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ABSTRACT: 
 
A realm is a planar graph over a finite resolution grid that has been proposed as a means of overcoming problems of numerical 
robustness and topological correctness in spatial databases. However, in spatial databases, current data structures based on realm 
only deal with 2D objects, and cannot be used to describe the complex phenomena in real 3D world. In order to represent 3D spatial 
objects and the topological relationships between them efficiently in spatial databases, we extend the original realm by following the 
next steps: (1) Extend the discrete space defined in 2D space to 3D discrete space. (2) Define 3D realm on 3D discrete space. (3) 
Define 3D realm-based data structures, such as R-block, R-cycle (planar/non-planar), R-face, R-hull and R-volume. (4) Define 
topological relationships between these 3D realm-based data structures. 
 
 

1. INTRODUCTION 

The application areas of GIS are very wide, such as, 
environment, network management (transportation, water, gas), 
agriculture, nation and region development, natural or 
technique exploration, geology, wireless telecommunication and 
so on. In all these applications, most of them are realized by 
using 2D data. Although some applications can use 2D data to 
get correct realization (such as network analyse, here topology 
is more important than geometry), the implementations of most 
applications are not reliable, because in databases, the 
expressions of geography objects is not corrected (Losa and 
Cervelle 1999). 
 
Worboys (Worboys 1995) gave out the definition of 3D GIS: 
This type of system should be able to model, represent, manage, 
manipulate, analyze and support decisions based upon 
information associated with 3D phenomena. 3D GIS is not the 
simple extension of 2D GIS in altitude. In order to add the third 
dimension to 2D GIS, it is needed to do sufficient research on 
many aspects of GIS, such as various models and data 
organization. 
 
Although the researches on 2D spatial analyse are very deep, 
the researches on 3D analyse are still in a very initial phase. 
Spatial relationships are the basis of lots of operations executed 
in GIS, such as including, adjacent, equal, direction, intersect, 
connecting and their suitable description and maintenance. 
Similar to 2D GIS, 3D GIS should be able to execute metric 
(distance, length, area, volume and so on), logic (intersection, 
union, difference), generalization, buffering, network (the 
minimal path) and fusing operations. Except metric operations, 
most of the operations need the knowledge of spatial 
relationships. Comparing to 2D GIS, the third dimension 
increases the total number and complexity of possible spatial 
relationships. Many researchers have adopted the formal 
method based on set topology to identify spatial relationships 
(Egenhofer 1990, Molenaar 1998), but the representations of 
spatial relationships have not been studied sufficiently. For 
example, in 9I model (Egenhofer and Franzosa 1991), the 
possible combinations are 512 kinds, but most of them are 
impossible, so it is very complex to determine the spatial 
relationships. (Zlatanova 1999) applies 9I model to distinguish 

the spatial relationships between 3D spatial objects. In order to 
eliminate the impossible conditions, she gives 13 rules. We 
provide a method “distribution of dimension” to describe the 
relationships between spatial objects. It improves 9I model from 
two aspects: (1) it decreases the possible combinations; (2) 
there are only two rules to eliminate the impossible conditions, 
which are very simple and straight. 
 
In GIS, spatial objects are usually stored in relation tables 
according to spatial topology relationships. The numerical 
robust and topology correctness depend on the application 
programs that are not the parts of the database, which makes it 
complex for the development of GIS. Of course, some people 
stores the spatial objects to the file system according to his own 
format, which makes it difficult to be utilized efficiently and 
combined with database system, so it is difficult for these 
spatial objects to be integrated with other application systems. 
 
A realm is a planar graph over a finite resolution grid that has 
been proposed as a means of overcoming problems of numerical 
robustness and topological correctness in spatial databases 
(Guting and Schneider 1993). However, in spatial databases, 
current data structures based on realm only deal with 2D objects, 
and cannot be used to describe the complex phenomena in real 
3D world. 
 
In order to describe 3D objects in spatial databases, we extend 
2D realm to 3D realm. Based on 3D realm, we define the 
corresponding basic data structures, such as R-block, R-cycle 
(planar/non-planar), R-face, R-hull and R-volume, and give the 
topological relationships between these 3D realm-based 
structures. 
 
This paper is organized as: Section 2 introduces the basic 
concepts of realm. Section 3 presents a method based on the 
distribution of the dimension. Section 4 extends the discrete 
space from 2D to 3D, and defines 3D realm. Section 5 discusses 
the spatial data structures on 3D realm and the topological 
relationships between these structures. Section 6 presents 3D 
spatial data types simply. The last section concludes the paper. 
 
 



 

 

2. BASIC CONCEPTS OF REALM 

2.1 2D Discrete Space and Realm (Guting and Schneider 
1993) 

In finite discrete space N×N (N={0, …, n-1}), N-point is a 
pair(x, y)∈ N×N; N-segment is a pair of two different N points 
(p, q), and (p, q)=(q, p). PN represents the set of all N-points; SN 
represents the set of all N-segments. 
 
Definition 1: A Realm R=P∪ S, such that: 
 
(1) P⊆  PN, S⊆  SN; 
(2) ∀ s∈ S: s =(p, q) ⇒ p∈ P ∧  q∈ P 
(3) ∀ p∈ P ∀ s∈ S: ¬ (p in s) 
(4) ∀ s, t∈ S, s≠t: ¬ (s and t interest) ∧  ¬ ( s and t overlap) 
 
2.2 Data Structures Defined on Realm 

Definition 2: An R-cycle is defined as a set of R-segments 
S(c)={s0, …, sm-1}, such that: 
 
(1) ∀ i∈  {0, …, m-1}: si meets s(i+1) mod m. 
(2) There are no other touches of segments. 
 
Definition 3: An R-block is defined as a set T of R-segments: 
 
(1) ∀  r, t ∈  T ∃ s1, …, sm ∈  T: r=s1, t= sm, and  
(2) ∀  i∈ {1, …, m-1}: si and si+1 meet. 
 
Definition 4: An R-face f is a pair (c, H), here c is an R-cycle, 
H={h1, …, hm} is a set of R-cycles (may be empty), which 
satisfy next conditions (We use S(f) to represent the set of the 
segments in all the R-cycles of f): 
 
(1) ∀  i∈  {1, …,m}: hi edge-inside c; 
(2) ∀  i, j∈  {1, …, m}, i≠ j : hi and hj are edge-disjoint; 
(3) There do not exist R-cycles other than c and the R-cycles in 
H. 
 
 
3. DISTRIBUTION OF DIMENSIONS - A METHOD TO 

IDENTIFY TOPOLOGICAL RELATIONSHIPS 

3.1 Basic Concepts 

A topology space is usually described as a set of any element, 
in this set the concept of continuity is defined (Clementini and 
Di Felice 1995). Let X and Y are two topological spaces, then: 
 

Mapping f: x → f is continuous, if for every open subset V of 
Y, f-1(V) is a open subset of X. 

 
If f is bijection, at the same time, f and f-1 are continuous, then f 
is called topological isomorphism. Topological isomorphism 
keeps the adjacent relationships between the mapping points, 
which includes transform, rotation and zoom. Topological 
relationships are those relationships that keep invariant under 
topological isomorphism. 
 
3.2 The Definition of Spatial Objects 

For a spatial object, we will define the following operations: 
lower dimensional parts(shortly as LDP, denoted as ∂), same 
dimensional parts(shortly as SDP, denoted as °), exterior(¯), set 
intersection(∩) and dimension(dim). dim is a function, which 

returns the dimension of a point set, for empty set, it returns –1. 
If a point set is composed of several parts, then it returns the 
highest dimension. 
 
Here we do not consider complex geometry objects, because 
these objects can get by extending simple objects. In ℝ3, the 
simple geometry objects are defined as follows: 
 
1. A simple volume object is the closure of the connected 

3D point set embedded in ℝ3. 
2. A simple face object is the connected 2D point set 

embedded in ℝ3, no self-intersection, including one and 
only one cycle. 

3. A simple line object is the connected 1D point set 
embedded in ℝ3, no self-intersection, including two only 
two end points. 

4. A simple point object is the 0D point set, and composed 
of only one point. 

 
In topological space X, the neighbour of x is a subset of U, and 
U is an open set that includes x. If set A is a neighbour of its 
element x, then x is a interior point of A, the set of all the 
interior points is the interior of A, denoted as A° (Kelly 1955). 
The boundary of A is ∂A := A – A°, the exterior of A is A¯ = X 
– A. In 4I/9I mode (Egenhofer and Herring 1990) A° is used to 
denote the interior of A, and ∂A is used to denote the boundary 
of A. If the dimension of A is the same with that of the 
embedding space, the explanation is right. However, if the 
dimension of A is less than that of the embedding space, the 
explanation is not right. Therefore, we use A° to denote the 
parts of A that have the points with the dimension equal to 
dim(A), and ∂A to denote the left parts of A: 
 

A° = {x∈ A | dim(x) = dim(A)} 
∂A = {x∈ A | dim(x) < dim(A)} 

 
3.3 The Method Based on Distribution of Dimension (DD) 

There are many methods about the definitions and verification 
of spatial topological relationships (Chen et al. 2001). Among 
these methods, 9I model provided by Egenhofer is the most 
popular. But there are so many conditions in 9IM that it needs 
too many restriction rules (Zlatanova 1999), so this method is 
not practical. Clementini (Clementini and Di Felice 1995) gives 
DEM method and CBM method. They also consider two 
exteriors of the two objects, which make it difficult for 
implementation, because it is difficult to implement the exterior 
of a spatial object. 
 
The definitions of topology relationships before are usually 
defined using symmetrical structure, that is, they adopt the 
concepts of interior, boundary and exterior. The symmetrical 
structure is one of the main reasons to make these methods 
complex. However, these concepts are correct if the spatial 
objects and the embedding space have the same dimension, but 
not correct for spatial objects with different dimensions or the 
spatial objects with the embedding space in different 
dimensions. Hence, we provide an unsymmetrical 
representation method of spatial relationships. That is, we only 
consider the pair <A, B>, such that dim(A)≤dim(B). 
 
Our method is based on dimension distribution. We do not use 
the intersection between every all the parts (interior, boundary, 
exterior or Voronoi exterior) of an object with all the parts of 
another object, but use an object’s distribution in another 



 

 

object’s lower dimensional part, same dimensional part and 
exterior. 
 
Because of the non-splitting property of point, it cannot be 
divided into lower dimensional part, same dimensional part and 
exterior. Therefore: (1) There are only two possible conditions 
between two point objects: equal and unequal; (2) There are 
only three possible conditions between a point object and a 
non-point object: in lower dimensional part, in same 
dimensional part, in exterior. In the following, we mainly 
consider about non-point spatial object. 
 
Suppose in εN, there are two simple spatial objects A and B, 
such that 0 ≤ dim(A) ≤ dim(B). Then the topological 
relationship R(A, B) between A and B can be represented by a 
triple <En, Bn, In>, such that: 
 
� En≔ dim(A∩B ¯ ) ∈  {-1, dim(A)} ⊂  ℤ, that is, the 

dimension of A intersecting with the exterior of B. 
� Bn≔ dim(A∩∂B) ∈ [-1, MIN(dim(A), dim(B)-1)] ⊂  ℤ, 

that is, the dimension of A intersecting with the lower 
dimensional part of B.  

� In≔ dim(A∩B°), if dim(B)=N, then In∈ {-1, dim (A)} ⊂  
ℤ, else if dim(B)<N, then In∈ [-1, dim (A)] ⊂  ℤ, that is, 
the dimension of A intersecting with the same 
dimensional part of B. 

 
The method used triple <En, Bn, In> to identify the topological 
relationships is called “Distribution of Dimensions” (shortly as 
DD). 
 
Note: 
 
(1) Let dim(A)=α, MIN(dim(A), dim(B)-1)=β; 
(2) MAX(x1, …, xn) denotes the maximal value among x1, …, 
xn; MIN(x1, …, xn) denotes the minimal value among x1, …, xn.  
 
In the set of all of <En, Bn, In>, not all the combinations are 
possible. Here are two restriction rules: 
 
(1) ¬ (MAX(En, Bn, In)<α), that is, in continuous space, spatial 
object O is divided into finite parts o1, o2, …, on, then 
dim(O)=MAX(dim(o1), dim(o2), …, dim(on)). This rule 
restriction rule is called “dimensional invariant”. 
 
(2) If dim(B)=N, (a)if α=N, then En=α ∧  In=α → Bn=(α-1), 
and β = α-1; (b)if α<N, then En=α ∧  In=α → Bn∈ {α, α-1}, 
and β=α. This restriction rule shows the separating effect of 
lower dimensional part, which is called “low dimensional part 
separating” 
 
Comparing with the restriction rule of 9I model (Zlatanova 
1999), we can see these two rules are very simple. 
 
According to the definition of DD and two restriction rules, we 
give the possible conditions of R(A, B) under dim(B)=N and 
dim(B)<N separately: 
 
(1) If dim(B)=N, then En∈ {-1, α}, Bn∈ [-1, β], In∈ {-1, α}. 
Hence, all of the possibilities are: 
 
2×(β+2)×2  All the combinations 
- 1×(MIN(α-1, β)+2)×1 (Remove the conditions violating 
“dimension invariant”) 

- IFF(α=N, β+1, β)  (Remove the conditions violating 
“lower dimensional part separating”) 
= 4ββββ + 6 - MIN(αααα-1, ββββ) - IFF(αααα=N, ββββ+1, ββββ) 
 
(2) If dim(B)<N, then En∈ {-1, α}, Bn∈ [-1, β], In=-1. Hence, 
all of the possibilities are: 
 
2×(β+2)    (All of the combinations) 
- (MIN(α-1, β)+2)  (Remove the conditions violating 

“dimensional invariant”) 
= 4ββββ + 4 - (MIN(αααα-1, ββββ)+2) 
 
Next we illustrate the topological relationships involving at 
least one simple volume in 3D space, for the restriction of pages, 
we omitted other conditions. 
 
3.3.1 A simple line – a simple volume: En∈ {-1, 1}, Bn∈ {-1, 
0, 1}, In∈ {-1, 1}，α=1, β=1, so the possible relationships are: 

4×1+6-MIN(1-1, 1) – IFF(1=3, 1+1, 1)=4+6-0-1=9。 
 
 

SN En Bn In relationship 
 -1 -1 -1 Violate rule (1) 
(1) -1 -1 1 

 
 -1 0 -1 Violate rule (1) 
(2) -1 0 1 

 
(3) -1 1 -1 

 
(4) -1 1 1 

 
(5) 1 -1 -1  

 
 1 -1 1 Violate rule (2) 
(6) 1 0 -1  

 
(7) 1 0 1  

 
(8) 1 1 -1  

 
(9) 1 1 1  

 
 
Table 1. Topological Relationships between a simple line and a 

simple volume 
 
3.3.2 A simple face - a simple volume: En∈ {-1, 2}, Bn∈ {-1, 
0, 1, 2}, In∈ {-1, 2}，α=2, β=2, so the possible relationships 
are: 

4×2+6-MIN(2-1, 1) – IFF(2=3, 2+1, 2)=8+6-1-2=11。 
 

SN En Bn In relationship 
 -1 -1 -1 Violate rule (1) 
(1) -1 -1 2 

 
 -1 0 -1 Violate rule (1) 
(2) -1 0 2 

 
 -1 1 -1 Violate rule (1) 



 

 

(3) -1 1 2 

 
(4) -1 2 -1 

 
(5) -1 2 2 

 
(6) 2 -1 -1 

 
 2 -1 2 Violate rule (2) 
(7) 2 0 -1 

 
 2 0 2 Violate rule (2) 
(8) 2 1 -1 

 
(9) 2 1 2 

 
(10) 2 2 -1 

 
(11) 2 2 2 

 
 
Table 2. Topological Relationships between a simple face and a 

simple volume 
 
3.3.3 A simple volume – a simple volume: En∈ {-1, 3}, 
Bn∈ {-1, 0, 1, 2}, In∈ {-1, 3}, α=3, β=2, so the possible 
relationships are:  

4×2 + 6 – MIN(3-1, 2) – IFF(3=3, 2+1, 2) = 8+6-2-3 = 9 
 

SN En Bn In relationship 
 -1 -1 -1 Violate rule (1) 
(1) -1 -1 3  

 
 -1 0 -1 Violate rule (1) 
(2) -1 0 3  

 
 -1 1 -1 Violate rule (1) 
(3) -1 1 3  

 
 -1 2 -1 Violate rule (1) 
(4) -1 2 3  

 
(5) 3 -1 -1  

 
 3 -1 3 Violate rule (2) 
(6) 3 0 -1  

 
 3 0 3 Violate rule (2) 

(7) 3 1 -1  

 
 3 1 3 Violate rule (2) 
(8) 3 2 -1  

 
(9) 3 2 3  

 
 
Table 3. Topological Relationships between two simple 

volumes 
 
 

4. EXTENSION OF BASIC SPACE AND 3D REALM 

Definition 5: In finite discrete space N×N×N (N={0,…,n-1}), 
an N-point is a pair (x,y,z)∈ N×N×N; an N-segment is different 
N-point pair (p, q); we define (p, q)=(q, p). PN represents the set 
of all N-points; SN represents the set of all N-segments. 
 
In the follow table, we give out the topological relationships 
and operations between N-points and N-segments.  
 

N-point×N-
point  

→ BOOL = 

N-point×N-
point  

→ N-segment connection 

N-point×N-
segment  

→ BOOL on, in, disjoint 

N-segment×N-
segment 

→ BOOL intersected( =, overlap, 
meet, aligned), disjoint 
(parallel, aligned) 

N-segment×N-
segment 

→ N-point intersection 

 
Table 4. Primitives defined on 3D grid 

 
All these relationships and operations can be gotten by basic 
math operations, for details see the appendix of (Guting and 
Schneider 1993)  
 
Definition 6: 3D Realm R=P∪ S, such that: 
 
(1)  P⊆  PN, S⊆  SN; 
(2)  ∀ s∈ S: s =(p,q) ⇒ p∈ P ∧  q∈ P 
(3)  ∀ p∈ P ∀ s∈ S: ¬ (p in s) 
(4)  ∀ s, t∈ S, s≠t: ¬ (s and t interest) ∧  ¬ ( s and t overlap) 
 
 

5. DATA STRUCTURES AND TOPOLOGICAL 
RELATIONSHIPS BASED ON 3D REALM 

5.1 Data Structures in 3D Realm 

Definition 7: An R-block b is a set T of R-segments, such that: 
 
(1) ∀  r, t ∈  T ∃ s1, …, sm ∈  T: r=s1, t= sm, and  
(2) ∀  i∈ {1, …, m-1}: si and si+1 meet. 
 



 

 

Definition 8: An R-cycle c is a set of R-segments S(c)={s0, …, 
sm-1}, such that: 
 
(1)  ∀ i∈  {0, …, m-1}: si meets s(i+1) mod m 
(2)  There are no other touches between segments. 
 
If all the segments of an R-cycle are all in the same plane, it is 
called a R-planar cycle, shortly as RP-cycle, otherwise it is 
called a non-R-planar cycle, shortly as RNP-cycle (it can be 
represented by the combination of RP-cycles). 
 
In fact, if m=1, then R-cycle is degenerated to a R-segment, 
furthermore, a R-segment can be degenerated to a R-point. 
 
In 2D space, it is enough to know all the intersection points of 
segments, but in 3D space, we have to know all the intersection 
between all faces. The intersections may be points and segments. 
 
Definition 9: An R-face f is a quaternion (c, H, EP, ES), here c 
a RP-cycle, H={h1, …, hm} is the set of RP-cycle (may be 
empty), EP={ep1, …, epn} is the set of R-points, ER={es1, …, 
eso} is the set of all R-segments in c, c, h1, …, hm are all on a 
same plane, and they satisfy the next conditions (Here we use 
S(f) to denote the set of all the segments in all the RP-R-cycles):  
 
(1) ∀  i∈  {1, …,m}: hi edge-inside c. 
(2) ∀  i, j∈  {1, …, m}, i≠ j: hi and hj are edge-outside. 
(3) The RP-R-cycles of c and those in H are the only RP-R-
cycles composed by the segments in S(f). (That is, an R-face 
cannot be divided into two non-intersecting R-faces.) 
(4) ∀  i ∈  {1, …, n}: epi in c ∧  epi ∉  h1 ∧  … ∧  epi ∉  hm, it 
ensures that the separated points in face, that is, the embedding 
points. 
(5) ∀  i ∈  {1, …, o}: (esi in c ∨  esi touch c) ∧  (esi disjoint h1 ∨  
esi touch h1) ∧  … ∧  (esi disjoint hm ∨  esi touch hm), it ensures 
that the segments in the face, that is, the embedding segments. 
 
The relationships between face and other spatial objects can be 
represented through the relationships between the RP-R-cycles 
composing the face and other spatial objects. 
 
If an R-face f is (c, ∅ , EP, ES), that is, the embedding points 
and embedding segments have no effect on f, they are only 
useful in distinguishing spatial relationships. 
 
Definition 10: An R-hull h is a set of R-faces F(h)={f0,…,fm-1}, 
S(h) denotes the set of all the segments in h, such that:  
 
(1) ∀  i ∈ {0, …, m-1}: fi=(ci, ∅ , ∅ , ∅ ). 
(2) ∀  i∈ {0, …, m-1}: fi is area_outside to f’1, …, f’n ∈ F(h), 
such that n is the number of segments in fi.  
(3) ∀  r∈ S(h), r only belongs two faces. 
(4) ∀ fi, fj ∈  F(h), fi≠fj, ∃ f’1, …f’n∈ F(h), fi is area-outside to 
f’1, …, f’n is area-outside to fj. (That is, a face can connect to 
any other face through none face or several faces). 
 
R-hull is the simplest volume, convex or concave, and it cannot 
be divided into two R-hulls through points or segments. 
 
Definition 11: An R-Volume v is a pair (h, H), here h is an R-
hull, H={h1, …, hm} is a set of R-hulls (may be empty), they 
satisfy the next conditions: 
 
(1) ∀ i∈ {1, …,m}: hi area-inside h; 

(2) ∀ i, j∈ {1, …, m}, i≠j : hi is vertex-outside, edge-outside or 
area-outside hj; 
(3) There is no any other R-hull except for h and the R-hulls in 
H. 
 
This kind of volume has holes, and those holes can be point, 
line, face and volume. 
 
5.2 Topological Relationships 

For simplicity, we only discuss the topological relationships 
between a N-point p and an R-hull h, a N-segment s and an R-
hull h, an R-segment s and an R-hull h, an RP-cycle c and an R-
hull h, and two R-hulls. 
 
5.2.1 The relationships between an N-point p and an R-hull h: 
Similarly to the way to define the relationships between R-point 
and R-cycle in (Guting 1993), we can define on(p, h), in(p, h) 
and out(p, h). 
 
5.2.2 The relationships between an N-segment s and an R-
hull h: There are nine kinds of relationships between a line and 
a volume, which are all possible here: 
 
� vertex_inside: All points of s are in h. 
� edge_inside: s has end points on h, and other parts in h. 
� on: s is in the ∂h. 
� edge_boundary_inside: s has partial segments on h, and 

other parts in h. 
� vertex_outside: All points of s are out of h. 
� edge_outside: s has end points on h, and other parts out of 

h. 
� point_intersect: s has only intersection points with ∂h, and 

partial segments both in and out of h. 
� edge_boundary_outside: s has partial segments on h, and 

other parts out of h. 
� edge_intersection: s has intersection segments with ∂h, 

and partial segments in and out of h. 
 
5.2.3 The relationships between an R-segment s and an R-
hull h: The relationships between R-segment s and R-hull h are 
the special cases of that between N-segment s and R-hull h, the 
next four conditions will not appear: 
 
edge_boundary_inside, point_intersect, edge_boundary_outside, 
edge_intersect. 
 
Only the following five kinds of conditions are possible:  
 
vertex_inside, edge_inside, on, vertex_outside, edge_outside. 
 
5.2.4 The relationships between an RP-cycle c and an R-hull 
h: There are eleven kinds between face and volume, which are 
all possible here, so the relationships between RP-cycle c and 
R-hull h are: 
 
� vertex_inside: All points of c are in h. 
� edge_inside: c has end points on h, and other parts in h. 
� area_inside: c has segments on h, and other parts in h. 
� on: c is in the ∂h. 
� area_boundary_interior: c has partial face on h, other parts 

in h. 
� vertex_outside: All points of c are out of h. 
� edge_outside: c has end points on h, and other parts out of 

h. 
� area_outside: c has segments on h, and other parts out of h. 



 

 

� edge_intersect: c has segments (but no faces) on h, and 
partial faces both in and out of h. 

� area_boundary_outside: c has partial face on h, and other 
parts out of h. 

� area_intersect: c has partial face on h, and partial faces 
both in and out of h. 

 
5.2.5 The relationships between R-hull h1 and R-hull h2: 
There are nine kinds of relationships between two simple 
volume objects, which are all possible here, so the relationships 
between two R-hulls are: 
 
� vertex_inside: All points of h1are in h2. 
� edge_inside: h1 has end points on h2, and other parts in 

h2. 
� area_inside: h1 has segments on h2, and other parts in h2. 
� volume_inside: h1 has faces on h2, and other parts in h2. 
� vertex_outside: All points of h1 are out of h2. 
� edge_outside: h1 has end points on h2, and other parts out 

of h2. 
� area_outside: h1 has segments on h2, and other parts out 

of h2. 
� volume_outside: h1 has faces on h2, and other parts out of 

h2. 
� area-intersect: h1 has partial face on h2, and partial 

volumes both in and out of h2. 
 
 

6. 3D SPATIAL DATA TYPES 

Here we give out the concepts of spatial data types based on 3D 
realm, we will give the details in another paper. The basic types 
imported are points, lines, faces and volumes. 
 
For a given 3D realm R: 
 
� The value of type points is a set of R-points. 
� The value of type lines is a set of blocks that both of them 

are not vertex-intersected; 
� The value of type faces is a set of faces that both of them 

are not edge-intersected; 
� The value of type volumes is a set of volumes that both of 

them are not area-intersected. 
 
 

7. CONCLUSIONS 

This paper discusses the disadvantages in the method of realm. 
We extend 2D realm to 3D realm and define the spatial data 
structures on it. In order to give a better description of the 
topological relationships between spatial objects, we provide a 
method of Distribution of Dimension, which is not sensitive to 
the increase of dimensions, and the restriction rules are simpler 
than other methods. (The following table gives the number of 
distinguished topological relationships using different methods 
in 2D space.) 
 
 

Method A/A L/A P/A L/L P/L P/P Total 
4IM 6 11 3 12 3 2 37 
9IM 6 19 3 23 3 2 56 
DEM 9 17 3 18 3 2 52 
DE+9I 9 31 3 33 3 2 81 
V9I 13 13 5 8 4 3 46 
DD 7 9 3 8 3 2 32 

 

Table 5. Compares of distinguished topological relationships 
using different methods (modified from (Clementini 
and Di Felice 1995) 
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