) images and solve a system of equations Ga = 0,
where G is a 9Nx6 matrix and a is a vector containing the
entries of A. The solution is the eigenvector corresponding to
the least eigenvalue of the Sylvester matrix A.
Then, we can derive the value of the calibration matrix K from
A applying the Cholesky decomposition, if A it positive-
definite.
On the other hand, if we consider images acquired with a
rotating camera, which is changing its interior parameters,
equation (9) becomes

Hij A i Hij
T = A j (11)

and a solution for the A (or K) entries can be found using a non-
linear least squares algorithm and minimizing the cost function:
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over the parameters of each calibration matrix Kj and taking
image i as the reference image [De Agapito et al., 1998].

3.1 Obtaining the rotation angle from the projective
transformation

Equation (2) (which is an 8-parameters projective
transformation) relates two image planes that undergo a rotation
and are intersected by the same image ray.  The 8 parameters of
the H matrix hide the 9 coefficient of the orthogonal rotation
matrix R. The eigenvalues of an orthogonal matrix (whose
product gives the determinant of the matrix and whose
magnitude is always 1) must satisfy one of the following
conditions:
1. all eigenvalues are 1.
2. one eigenvalue is 1 and the other two are -1.
3. one eigenvalue is 1 and the other two are complex conjugates

{1, eiϑ, e-iϑ}
The rotation matrix is uniquely defined by its rotation angle ϑ
and rotation axis a. ϑ  can be computed from the eigenvalues of
R while a is afterwards derived from ϑ.
The matrix H has the same eigenvalue of R, up to a scale factor.
Therefore, knowing H, we can estimate the rotation between
two images i and j up to a sign. If we have multiple frames and
the rotation is continuous in one direction, we may use the
positive sign for all of them and estimate each consecutive
rotation from the composite one.

4. SIMPLIFIED PERSPECTIVE CAMERA MODEL

If the camera undergoes a rotation on a tripod (cocentric
images, small eccentricity or camera far away from the scene),
the image correspondences are related only with a rotation and
the collinearity model can be approximated with:
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On the other hand, a perspective projection can also be
represented with x=cX/Z and y=cY/Z, therefore the coordinates
of an image point (x’,y’) that undergoes a rotation can be
computed as:
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given the coordinates of the corresponding point (x,y) in the
previous image. Equation (14) can also be seen as a projective
transformation
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as already formulated in [Wang, 1990].

If we have multiple images, we may want to estimate the
camera parameters using (14) and solving the minimization:
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where:
)ˆ,ˆ( ijij yx  are the estimated coordinates and (xij, yij) are the

measured coordinates.
If we have n images acquired with the same camera and we
want to use fix interior parameters, the following functional
constraints are used:
cn =c = const;
x0,n = x0 =const;
y0,n = y0 =const.
Equations (14) can also be extended to include some additional
functions (e.g. Brown’s model) to model the systematic image
errors and recover lens distortion parameters.
The advantage of this approach is that we do not require any 3D
information as we assumed that the image correspondences
depend only on the rotation matrix and the camera interior
parameters. But, on the other hand, we cannot recover the
position of the camera’s perspective center.
A similar mathematical model, describing the relationship
between corresponding image points only with a rotation matrix
is presented in [Pöntinen, 2002].

4.1 Determinability of camera’s parameters with the
simplified camera model

In the following examples, the camera interior parameters are
recovered with the minimization function (16). Camera
parameters, residuals in image space and adjustment’s standard
deviation are reported to check the accuracy of the model.

4.1.1 Self-acquired images
A sequence of a small testfield (Figure 2) is acquired rotating a
Leica Digilux 1 on a tripod without any special adapter.

Figure 2: The ‘testfield sequence’ (1600x1200 pixels).

The rotation is prominent in the vertical direction. The image
correspondences as extracted automatically using LSM and the
coded target information. The results of the adjustment are
presented in Table 2. The RMS of the residuals in image space
are 1.7 µm in both directions.

Parameter Value
Camera constant 7.326 mm

PP x dir. 0.117 mm
PP y dir. -0.234 mm

K1 -3.076e-3
K2 5.423e-5

σ0,priori = 1 pixel σ0,post = 0.6 pixel
Table 2: Recovered camera’s parameters.

4.1.2 Existing videos
The sequence presented in Figure 3 was digitized from an old
videotape with a Matrox DigiSuite frame grabber. The image
size is 720x576 pixels and between all the grabbed frames, only
6 images are analyzed. From a quick analysis of the images, we
can deduce that a rotation is mainly occurring during the video
acquisition while no zooming effects are presents. Because of



the low image quality (interlaced video) the image
measurements are performed manually.

Figure 3: A rotating camera set on the shoulder of a camera-man
(‘walking sequence’).

The recovered camera parameters are reported in Table 3. The
focal length is kept fix while principal point and distortion
parameters resulted highly correlated and not determinable.

Parameter Value
Focal length 23.4 mm

RMS_x 24.6 µm
RMS_y 24.5 µm

σ0,post 1.11 pixel

Table 3: Recovered parameters of the ‘walking sequence’.

These results look a bit better respect to the values obtained in
section 5.2.2 with the standard bundle method. But, mainly due
to the very low image quality, no additional parameter could be
recovered.

5. CONVENTIONAL PERSPECTIVE CAMERA MODEL

An image acquired with a traditional camera is in principle a
central projection of the scene. If more images from different
viewpoints are available, the bundle method allows the
computation of all camera parameters and 3D object
coordinates as well as the compensation of the systematic
errors. But if the baseline between adjacent images is very
small, the bundle adjustment can easily fail as the normal
equations may be ill-conditioned or the rays cannot correctly
intersect. Moreover, if the images are acquired with a stationary
but freely rotating camera, the conventional bundle method
cannot solve the adjustment, unless we introduce constraints
and we treat all the system’s parameters as observed values.

5.1 Compensation of systematic error

The bundle method and its statistical model are usually
extended by additional parameters functions that are supposed
to model the systematic image errors (self-calibrating bundle
adjustment) [Brown, 1971; Beyer, 1992]. In the adjustment, the
additional parameters (APs) can be imported as:
1. block-invariant: one set of APs is used for all the images; it

is the most common approach, in particular for laboratory
calibration.

2. frame-invariant (or focal-invariant): a set of APs is used for
each image (or camera); this approach is necessary e.g. in
multi-cameras applications (robotics or machine vision
inspections) or if zooming effects are presents. This
solution can create over-parameterisation problems.

3. a combination of focal- and block-invariant: the APs are
divided in (1) a group which is supposed to be block-
invariant (e.g. principal point, affinity and shear factor) and

(2) a group which is related to a specific focal length (e.g.
lens distortion parameters). The new equations expressing
the functional dependence between the APs must be
incorporated in the mathematical model of the self-
calibrating bundle adjustment, ’bordering’ the normal
equations with the new geometric conditions [Fraser, 1980].

The procedure of self-calibration using APs introduces new
observations and unknowns in the least squares estimation,
extending the bundle model and arising problems concerning
the quality of the model. The improper use of the APs can
deteriorate the results as the parameters weaken the condition of
the system of the normal equations or lead to a singular system.
Therefore an ‘additional parameter testing’ is always required
[Gruen, 1981], in particular when the network geometry is not
optimal for system calibration.

5.1.1 Analysis of determinability
The undeterminably of APs can lead the normal matrix to
singularity. In the literature, different approaches have been
proposed, in particular:
• analysis of the correlation between the parameters: it is the

most and widely used approach. The APs are usually strongly
correlated with one another or with the camera parameters.
The correlation coefficient between two parameters i and j
can be computed from the cofactor matrix Qxx (i.e. the inverse
the of the normal equation matrix). Generally correlations
bigger than 0.95 should be eliminated.

• Jacobsen’s method [Jacobsen, 1982]: a measure of the APs’
determinability is given by the relation:

B = I − [(diagN)∗(diag(N-1))]-1 (17)
with
B = diagonal matrix for the measure of the determinability;
I = identity matrix;
diagN = diagonal element of the normal equation matrix
The elements Bii vary between 0 (diagonal normal equation
matrix) and 1 (singular normal equation) and for the APs they
should not be larger than 0.85.

• Gruen’s method [Gruen, 1985]: it is a stepwise procedure that
should be performed at the different stages of the least
squares adjustment. It is based on the trace check of the
covariance matrix to detect and delete those APs that are in
the critical range between poorly determined and sufficiently
well determined parameters.

5.1.2 Significance tests
Insignificant APs do not affect the solution of the adjustment
but may weaken the covariance matrix without positive
contributions to the functional model. Their rejection is usually
performed with statistical tests, like the Student’s test: we
compare the null-hypothesis “the AP x is not significant”
against the alternative hypothesis “the AP x is significant”
using a variable t:

xxPOST

EST

q

xx
t

⋅
−=

,0

'
σ (18)

with:
xEST = estimated value of the AP x;
x’ = value approximated or at the previous step of the
iterations;
σ0,POST = sigma a posteriori of the adjustment;
qxx = variance of the AP x.
The values of t, for a particular significance level and with a
certain DOF, may be found in statistical books.
Another approach, called spectral analysis, is described in
[Foerstner, 1980].



5.2 Determinability of camera’s parameters with the
conventional bundle method

In the following we will show, using some examples, how
individual or sets of APs can be determined under very unfair
network geometry conditions, like sequences of images
acquired with a camera undergoing a rotation on a tripod. The
adjustment is mainly a space resection adjustment, where all the
object points and camera parameters are treated as observed
values and not as free unknowns. The accuracy of the
adjustment will be check with the ‘a posteriori’ standard
deviation and the RMS of the residuals in image space.

5.2.1 Self-acquired images
A first test is performed using the ‘testfield sequence’ presented
in section 4.1.1 (Figure 2). A set of ca 60 control points is
available for the calibration. All the camera parameters and the
object points are treated as observed values.
The results of the adjustment, presented in Table 4, show that
almost all the camera parameters can be reliable recovered
(compare the results with the calibration values of Appendix 1).
In spite of a bad network geometry, a good number of control
points and the treatment of all unknown parameters as
stochastic variables helped in the determination of the camera
parameters. The Pi parameters turned out to be highly correlated
with the principal point position (∆xp↔P1 ≅ 0.98; ∆yp↔P2 ≅
0.97) while the other APs were not significant. The RMS of the
residuals in image space are 0.24 µm in x and 0.21 µm in y.

Parameter Value Std. Dev.
Camera constant 7.319 mm 9.86e-03

PP x dir. 0.118 mm 5.43e-03
PP y dir. -0.212 mm 1.69e-03

K1 -3.792e-03 2.31e-05
K2 6.475e-05 1.45e-06

σ0,priori = 1 pixel σ0,post = 0.08 pixel
Table 4: The recovered parameters after the adjustment.

During the experiments, we observed that if the camera is
rotating only along its horizontal axis (i.e. vertical rotation), the
position of the principal point in x direction cannot be
recovered, because of high correlations (>0.994) with the
angles around the horizontal axis and other parameters. On the
other hand, rotations only around the vertical axis, do not allow
the correct determination of the principal point in y directions.

A second test is done with 6 images, acquired from two
different stations (Figure 4), with a Leica Digilux 1 mounted on
a tripod. No control point information is available and the
baseline between the stations is ca 2.5 m. Three distances are
imported in the adjustment for the datum definition while the
tie points are measured semi-automatically with LSM. The
calibration results are reported in Table 5.

Parameter Value Std. Dev.
Camera constant 7.380 mm 5.91e-2

PP in x dir 0.102 mm 5.10e-2
K1 -3.81e-3 2.51e-4
K2 9.580e-5 1.30e-6

Table 5: Recovered camera parameters of the ‘shelf sequence’.

Only K1 and K2 were reliable determinable while the principal
point in y direction had to be fixed because the camera was
rotated only along the horizontal direction. The final standard
deviation of unit weight a posteriori resulted 0.005 mm (ca 1.1
pixel).

Figure 4: The ‘shelf sequence’: 6 images (1600x1200) acquired
from two stations.

As two stations are used, we could also recover the object
points coordinates with good accuracy (Table 6). The camera
poses and the 3D object coordinates are shown in Figure 5.

RMS_X=0.0022 m RMS_Y=0.0018 m RMS_Z=0.0025 m
Table 6: Mean RMS of the computed object coordinates.

Figure 5: The camera poses of the 2 stations and the 3D scene.

This example and the modelling results show that the 3D object
reconstruction from multi-stations rotating cameras is possible
with good accuracy and a not expensive camera system.

5.2.2 Existing videos
Nine frames of the ‘walking sequence’ presented in Figure 3
are analyzed. A right-hand coordinate system with the origin in
the left corner of the court (and the XZ plane parallel to the
court) is set and some control points are defined knowing the
dimensions of the basketball court. Because of the low image
quality (interlaced video) the image measurements are
performed manually. All the measurements are then imported
as weighted observations and used as tie points in the
adjustment. At first, for each single frame, DLT and space
resection are used to get an approximation of the camera
parameters. Afterwards a bundle adjustment is applied to
recover all the parameters (σ0,priori = 1.5 pixel) with 2 different
computational versions:
1.  bundle with frame-invariant APs sets (Table 7): this version
(9 sets of APs) recovered a constant value for the affinity factor
(1.11 ± 1.6e-3) and a mean focal length value of 22.4 mm ± 0.26
mm, even if the oscillations reported in Figure 6 suggested a
block-invariant configuration. The other APs were not
significant in all the images, probably because of the low image
measurements’ quality and an over-parameterised system.

Mean Focal length 22.4 mm
Mean Affinity factor 1.1105
RMS_x 24.8 µm
RMS_y 18.6 µm
σ0,post 1.24 pixel

Table 7: Results of the adjustment with frame-invariant APs sets.



Figure 6: Left: The behaviour of the focal length during the
analyzed frames. Right: The recovered affinity factor.

The behaviour of the recovered EO parameters is also
consistent with the images, as shown in Figure 7. X0 is
increasing while Y0 and Z0 are constant.

Figure 7: The motion of the camera (left: angles, right:
positions) recovered with a frame-invariant APs set.

2.  bundle with block-invariant APs set (Table 8): this version
recovered very similar results compared to the frame-invariant
version. Moreover, the K1 parameter could also be determined.

σ0,post 1.29 pixel
Focal length 22.71 mm
Affinity factor 1.1192
K1 -4.36e-04
RMS_x 29.7 µm
RMS_y 22.1 µm

Figure 8: Influence of the APs
on the image grid (3 times
amplified).

Table 8: Results of the
bundle adjustment with
block-invariant APs set.

Figure 9: The motion of the camera (left: angles, right:
positions) recovered with a block-invariant APs set.

The non-unity of the pixel aspect-ratio can come from the old
videocamera or because of the used frame grabber.
In Figure 10 are shown the camera positions together with the
reconstructed 3D scene.

Figure 10: 3D scene and camera poses recovered after the
bundle adjustment.

Another image sequence, obtained digitizing a videotape from
1989, is considered. A total of 40 frames are grabbed and 21
images are used for the analysis (Figure 11).

Figure 11: Some frames of a basketball video (‘dunking
sequence’). The camera is rotating and zooming.

The camera is far away from the scene and is rotating (probably
on a tripod) and zooming to follow the moving character. The
calibration and orientation process is again performed with a
self-calibrating bundle adjustment. Because of the zooming
effect, a frame-invariant APs set is used.
The diagram of the recovered focal length (Figure 12, right)
shows the visible zooming-in effect of the camera, except for
the last 3 frames (not displayed in Figure 11). The affinity
factor resulted in 1.11 ± 4.5e-3 (Figure 12, right). Because of the
low precision of the image measurements (σ0,priori = 2 pixel) and
the network geometry, the principal point and the lens
distortion terms cannot be computed as very unreliable
determinable. The final standard deviation of unit weight a
posteriori resulted 1.4 pixels while the RMS of image
coordinates residuals are 38.45 µm in x and 29.08 µm in y.

Figure 12: The focal length values in the 21 frames (left) and
the affinity factor (right).

6. MOSAIC FROM AN IMAGE SEQUENCE

There mainly three approaches to generate a panoramic view
(or image mosaic) and they are based on:
• single images: it is the traditional method, in particular in the

vision and graphic community. The panoramic view is
generated stitching and registering together different images.

• mirror techniques: they use single or double mirror, providing
for high capturing rate but low resolutions.

• rotating linear array CCD devices: these are panoramic
cameras that capture 360 degrees view in one scan.

6.1 Panorama from single images

This is a low cost technique, but usually time consuming as
non-linear optimization methods are used for the registration
and blending procedure. The images are acquired using simple
tripods or just rotating manually the camera. More than 30
commercial software is available on the market to produce such
panoramas (see Table 9). They distinguish in the extent of



automation and in the requirements for the input data. The
source format is usually JPEG, while the output file can have
different formats (MOV, IVR, PAN, etc.)

3DVista Studio Cool 360 PhotoVista
Image Assembler REALVIZ stitcher Panorama Tools
Panorama Factory PhotoShop Elements Reality Studio

PanEdit PanoStitcher QTVR
Table 9: Some software for panoramic images generation.

After the stitching, the panoramic image is usually warped
applying a particular projection for better visualization. There
are mainly 4 types of projections (planar, cylindrical, spherical
and cubic) and they distinguish in the CPU requests and
distortion correction [http://www.panoguide.com].
The panoramic image can then be visualized with special
viewers (Table 10) that allow interactive navigation.

3DVista Java applet 360 WorldView glPanorama
PanaView Zoom Viewer PT Viewer
JSphere iPIX Janorama
Table 10: Viewers for panoramic images.

Panoramic views created with this approach do not allow
precise reconstruction and are very useful for virtual tour
[http://www.world-heritage-tour.org], virtual reality and e-
commerce.

6.2 Examples

A program was developed with the goal of align (or warp)
different views and blend them together into a larger image. It
is based on the projective transformation (15) and works
according to the following steps [Szeliski, R., 1996]:
1. selection of corresponding points (x, y) and (x’, y’) between

image pairs I and I’;
2. compute the projective transformation (15) between the two

images recovering the 8 parameters iteratively by minimize
the sum of the squared intensity errors E:

[ ]2),()','('ä −=
i

yxIyxIE (19)

over all the corresponding pixels pairs i. The minimization
is performed using a Levenberg-Marquardt algorithm.

3. blend the resampled image with the reference image I using
a bilinear weighting function (weighted average) and
project the new image on a plane.

A similar approach, based on Gauss-Markov least squares
minimization, has been presented in [Pöntinen, 1999].
All the approaches based on a projective transformation
between successive images implicitly assume that the imaged
scene is approximately planar or that the images are cocentric
or that the scene is very far away from the camera.

6.2.1 Results from the ‘testfield sequence’
After the calibration procedure, we can generate the distortion-
free images of Figure 2, using the recovered APs to remove the
distortion effects. Then we apply the algorithm of section 6.2 to
produce a larger image of the testfield (Figure 13).

6.2.2 The ‘shelf sequence’
A panoramic view of the whole shelf can be generated using the
three distortion-free images acquired e.g. in the right station
(Figure 14).

6.2.3 The ‘basketball dunking sequence’
A mosaic of a sequence can be produced to retrieve scene
information. Considering Figure 11, because of the movement
of the character, only 3 frames are considered. The tie points
measured for the photo-triangulation are used as
correspondences for the computation of the projective
transformation between adjacent images. The approach
described in section 6.2 produced a ‘ghost effect’ in the final
results (Figure 15, upper image) because of the automated
blending procedure. Therefore a manual stitching, after the
projective alignment, is also performed (Figure 15, lower). The
mosaic can finally be used to derive metric measurements of
the character movements, like length or height of the jump
[Remondino, 2003].

Figure 13: A mosaic of the ‘testfield sequence’.

Figure 14: The ‘shelf sequence’. Panoramic view created using
3 images (upper image); zoomed details of difficult areas near
the images’ borders.

7. CONCLUSIONS

The presented work was realised to show how the perspective
camera model based on the conventional bundle method can be
employed to calibrate rotating cameras that do not generate
cocentric images. Otherwise a simplified camera model, that
relates image correspondences only with a rotation matrix, can
be used. The significance tests on the APs and the treatment of
all the unknowns as observed values helped to reduce the ill
condition of the normal equations and recover the camera
parameters. The results obtained from the existing video do not



respect the usual photogrammetric accuracy, mainly because of
the very low image quality. Probably the results could be
improved using simultaneously block- and image-invariant APs
sets in the adjustment; but, on the other hand, it can be very
difficult to select which parameters are block-invariant (i.e. are
common videocameras free of lens barrel misalignment?).
We also showed how multi-stations rotating cameras can be
employed for efficient and low cost 3D reconstruction of object
with photogrammetric precision (‘shelf sequence’).
As future work we would like to perform other tests with the
simplified camera model and extend it with a deeper stochastic
analysis of the system’s parameters.

Figure 15: The ‘dunking sequence’. In the upper image, the
automatic blending procedure generated the ‘ghost’ effect
visible in the middle. In the central images, two details in
correspondence of image blending are enlarged. The lower
image shows the same mosaic but with manual stitching, after
the projective transformation of the images.

APPENDIX 1

The digital camera Leica Digilux 1 is used for some of the
presented experiments (sections 4.1.1 and 5.2.1). In the

following we report its main characteristics (Table 11), the
results of a testfield calibration performed at wide-angle focal
length with 12 stations (Table 12) and a comparison of the
recovered APs’ influence.

Sensor size 1/1.76”, ca 7.2x5.4 mm  (4 Mil. Pixel)
Image size 2240x1680, 1600x1200, 1120x840, 640x480
Pixel Size 3.21 x 3.21 micron

Table 11: Some features of the Leica Digilux 1.

Parameter Value Std. Dev.

Camera constant 7.309 mm 8.68e-04

PP x dir. 0.111 mm 1.48e-03

PP y dir. -0.239 mm 1.46e-03

K1 -3.748e-03 2.05e-05

K2 3.744e-05 2.94e-06

P1 -1.505e-04 1.07e-05

P2 -1.817e-05 1.11e-06

Affinity factor (*) 0.9986 1.65e-05

σ0,priori = 1 pixel σ0,post = 0.05 pixel

Table 12: The calibration parameters for the Leica Digilux 1
recovered using images with 1600x1200 pixels.
(*) Affine factor = pixel_size_x/pixel_size_y.

In the next table we compared the effect of the recovered APs
on an image point with coordinate x=3, y=2 mm according to
the different procedure and imaged object (testfield or shelf).

Calibration Method and Object Infl_x Infl_y Vector
Testfield Conventional Calibration (*) -120 -94 153

Testfield Rotation Bundle Model -111 -85 14
Shelf Rotation Bundle Model -102 -71 124

Testfield Rotation Simplified Model  -96  -64  115 

Table 13: Influence (in µm) of the APs on the image grid.
(*) = reference data

In Figure 16 another comparison of the influence of the APs on
the image grid of the Leica Digilux is presented. The APs are
recovered with the different calibration procedures described in
the paper’s sections.

Figure 16: The influence of the recovered APs on the Leica
Digilux image grid (3 times amplified). Conventional self-
calibrating bundle solution (upper left). Perspective camera
model on the rotating testfield sequence (upper right).
Perspective model on the rotating shelf sequence (lower
left). Simplified perspective camera model on the rotating
testfield sequence (lower right).
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