
DATA FUSION AND VISUALIZATION OF PANORAMIC IMAGES AND LASER SCANS
Karsten Scheibe1, Martin Scheele1, and Reinhard Klette2

1Optical Information Systems, German Aerospace Center, Berlin, Germany
2Center for Image Technology and Robotics, The University of Auckland

Auckland, New Zealand

KEY WORDS: panoramic imaging, range finder, rotating line camera, sensor fusion, 3D visualization.

ABSTRACT

The paper describes the use of a laser range finder and a rotating CCD line camera for scanning and visualizing panoramic
(360◦) indoor scenes. The paper describes coordinate systems of both sensors, specifies the fusion of depth and texture
data acquired by both sensors, and reports on three different alternatives for visualizing the generated 3D data set. Com-
pared to earlier publications the recent approach also utilizes an improved method for calculating the spatial (geometric)
correspondence between laser diode of the laser range finder and the focal point of the rotating CCD line camera. Cali-
bration is not a subject in this paper; we assume that calibrated parameters are available utilizing a method as described
in(R. Reulke and Scheibe., 2003).

1 INTRODUCTION

Laser range finders (LRFs) have been used for close-range
photogrammetry (e.g. acquisition of building geometries)
for several years, see (Niemeier., 1995, Wiedemann., 2001).
A LRF which is based on the frequency to distance con-
verter technique has a sub-millimeter accuracy for sensor-
to-surface distances which are between less than one meter
and about 15 meters. In earlier publications (F. Huang and
Scheibe., 2002) we demonstrated how to fuse LRF data
with pictures (i.e., colored surface texture) obtained by a
rotating CCD line sensor (which we call the camera in this
paper). Both devices are independent systems and can be
used separately. To be precise, three CCD lines (red, green
and blue channel) capture a color picture, and the length
of these lines is in the order of tenthousand cells (pixels),
producing pictures of several gigabytes during a 360◦ scan.

The fusion of range data and pictures for 3D scene render-
ing is a relatively new development; see e.g. (Kern., 2001)
for combining range data with images acquired by a video
camera. Combinations of panoramic images (Benosman
and Kang, 2001) and LRF data provide a new technol-
ogy for high-resolution 3D documentation and visualiza-
tion. Fusion of range data and panoramic images acquired
by a rotating line camera has been discussed in (F. Huang
and Scheibe., 2002, R. Klette and Reulke, 2003). Calibra-
tion of range sensors (F. Huang and Scheibe., 2002) and
of rotating line cameras (F. Huang and Klette., 2002) pro-
vide necessary parameters for this process of data fusion.
In this paper we assume that parameters have been cali-
brated, and we do not elaborate on calibration details, but
provide a brief indication of related calibration needs.

The main subject of this paper is a specification of coor-
dinate transformations for data fusion, and a discussion of
possible ways of visualizations (data projections).

The approach in (F. Huang and Scheibe., 2002) combines
several LRF data sets with several camera data sets by
mapping all data into ortho planes. This simplified ap-
proach (known from processing of orthophotos) utilizes a
2.5 D surface model for the LRF data, and no complex ray

tracing or volume rendering is needed. This simplified ap-
proach assumes the absence of occluding objects between
LRF or camera, and ortho surface. In a first step we de-
termine the viewing direction of each pixel of the camera
(described by a formalised sensor model) towards the 2.5
D surface sampled by the LRF data. This can be done if
both devices are calibrated (e.g., orientations of the sys-
tems in 3D space are known in relation to one world co-
ordinate system) with sufficient accuracy. Requirements
for accuracy are defined by the desired resolution in 3D
scene space. Orientations (i.e., affine transforms) can be
specified using control points and standard photogramme-
try software. The 2.5 D model of ortho-surfaces is gener-
ated by using several LRF scans to reduce the influence of
shadows. More than a single camera viewpoint can be used
for improved coloration (i.e., mapping of surface texture).
Results can be mapped into several ortho planes, which can
be transformed into a unified 3D model in a second step.
See Figure 1.

In this paper we discuss a more advanced approach. For
coloration of an extensive 3D point cloud, generated from
several LRF data sets, we use captured panoramic images
obtained from several camera scans. This requires an im-

Figure 1: A (simple) 3D CAD model consisting of two
ortho planes.

plementation of a complex and efficient raytracing algo-
rithm for an extremly large data set. Note that this raytrac-
ing cannot assume ideal correspomndences between points
defined by LRF data and captured surface texture; we have
to allow assignments within local neighborhoods for iden-
tifying correspondences between range data and surface
texture. Figure 2 illustrates this problem of local uncer-
tainties.

Figure 2: Raytracing problem when combining one LRF
scan with data from one camera viewpoint.

There are different options to overcome this problem. A
single LRF scan is not sufficient to generate a depth map
for a complex 3D scene. Instead of fusing a single LRF
scan with color information, followed by merging all these
fused scans into a single 3D model, we prefer that all LRF
scans are merged first into one unified depth representa-
tion of the 3D scene, and then all camera data are used for
coloration of this unified depth representation. Of course,
this increases the size of data sets extremely, due to the
high resolution of LRF and camera. For simplification of
raytracing, the generated 3D points can be first used to
create object surfaces by triangulation, applying standard
routines of computer graphics. This can then be followed
by raytracing, where the parametrization obtained in trian-
gulation (including routines for simplification) reduces the
size of the involved sets of data.

LRF and camera will have different viewpoints or positions
in 3D space, even when we attempt to have both at about
the same physical location. A simple approach for data fu-
sion could be as follows: for a ray of the camera map the
picture values captured along this ray onto a point P calcu-
lated by the LRF if P is the only point close (with respect
to Euclidean distance) to this ray. An octreee data struc-
ture can be used for an efficient implementation. However,
this simplified approach never colorizes the whole laser
scan, because surface edges or detailed structures in the
3D scene always create very dense points in the LRF data
set.

As a more advanced approach assume that we are able to
arrange that the main point of the LRF and the projection
center of the camera are (nearly) identical, and that orien-
tations of both rotation axes coincide, as well as of both
optical axes. Then processing of the data is straightfor-
ward and we can design rendering algorithms that work in
(or nearly in) real time. Intensity (depth) data of the LRF
will be simply replaced by color information of the camera.

No ray tracing algorithm is necessary for this step because
occlusions do not need to be considered. The result is a
colored 3D point cloud. Nevertheless, to model the data it
is necessary to triangulate the LRF points into a mesh (be-
cause LRF rays and camera rays do not ideally coincide).
A triangulation reduces the number of points and makes it
possible to texture the mesh. Note that using this approach
the same shadow problem can occur as briefly discussed
above for single LRF scans.

This more advanced approach requires to transform the
panoramic camera data into the LRF coordinate system. In
order to cover the 3D scene completely, several scans are
actually required from different viewpoints, which need to
be merged to create a 3D mesh (also called wireframe).
Points obtained from one LRF scan are connected with
points obtained from another LRF scan. In this case the ad-
vantage of unique ray-to-ray assignments (assuming aligned
positions and directions of LRF and camera) is lost. It is
again necessary to texture a 3D wireframe by data obtained
from different camera viewpoints (i.e., a raytracing routine
is again required). We describe a time-efficient raytracing
approach for such a static texturing situation in this paper.
We report about advantages of applying independent LRF
and camera devices, and illustrate by examples (e.g., re-
sults of the “Neuschwanstein project”).

The Neuschwanstein project is directed on a complete 3D
photogrammetric documentation of this Bavarian castle.
Figures in this paper show the Thronsaal of this castle as
scanned from the viewpoint (i.e., LRF and camera in about
the same location) about at the center of the room. Of
course, a more complete photogrammetric documentation
used more viewpoints to reduce the impact of “shadowed
areas”. The paper describes all transformations and algo-
rithms applied in this process.

2 COORDINATE SYSTEMS

LRF and camera scans are in different independent coordi-
nate systems. To fuse both systems it is necessary to trans-
form the data into one primary reference system, called the
world coordinate system.

Rays of the panoramic camera are defined by image rows i
(i.e., this is the horizontal coordinate) and pixel position j
in the CCD line (i.e., this is the vertical coordinate). Sim-
ilarily, we identify rays of the LRF by an index i and a
constant angular increment ϕ0 which defines the absolute
horizontal rotation angle ϕ = i · ϕ0, and an index j and
an angle increment ϑ0 which defines the absolute vertical
angle ϑ = j · ϑ0. Note that these absolute angles are also
the same for the panoramic camera. However, the possible
range of vertical angles of the camera is typically reduced
compared to that of a LRF; the possible range of horizontal
angles of the LRF is typically reduced compared to that of
a panoramic camera.

2.1 LRF

A LRF scans in two dimensions, vertically by a deflecting
mirror and horizontally by rotating the whole measuring

system. The vertical scan range is 310◦ (which leaves 50◦
uncovered), and the horizontal scan range is 180◦. The
LRF scans overhead, therefore a whole sphere will scanned
with one 180◦ moving. Fig. 3 depict a LRF raw data set
and the not calibrated image.

Figure 3: Raw data of the not calibrated LRF image.

Rays and detected surface points on these rays (which de-
fine the LRF data set) can be described in a polar coordi-
nate system. According to our application of the LRF, it
makes sense to transform all LRF data at one view point
into a normal polar coordinate system with an horizontal
range of of 360◦ and a vertical range of 180◦ only. At this
step all LRF calibration data are available and required.

The photogrammetry specify for rotating measuring de-
vices, e.q theodolite systems, how to measure the errors
along the rotating axis. They called vertical and horizontal
collimation errors. The pole columns describe the column
around the zenith, the highest point in the image. To deter-
mine the collimation errors, typically the to measured point
will dedicated by two sites. That means the point will mea-
sured in two steps, first measured in site one, than the both
rotation axis will turned by 180◦ and the point will mea-
sured again(Däumlich and Steiger, 2002). Fig. 4 depict the
optical Z-axis an orthogonal axis to the corresponded hor-
izontal rotation axis and the tilt-axis, the vertical rotation
axis K.

The horizontal and vertical collimation errors are calcu-
lated by determining the pole column (this can be done
in the LRF image based on two rows [layers] and identi-
cal points at the horizon). This provides the offset to the
zenith and to the equator (i.e., the horizon). Secondly the
horizontal collimation error can be calculated by control
points along the equator. The vertical collimation error can
be determined based on these results. As an important test
we have to confirm that the zenith is uniquely defined in
3D space for the whole combined scan of 360◦.

Each point in the LRF coordinate system is described in
polar or Cartesian coordinates as a vector −→p , which is de-
fined as follows:

px = R · sin ϑ · cos ϕ

py = R · sin ϑ · sin ϕ

pz = R · cos ϑ

The orientation and position with respect to a reference
vector −→r in the world coordinate system is defined by one

Figure 4: Theodolite with two axes: the terms ’Zielachse’
and ’Kippachse’ in (German) photogrammetry specify the
optical Z-axis and an orthogonal K-axis. A range finder
measures along a variable Z-axis, which may be effected
by horizontal (i.e., along the Z-axis) or vertical (i.e., along
the K-axis) errors.

Figure 5: Range finder xyz-coordinate system: the Z-axis
of Fig. 4 points towards p, and is defined by slant ϑ and tilt
ϕ.

rotation matrix A and a translation vector −→r0 :

−→r = −→r0 + A · −→p (1)

All coordinate systems are right hand systems. The laser
scanner rotates clockwise. The first scan line starts at the
positive y-axis in the LRF system at the horizontal angle
of 100gon1 The rotation matrix combines three rotations
around all three axes for the right hand system:

A = Aω · Aφ · Aκ (2)

The resulting matrix A is then given as
(

Cϕ · Cκ Sϕ · Sκ Sϕ
Cω · Sκ + Sω · Sϕ · Cκ Cω · Cκ − Sω · Sϕ · Sκ −Sω · Sϕ
Sω · Sκ − Cω · Sϕ · Cκ Sω · Cκ + Cω · Sϕ · Sκ Cω · Cϕ

)

where κ, φ, ω are the rotation angles around the z-, y-, and
x-axis, respectively, and C stands short for the cosine and
S for the sine.

1The unit gon is defined by 360◦ = 400gon.

2.2 Camera

The panoramic image sensor is basically a rotating CCD
line sensor. Three CCD lines are mounted vertically and
also rotate clockwise. The scanned data are stored in cylin-
drical coordinates. In an ideal focal plane each pixel of the
combined (i.e., all three color channels) line is defined by
the vector −→rd . The rotation axis of the camera is incident
with the main point of the optics. The focal plane is lo-
cated at focal length f , without any offset

−→∆ . Scans begin
at the horizontal angle of 100gon. We have the following:

−→rd =




rdx

rdy

rdz


 =




0
f

j · δ


 (3)

The used CCD line had a length of approximately 70mm
and it had 10,296 pixels with a pixel size δ = 7µm indexed
by j. Each scanned surface point is identified by the cam-
era rotation Aϕ. In analogy to the LRF, a reference vector
(in world coordinates) for the camera coordinate system is
described by the rotation matrix A as follows:

−→r = −→r 0 + A · λ · Aϕ · −→r d (4)

λ is an unknown scale factor of the camera coordinate sys-
tem (for the 3D scene). If the LRF and the camera systems
have the same origin, then λ correspondents to the distance
measured by the laser scanner. We also model the follow-
ing deviations from an ideal case:

• The CCD line is tilted by three angles regarding the
main point (AI).

• The CCD line has an offset vector regarding the main
point (

−→∆).

• The optical axis is rotated regarding the rotation axis
(AO).

These deviations are depicted in Figure 6 and described in
the following equation:

−→r = −→r0 + (5)

λ · AAϕAO


AI




0
0

j · δ


 +




∆x

f + ∆y

∆z







For the calculation of calibration parameters Aopt., Ain

and the offset
−→∆ , see (F. Huang and Scheibe., 2002).

3 FUSION

Fusion of the data sets starts with transforming both coor-
dinate systems (i.e., LRF and camera coordinate systems)
into one world coordinate system. For this step the orien-
tation of both system needs to be known. A transforma-
tion of LRF data into the world coordinate system is then

Figure 6: Rotating line camera xyz-coordinate system: the
effective focal length f defines the position of an image
column (i.e. position of the CCD line at this moment) par-
allel to the z-axis, with an assumed offset ∆ for the center
of this image column.

simple because all required parameters of the equation are
given. It is only necessary to determine the orientation to
the world coordinate system as shown in Equation 1. For
the camera data the parameter λ is unknown, which can be
estimated by Equations 1 and 5. By applying all parame-
ters of the interior and external orientations to the vector−→rd the following simplified equation results:

−→r = −→r0 + λ · −→rd (6)

and therefore



rx − r0x

ry − r0y

rz − r0z


 = λ ·




rdx

rdy

rdz


 (7)

and λ e.g.

λ =
ry − r0y

rdy
(8)

But the ray between a pixel and a 3D point in the LRF
data set can be disturbed by an object, and a raytracing
routine has to check whether the LRF point can be colored
properly.

We applied an LRF and camera setup which allows to cen-
ter both main points in such a way that we are able to map
any LRF point or camera ray into the world coordinate sys-
tem. Equations (1) and (5) reduced by the term −→r0 + A are
described in the following equation:

−→p = λAϕAO


AI




0
0

j · δ


 +




∆x

f + ∆y

∆z





 (9)

By applying all parameters of the interior orientations to
the vector −→rd the following simplified equation results. −→rd

now describes the viewing direction of each pixel like in an
ideal focal plane as shown in Equation (4), and we obtain
the following:

−→p = λ · Aϕ · −→rd (10)

Note that λ corresponds to the distance R of the LRF to
the scanned point. Aϕ contains the rotation angle ϕ and
represents an image column i. The transformed vector rep-
resents the image row j and the number of the pixel in the
CCD line. Therefore each point in the LRF coordinate sys-
tem has an assigned pixel value in the panoramic image.
Figure 7 depicts a flipped open sphere. Horizontal coordi-
nates represent angle ϕ and vertical coordinates the angle
ϑ of the LRF coordinate system.

Figure 7: Panoramic image data have been fused in a sub-
window of the shown range image. (The figure shows the
Thronsaal of castle Neuschwanstein.)

4 VISUALIZATION

4.1 Projection

All projections are implemented with OpenGL. Generally,
OpenGL is an interface which stores all transformations
in different types of matrixes. All other important infor-
mation can be saved in arrays (e.g., object coordinates,
normal vectors and texture coordinates). The rendering
engine multiplies all matrices to a transformation matrix
and transforms each object coordinate by multiplying the
current transformation matrix with the vector of the object
coordinate. Different kinds of matrixes can be stored in
stacks to manipulate different objectc by different matri-
ces. The main transformation matrix MT is give as fol-
lows:

MT = MV · MN · MP · MM (11)

MV is the view port matrix, which is the transformation
to the final window coordinates. MN is the normalization
matrix of the device coordinates, MP the projection matrix
and MM the matrix to transform model coordinates (e.g., a
rotation, scaling, or translation). All matrixes in OpenGL
can be set comfortably by functions. The figure 8 depict
a 3D model rendered central perceptively based on image
data of Fig. 7. In this case the colored information are
ignored.

In the mostly case high resolution ortho photos as final
product stored in an common file format independent from
the resolution of the viewport of OpenGL are necessary.
The first step is to determine the attitude parameter of the

Figure 8: Central projection of the same hall shown in
Fig. 7.

ortho plane. This can be done in the 3D model. A correc-
tion of the attitude can included in this step. This means
that in the most cases a ceiling or a panel, the xy-plane, or
a wall, the xz-plane, is parallel to the corresponding plane
in the world coordinate system. The Eq. 1 expand by the
parameter Aortho the attitude of the ortho plane and a fac-
tor for the resolution t is shown in the following Eq. 12. In
this case are both systems are already fused to on common
image. The ”3D” coordinates with the appendant color in-
formation are established.

−→o = t · Aortho · (−→r0 + A · −→p) (12)

ox and oz is the position in the ortho plane. If is necessary
oy can saved as the altitude in the ortho surface. The digital
surface model (DSM) can be used to generate ortho photos
from independent cameras or if necessary to scan without
the mechanical fixes, described in the Introduction. The
Fig. 9 depict the dependencies.

Figure 9: A defined ortho plane ’behind’ the generated 3D
data.

The model view can be modified by changing the matrix
MV , so that the 3D object can rotate or translate in any
direction. The camera view point also can modified. It is
possible to go into the 3D scene and looking around. Fur-
ther more it is possible to render more than one viewpoint
in the same rendering context and create anaglyph stereo
pairs by this way. The correct way to create stereo pairs is
the ”non symmetric frustum” method. It introduces no ver-
tical parallax. It requires a non symmetric camera frustum,
this is supported by some rendering packages, in particular,
OpenGL.

Figure 10: Stereo projection of the same hall shown in
Fig. 7; the anaglyph uses red for the left eye.

4.2 Triangulation

In figure 8 the measured points are shown. The high point
density makes the pointcloud look like a surface. But the
single points become visible, when viewing a close-up of
the object. An other disadvantage of this representation
is that modern graphic adapters with it is 3D accelera-
tion only support a fast rendering of triangles and triangle
stripes. Polygons will tesselated2 by the graphic adapter.
To render triangles it is necessary to triangulate the single
points to triangles.

Because of this, the pointcloud is converted in a triangle
mesh. Therefore, a initial, dense mesh is generated. For the
generation the incremental algorithm proposed by Boden-
mueller (Bodenmueller and Hirzinger, 2004) is used. Orig-
inally, this approach is developed for online proccessing of
unorganized data from hand-guided scanner systems. But
the method is also suitable for the processing of the laser
scanner data we used, because it uses a sparse, dynamic
data structure which can hold larger data sets and it is able
to generate a single mesh from multiple scans. The follow-
ing work flow explain the principal way for the triangula-
tion.

- tinning of points (density check)
2Tessellation is the splitting of polygons into triangles.

- normal approximation (local approximation of the sur-
face)

- point selection (insert point, depend by normal and den-
sity)

- estimation of the euclidian neighborhood relationships

- neighborhood projecting to tangent plane (P[3D -¿ 2D])

- new local triangulation (Delaunay)

A second important relationship is the connectivity between
the triangles. This basic relationship is important for the
most algorithm for example the calculation of triangle strips,
shadows or to meshing the pre triangulated points. The fol-
lowing section described a fast way to do this.

4.2.1 Connectivity The connectivity means, which poly-
gon is connected by an other polygon. In the standard
computer graphic and in the most cases it is not necessary
to improve the algorithm to calculate the connectivity, be-
cause the most models have only a lots of polygons and it
is a static pre calculation, mostly done by the initialization
of the object. It is very easy to check every edge of a poly-
gon with every all edges of all other polygons. In our case
we have many millions of polygons. By implementation of
the connectivity algorithm based on the Gamasutra‘s arti-
cle(Lee, n.d.) more than one hour was needed to calculate
the connectivity. The idea is to hash the point indices to
one edge index. The Fig. 11 illustrate how to hashing the
edges. Every edge have two indices n, m. Important is by
sorting the indices the first column represent the low index
n and the higher is m. Every pair n, m have a uniqueness
z. by pushing the n value in the higher part of a register
and m in the lower part. Now we can sort the first column
of our structure by z. Only one loop is enough to set the
dependencies. If one row i and row i + 1 have the same
z the dependencies are directly given by the second and
third column of our structure. The row three and four in
figure (Fig. 11 must have the same z and the connectivity
is given by column two and three: Triangle one, side three
is connected by triangle two, side one. With this algorithm
we need for the same scan before only 10 seconds.

4.3 Light and shading

For a better visualization and a realistic impression it is
necessary to shade a scene, calculating shadows, reflec-
tions and other light features. Shading means the surface

Figure 11: Fast connectivity calculation of triangles.

Figure 12: Unshaded (left) and shaded (right) Thronsaal.

shading of objects, not shadow calculations itself. Espe-
cially complex detailed structures have better depth im-
pression, if they are shaded. Shading surfaces calculate,
how much light the surface is reflecting. Three kind of
light contributions will supported. Ambient, diffuse and
specular light. Ambient light is the generally background
illumination, independent from the position of the light
source and the view. Every object can have different ma-
terial properties. According to Lambert the effective light
intensity is attenuated by the cosine of the angle between
the direction of the light and the direction from the light
to the vertex being lighted. The specular light source con-
tribution is the product of the material specular reflectance,
the light’s specular intensity, and the dot product of the nor-
malized vertex-to-eye and vertex-to-light vectors, raised to
the power of the shininess of the material. Further more
all three light source contributions are attenuated equally
based on the distance from the vertex to the light source
and on light source direction, spot exponent, and spot cut-
off angle. This means the given factor, raised to the power
of a spot exponent. Thus, higher spot exponents result in a
more focused light source. If the light is positional, rather
than directional, its intensity is attenuated by the reciprocal
of the sum of a constant factor, a linear factor multiplied by
the distance between the light and the vertex being lighted,
and a quadratic factor multiplied by the square of the same
distance.

4.4 Shawdows

Figure 13: Volume shadow by using the stecil buffer.

Shadow calculations help the viewer to manage the scene
faster. The brain get a better and faster depth impression.
One the other hand the scene looks more realistic. In the
computer graphic are a couple of publications, how to ren-
der a scene with shadows. In the game industry many tricks
was created to calculate really fast shadows. One example

is the mirroring of objects to a plane, most to the floor.
But this are only possible planar shadows. More difficult
are volume shadows. In this case all objects in a shadow
volume becomes shadow. The idea is to mask the scene
by a special buffer. Verticies will only rendered if a spe-
cial buffer is confirmed to a function (LESS, GREATER,
EQAL etc.). Modern graphic adapter supports such buffer
in hardware, the depth buffer and the stencil buffer are
some of this. The next following steps describe how to
use the stencil buffer for a fast volume shadowing. This
approach was first introduced by F. Crow in 1977(Crow,
1977).

Render all verticies in the color buffer in consideration of
the depth buffer. The color buffer is the final buffer we
really see. The depth buffer represent the z-value (depth)
of every rasterized pixel. Only one pixel in the same row
and column, that with the nearest z-value to the view point
must be drawn. The following next steps describe the shad-
wow algorithm.

- Render all front faces to the stencil buffer (stencil func-
tion increment)

- Render all back faces to the stencil buffer (stencil func-
tion decrement)

- Blend shadow over the whole scene where stencil is not
equal

The culling function specifies, whether front- or back-facing
facets can be culled. Front and back is dependent to the or-
der of the vertex points, counter clockwise or clockwise,
mostly counter clockwise. Fig. 13 depict the workflow.
Our triangle are counter clockwise, therefore the drawn
rectangle on edge one and three are also counter clockwise.
This both rectangle increment the stencil buffer in the first
pass. In the second pass the drawing is seted to clockwise
and the stencil function to decrement the stencil buffer.
Only the rectangle on edge two will drawn (decrement the
stencil buffer). Now the stencil buffer is masked correctly.
Finally a rectangle over the whole view will be blended.
Everywhere the stencil buffer is not equal a shadow will be
blended. The result is the projected shadow and shadowed
objects in the shadow volume. To increase the performance
we can calculate the object silhouette. This can be done by
calculate the connectivity of all faces, like explain in the
section connectivity. Further more the visibility of a face
must be calculated, because the faces of a volumetric ob-
ject e.g. a cube are always connected. In this case the al-
gorithm draw only not connected edges of a face or when
the face itself is not visibly. Of course the algorithm first
can check is the object itself visible or not to increase the
performance.

4.5 Texturing

Texturing, or texturmapping is the mapping of our trian-
gles with images. Each point coordinate (x,y,z) becomes
a texture coordinate (i,j). Since we have small triangles
it is not necessary to rectify the images. For bigger trian-
gles first it is necessary to rectify the mapping part of the

image, because the images are not in the same coordinate
system and are perspectively. Secondly we must check that
the mapped triangle was seen by camera. This is the dis-
cussed raytracing step in the introduction. Actually a typi-
cal raytracing check the camera ray with each triangle for
collisions. A optimized data structure and octtrees increase
the performance of the algorithm. The following approach
describe how to mapping the texture very easily. This ap-
proach use the distance from every triangle to the camera
position of the to mapped texture. Eq. 4 reduced by the
term A ·λ ·Aϕ · −→r d gives the current camera position −→r 0.
The orientation is not needed in this step. The distance
results by Eq. 1 and the camera position to

√
(rx − r0x)2 + (ry − r0y)2 + (rz − r0z)2. (13)

Now all triangles, sorted by the nearest distance, will tex-
tured and masked in the image. If a new texture coordinate
already masked in the image they will not mapped. This
is also a statical procedure, all texture coordinates will pre
calculated and stored in a list.

5 CONCLUDING REMARKS

This paper introduce a algorithm, how to fuse laser scan-
ning data with images of a rotating line camera. The co-
ordinate systems of both systems and the transformation
of both data sets in one common reference system (world
coordinate system) are described.

The visualization of the data and different possibilities of
projection are shown. For a more realistic view some light
effects and shadow calculation are discussed. A fast con-
nectivity algorithm as an base for many calculations in the
computer visualization is introduced.

For fusing data of single scans, it seems to be very easily
to do this with mechanical fixes and assumed that the main
point of the laser scanner and the optical projection center
of the panorama camera are identical. In this case the laser
point and camera assignment are directly given. But our
experiences was, that for bigger models with many scans
we must resign our approach. The common way is, first
to calculate the 3D model by using different laser scans
and then mapping the color information. Triangulation and
meshing of this huge unorganized pointclouds is a separate
step. Many publication about this procedure are available.
By using the approach from Tim Bodenmüller we generate
a initial dense mesh. In future work we must more simplify
this mesh. Errors in the mesh e.g. holes must be found
automatical.

Texturemapping with the panoramic data are shown. The
radiometric problems by mapping different textures must
also research in future work. A homogeneous lightning
with different camera placements during the data acquisi-
tion is very difficult. Shadows caused by real light must be
found automatical and must be modified radiometrical or
masked for not using.

Acknowledgment: The authors thank R. Reulke for on-
going collaboration on the discussed subjects. Thank B.
Strackenburg for supporting the projects.

REFERENCES

Benosman, R. and Kang, S. (eds), 2001. Panoramic Vision:
Sensors, Theory, and Applications. Springer, Berlin.

Bodenmueller, T. and Hirzinger, G., 2004. Online sur-
face reconstruction from unorganized 3d-points for the dlr
hand-guided scannersystem. Eurographics2004, In Press.

Crow, F., 1977. Shadow algorithms for computer graphics,
parts 1 and 2. In: Proc. SIGGRAPH, Vol. 11-2, pp. 242–
248 and 442–448.

Däumlich, F. and Steiger, R. (eds), 2002. Instru-
mentenkunde der Vermessungstechnik. H. Wichmann,
Heidelberg.

F. Huang, S. W. and Klette., R., 2002. Calibration of line-
based panoramic cameras. In: D. Kenwright (ed.), Image
and Vision Coumputing New Zealand, pp. 107–112.

F. Huang, S. Wei, R. K. G. G. R. R. M. S. and Scheibe., K.,
2002. Cylindrical panoramic cameras - from basic design
to applications. In: D. Kenwright (ed.), Image and Vision
Coumputing New Zealand, pp. 101–106.

Kern., F., 2001. Supplementing laserscanner geometric
data with photogrammetric images for modelling. In:
J. Albertz (ed.), Int. Symposium CIPA, pp. 454–461.

Lee, A., n.d. gamasu-
tra.com/features/20000908/lee 01.htm.

Niemeier., W., 1995. Einsatz von laserscan-
nern für die erfassung von gebäudegeometrien.
Gebäudeinformationssystem 19, pp. 155–168.

R. Klette, G. Gimel’farb, S. W. F. H. K. S. M. S. A. B. and
Reulke, R., 2003. On design and applications of cylindrical
panoramas. In: N. Petkov and M. Westenberg (eds), Proc.
CAIP, Springer, Berlin, pp. ??–??

R. Reulke, A. Wehr, R. K. M. S. and Scheibe., K.,
2003. Panoramic mapping using ccd-line camera and laser
scanner with integrated position and orientation system.
In: D. Bailey (ed.), Image and Vision Coumputing New
Zealand, pp. 72–77.

Wiedemann., A., 2001. Kombination von laserscanner-
systemen und photogrammetrischen methoden im nah-
bereich. Photogrammetrie Fernerkundung Geoinformation
pp. 261–270.

