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ABSTRACT 
 
State departments of transportation (DOTs), as well as national agencies in many countries, invest heavily in 
personnel and equipment to collect the data supporting the estimation of Average Annual Daily Traffic (AADT) and 
Vehicle Distance Traveled (VDT).  Satellite- and air-based imagery can provide additional data for estimation and 
offers certain advantages over traditional ground-based sensors.  Vehicles are evident in high-resolution satellite 
imagery, and we are developing algorithms that can automatically identify vehicles in 1-m resolution panchromatic 
imagery.    However, the imagery only provides very short duration observation, whereas traditional estimation 
methods are based on traffic volumes measured over extended intervals of time.   We review and present additional 
empirical comparisons between image-based AADT estimates and traditionally produced estimates that lead to an 
estimate of the error involved with expanding an image to an AADT estimate.  The error appears unbiased with a 
relatively low standard deviation. 

Real value would likely only be produced when using the image-based estimates on a large-scale, regular basis.  
We therefore developed software to simulate AADT and VDT estimation errors when using traditional ground-
based samples only and when adding satellite-based data to the ground-based samples.  We review and present 
additional simulation results indicating that DOTs could markedly decrease labor-intensive ground-based sampling 
efforts while improving AADT and VDT estimation. 
 
 

THE APPEAL OF SATELLITE IMAGERY 
 

Transportation agencies around the world are interested in estimating vehicular traffic over their highway 
networks and, in many cases, required to do so.  Traffic estimates are used to document and forecast trends, identify 
problems, and serve as inputs to planning and design studies.  Two of the most commonly used summary statistics 
of vehicular traffic are annual average daily traffic (AADT) and annual vehicle distance traveled (VDT) in 
Kilometers.  Strict definitions can be found elsewhere (FHWA, 2000;  McShane, et al., 1998).  Loosely, AADT 
represents traffic on a highway segment on an average day, while annual VDT represents the distance traveled by all 
vehicles over a network of segments in a year. 

Traditionally, AADT is first estimated for the segments of the highway system, then VDT is estimated by 
summing the product of the length of the segment and the AADT: 

 
VDT = Σ∀segments i  (lengthi * AADTi )      (1) 

 
Lengths of segments are static and readily available.  The AADTs are based on dynamic traffic conditions that 

are more difficult to obtain.  Conceivably, AADT can be estimated in alternative ways (e.g., Zhao and Chung, 
2001).   Typically, however, in a given year three groups of homogeneous highway segments—segments with 
similar properties for estimation purposes—are considered, and the AADT is estimated differently for segments in 
the various groups.  These groups are summarized as follows.  
• Automatic traffic recorders collect extensive volume data on one group of segments.  In principle, volumes are 

collected continuously—365 days per year, 24 hours per day—and AADT can be estimated by averaging daily 
volumes.  However, in practice hardware and software difficulties lead to less than complete data, and some 
interpolation or more complicated estimation is necessary (FHWA, 2000).   The extensive volume data are also 
used to develop seasonal adjustment factors used in estimating AADT for segments in the following group. 

• “Coverage counts” are collected on another group of segments for periods of relatively short duration.  Often, 
two consecutive 24-hour counts are collected, the seasonal factors developed from the first group of segments 
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are used to convert (“deseasonalize”) each of the two 24-hour counts to estimated average annual conditions, 
and the two estimated average annual conditions are averaged to produce an AADT estimate. 

• No samples are collected for the final group of segments.  On these segments AADT is estimated from 
estimated AADT on segments in the previous two groups and from samples taken in previous years on the 
segment. 
The data collection programs that support AADT and VDT estimation require large investments in equipment 

and labor expenses.  Moreover, the limited sampling involved will lead to errors in the estimates of these summary 
statistics.  Therefore, using high-resolution satellite imagery in AADT and VDT estimation programs could be 
beneficial.  The imagery can provide an additional source of data. Vehicles are evident in the high-resolution 
commercial imagery that has recently become available to the civilian community, and image processing algorithms 
can be developed to identify these vehicles automatically.  As an example, cars and trucks are evident in the portion 
of the IKONOS 1-m resolution panchromatic image presented in Figure 1a; in Figure 1b their shapes are 
distinguishable in the output of the software we have developed, and automatic counts match manual counts very 
well (McCord, et al.,2002b).  Spatial coverage in satellite-based imagery  is much greater than can be achieved from 
ground-based sensors.  Satellites can also access remote highways more easily and, since they are off-the-road, 
collect data without disrupting traffic or jeopardizing the safety of ground-based data collection crews. 
 

 
 
Figure 1a. IKONOS 1-m resolution panchromatic image of I-270 near Columbus. OH (from Space Imaging, 

Inc., through NASA Data Buy program) 
 

 
 
Figure 1b. Binary image of highway in Figure 1a resulting from image processing software developed in 

McCord, et al., (2002b) 
 

 The difficulty is that high-resolution sensors are carried on satellites in near polar orbits that do not allow high-
frequency temporal sampling of the links.  Therefore, to be considered for use in AADT and VDT monitoring, it 
must be shown that the “noise” associated with inferring average traffic conditions from satellite imagery is small 
enough and the quantity of images is great enough that the information can be combined with ground-based data to 
improve estimation performance.  In the following sections we summarize previous results and present new results 
indicating that high-resolution satellite imagery could decrease AADT and VDT estimation errors while reducing 
ground-based data collection efforts.  
 
 

AADT ESTIMATION ERRORS FROM A SINGLE IMAGE 
 

We are considering various ways of using satellite- and air-based imagery to improve the task of AADT and 
VDT estimation.  However, in this paper we limit ourselves to using the imagery in a way that would parallel the 
approach presently used with ground-based data.  In this approach a single traffic count obtained over an interval of 
time is converted to an estimate of average conditions for the year by using factors that estimate how a traffic pattern 
during the time period of observation deviates from annual average conditions.  When more than one of these traffic 
counts is obtained, an estimate of annual conditions is produced for each observation period, and the estimates are 
averaged to produce an estimate of AADT.   
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Recently, for the first time to our knowledge we compared estimates of AADT produced from images to those 
produced from ground-based data.  The details can be found in McCord, et al. (2002a).   In short, we observed the 
numbers of cars and trucks and length of highway segment in the image, used these numbers of cars and trucks and 
an assumption on their velocities to estimate a space-mean speed, used the number of vehicles and length of the 
segment to determine density, and used the density and space-mean speed to determine a flow rate.   This flow rate 
also corresponds to a vehicle count obtained during a short period of time, which we call an equivalent count 
interval, where the length of the interval tdur is determined from the length of the segment and the space-mean speed. 
We then used available data on temporal distributions to convert the estimated flow rates to “image-based estimates 
of AADT,” which we denote AADTimg. 

In the study referenced above, we produced AADTimg   for eight 1-m resolution IKONOS satellite images and 
six sets of air photos covering 14 urban or rural interstate segments in Ohio.  (Two of these 14 were the same 
segment imaged in two different years.)  We used extensive ground-based data or published ODOT data to 
determine ground-based estimates of AADT, which we denote AADTgrd, and formed the relative difference RD 
between the image-based and ground-based estimates for the same segment in the same year:  
 

RD = (AADTimg  – AADTgrd ) / AADTgrd .      (2)  
 

The distribution of the 14 RD values had sample mean 0.02 and sample standard deviation 0.14.  Eight of the 
values were positive, and six were negative. These statistics led us to believe that the sample error distribution 
seemed relatively unbiased (mean close to zero).  Given that the lengths of the equivalent count interval tdur 

corresponding to the AADTimg were so short—ranging from 0.6 to only 12.5 minutes—we found the magnitudes of 
the RD values surprisingly low.  The relatively low magnitudes of the errors and the apparent unbiasedness indicate 
the potential to produce good estimates of ground-based AADTs by averaging several image-based estimates of the 
same segment.    

However, the AADTgrds are only estimates of the true AADTs.  In the study, the AADTgrd for a given segment 
was produced in one of two general ways, depending on data availability.    On three segments, AADTgrd was 
estimated,either by the Ohio Department of Transportation or by us,with extensive ground-count data collected for 
the particular segment in the year the segment was imaged.   On the other 11 segments, we estimated the AADTgrd by 
using published growth factors and estimates of AADT obtained with much less ground-count data collected in 
previous years.  Both the contemporary nature and the extensiveness of the data in the former group of 3 segments 
lead us to believe that the AADTgrd would tend to be better estimates of the true AADT for these segments than for 
the other 11 segments.   The three segments in that group had RD values very close to zero.  Although the sample 
size is very small, the indication is that some of the error in the overall distribution may be attributable to errors in 
the ground-based AADT estimates, and not only to errors in the image-based estimates. 

Estimating the AADTgrd should not, therefore, be considered the absolute target of image-based AADT 
estimation, and we are investigating the error associated with these ground-based estimates so as to provide a better 
basis for interpreting the RD values .   However, in the absence of results from such studies, AADTgrd can be 
considered an intermediate target for image-based estimation, and the apparent unbiasedness and relatively low 
standard deviation of the sample RD distribution seem encouraging for image-based estimates.    

We have recently produced four more RD values, all based on 1-m IKONOS satellite images on Ohio urban 
interstates—one segment of I-70 in the Dayton area and three segments of I-475 near Toledo.   Information on these 
segments and the corresponding images is provided in the lines corresponding to numbers 15-18 in Table 1.   The 
information for the first 14 segments was previously presented in McCord, et al. (2002c). The relative 
differences,RD between the image- and ground-based estimates, and the supporting data, for all 18 segments are 
provided in Table 2.  Again, the information for segments 1-14 was previously presented in Table 2 of McCord, et 
al. (2002c).    

This set of 18 RDs has sample mean of 0.03 and sample standard deviation of 0.15, compared to 0.02 and 0.14 
for the previously analyzed set of 14 segments.  Once again, one would not be able to reject a null hypothesis of a 
mean error equal to zero.  Furthermore, the 12 positive and 6 negative RD values observed in Table 2 would not 
allow rejecting a null hypothesis that the median of the distribution is zero.  Not rejecting these hypotheses is not the 
same thing as accepting them, but the indication is that averaging several image-based estimates could lead to good 
estimates of AADT.  We also note that, as found in McCord, et al., (2002c), the RDs corresponding to cases where 
the ground-based estimates of the AADT were produced from a large amount of contemporary data—what we call 
“based on PATR data” and denote by the double asterisk in Table 2—were generally lower than the other RDs.  Of 
the four new RD values , the two corresponding to cases where the AADTgrd was based on PATR data were smaller in 
magnitude than the two that were not—0.01 and 0.10, compared to 0.13 and 0.35.  The sample mean and standard 
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deviation of the 5 total RDs based on PATR data are 0.02 and 0.05, respectively, compared to 0.03 and 0.18 for the 
13 RDs that were based on arguably poorer estimates of AADTgrd. 
 

Segment Segment
No Descripton FC* Image Date Time Length (km)

1 I-71: @US62 11 Aerial 11/30/95 10:13 am 12.02
2 I-270: @I-70 11 Aerial 11/30/95 10:21 am 4.95
3 I-70: @SR142 1 Aerial 11/30/95 10:30 am 7.64
4 I-71: @US62 11 Aerial 10/29/96 10:20 am 20.93
5 I-270: @I-70 11 Aerial 10/29/96 N/A** 6.14
6 I-70: @SR142 1 Aerial 10/29/96 10:55 am 17.32
7 I-270: SR317 to US33 11 Satellite 5/29/01 12:20 pm 2.30
8 I-270: US33 to Alum Creek Dr. 11 Satellite 5/29/01 12:20 pm 4.59
9 I-270: Alum Creek Dr. to US23 11 Satellite 5/29/01 12:20 pm 6.02
10 I-75: US224 to TWP. RD. 99 1 Satellite 8/11/01 12:18 pm 3.38
11 I-75: TWP. RD. 99 to SR613 1 Satellite 8/11/01 12:18 pm 5.55
12 I-270: Morse Rd to Easton Way 11 Satellite 9/16/01 12:31 pm 1.02
13 I-270:  Easton Way to US62 11 Satellite 9/16/01 12:31 pm 3.60
14 I-270: US62 to SR317 11 Satellite 9/16/01 12:31 pm 3.53
15 I-70: DAYTON AIRPORT ACCESS to I-75 11 Satellite 6/18/01 12:49 pm 2.90
16 I-475: US24 to SALISBURY RD. 11 Satellite 10/22/01 12:32 pm 3.01
17 I-475: SALISBURY RD. to SR2 11 Satellite 10/22/01 12:32 pm 3.49
18 I-475: SR2 to US20 11 Satellite 10/22/01 12:32 pm 6.97

*Functional Classification: 1=Rural Interstate, 11= Urban Interstate   **Assumed 10-11am  
 
Table 1. Information on 18 segments and images used in study (Information on first 14 segments appears in 

McCord, et al., (2002c)) 
 

Duration of Image- Ground-
Simulated based based

Segment Segment Number of Space-Mean Count Interval AADT AADT Relative Difference
Number Length, L (km) Cars Nc , Trucks Nt Speed Us (kmph) RD

1 12.02 98, 88 96.97 7.44 30248 30178** 0.0023
2 4.95 143, 33 101.57 2.92 78358 77497* 0.0111
3 7.64 72, 51 105.96 4.33 32778 45955* -0.2867
4 20.93 233, 92 100.03 12.55 28881 30112** -0.0409
5 6.14 219, 25 102.94 3.58 82566 78970* 0.0455
6 17.32 206, 130 106.40 9.77 42410 47931* -0.1152
7 2.30 48, 10 101.81 1.36 43850 51604* -0.1503
8 4.59 108, 26 101.46 2.71 50658 47852* 0.0586
9 6.02 137, 45 100.61 3.59 51989 45288* 0.1480

10 3.38 83, 8 111.22 1.82 38152 41920* -0.0899
11 5.55 139, 8 111.75 2.98 37710 42210* -0.1066
12 1.02 60,3 103.82 0.59 182430 139460* 0.3081
13 3.60 180,2 104.41 2.07 150401 145120** 0.0364
14 3.53 171,0 104.59 2.02 144406 134020* 0.0775
15 2.90 114,18 102.39 1.70 91176 67592* 0.3489
16 3.01 83,4 103.85 1.74 61818 60942** 0.0144
17 3.49 127,2 104.34 2.01 79610 70722* 0.1257
18 6.97 296,9 104.11 4.02 93943 84844** 0.1072

*: based on published AADT (and growth factors)
**: based on PATR data

img
AADT(mins)t dur grd

AADT

 
 
Table 2. Relative differences and supporting data by segment (Information on first 14 segments appears in 

McCord, et  al., (2002c)) 
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In McCord, et al. (2002c), we also saw empirical evidence of an expected negative correlation between the 
magnitude of the error and the length of the equivalent count interval tdur.  Specifically, making the common 
assumption that vehicle arrivals on a lightly traveled segment follow a Poisson distribution, the variance of the error 
(approximated by RD) in image-based estimation—and, therefore, the mean size of the absolute value of the error—
can be shown to increase with 1/ tdur (McCord, et al., 2002b).  A linear regression of the absolute value of the 14 
RDs against their corresponding 1/ tdur produced a significantly positive slope with an R2 of 0.38.  Since the value of 
tdur can be obtained directly from the data, if a solid relationship can be established to indicate how the distribution 
of errors varies with this parameter, one could make more informed decisions on when and how to use an image-
based estimate.  For example, a newly acquired image would lead to an AADTimg and a corresponding value of tdur.  
The tdur would lead to a distribution on the precision of the AADTimg.  This distribution could be compared to the 
prior distribution of the AADT estimate to determine how much weight to give to the newly acquired AADTimg. 

In Figure 2, we plot the absolute value of the RD and the corresponding value of 1/tdur with the regression line 
for the set of data that includes the four new observations.   Again, there is a statistically significant relationship (t-
statistic on the coefficient of the 1/tdurterm equal to 2.36).  The R2 is only 0.25, but it improves to 0.56 without the 
two outliers in the diagram.   We are presently investigating explanatory factors other than tdur to try to understand 
the performance of the outliers.     
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Figure 2. Plot of empirical data and least squares fit of Absolute Value of Relative Difference (RD) vs. (1/tdur)   
 

The RDs of Table 2 came from AADT comparisons of segments of various lengths and, therefore, various 
lengths of equivalent count period tdur.  Assuming that traffic on these highways, which were lightly traveled at the 
time of imaging, follows a Poisson Process, we developed a method to standardize the errors to a given value of tdur 
(McCord, et al., 2002b).  In Table 3, we present the RDs as they appear in Table 2 under the column entitled 
“Original tdur.”  We also present the RDs standardized to tdur values of 3.0 and 5.0 minutes.   We see that the sample 
means for these standardized RDs are, respectively, –0.025 and –0.014, and the sample standard deviations are 0.17 
and 0.10, respectively . 
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Segment Original Original Normalized RD Normalized RD
Number RD

1 7.44 0.0023 0.0058 0.0033
2 2.92 0.0111 0.0105 0.0061
3 4.33 -0.2867 -0.4294 -0.2487
4 12.55 -0.0409 -0.1961 -0.1133
5 3.58 0.0455 0.0540 0.0312
6 9.77 -0.1152 -0.4333 -0.2510
7 1.36 -0.1503 -0.0642 -0.0371
8 2.71 0.0586 0.0511 0.0295
9 3.59 0.1480 0.1717 0.0992
10 1.82 -0.0899 -0.0571 -0.0331
11 2.98 -0.1066 -0.1135 -0.0659
12 0.59 0.3081 0.0577 0.0334
13 2.07 0.0364 0.0246 0.0143
14 2.02 0.0775 0.0514 0.0298
15 1.70 0.3489 0.1890 0.1093
16 1.74 0.0144 0.0081 0.0047
17 2.01 0.1257 0.0824 0.0477
18 4.02 0.1072 0.1455 0.0842

Sample mean 0.0275 -0.0245 -0.0142
Sample st. dev 0.1543 0.1758 0.1018

(mins)t dur mins 3t dur = mins 5t dur =

 
 
 Table 3.  Original RDs and RDs standardized to tdur  values of 3 and 5 minutes  
 
 

NETWORK-BASED ESTIMATION IMPLICATIONS 
 

In McCord, et al. (2002a) we reported on our simulation-based analysis of AADT and VDT estimation errors 
within a set of homogeneous segments with and without the use of traffic data obtained with the sampling frequency 
of a 1-m satellite-based sensor.  In that study, we presented the performance, as portrayed by the mean squared 
relative error (MSRE), for various levels of a simulation input parameter reflecting the error associated with 
estimating AADT from a single image.  In McCord, et al. (2002b) we present the relationship between that 
parameter and the standard deviation of a relative error RE defined in the same way as RD in equation (2), but where 
the true value of the AADT is substituted for AADTgrd.    

In Figure 3a we reproduce a figure from McCord, et al. (2002c) where we used the procedures described in 
McCord, et al. (2002a) but presented the results in terms of the standard deviation of the relative error RE.  In this 
figure the MSRE in AADT estimates for a set of homogeneous segments is plotted as a function of the percentage of 
the segments sampled annually with two consecutive 24-hour ground-based traffic counts.  In Figure 3b, we present 
a similar curve that corresponds to VDT estimation.  –Note that the errors in Figures 3a and 3b are not plotted on the 
same scale.  The errors are much smaller in VDT than in AADT estimation, since the over- and under-estimation 
errors in AADT can cancel out in the weighted average used to determine VDT. 

As explained in McCord, et al. (2002a), in addition to the percentage of ground-based samples indicated on the 
abscissa, permanent automatic traffic recorders are assumed to be collecting ground-based data 24 hours per day, 
365 days per year on approximately 3% of the segments (a number chosen to approximate practice). that would be 
available from a single 1-m satellite-based sensor for various values of the standard deviation of the relative error.   
For example, the ground-data-only MSRE is approximately 0.68 when 33% of the segments are sampled annually.  
This represents an AADT estimation error for a set of segments—as specified by the mean squared relative error, 
and averaged over hundreds of simulation runs, with each run representing one year—when 24-hour traffic counts 
are obtained for all 365 days in the year on 3% of the segments and for 2 consecutive days in the year on an 
additional 33% of the segments.  (Sampling 33% of the segments per year would lead to “covering” all the segments 
every three years, the presently prescribed target for state DOTs to cover links in the USDOT’s HPMS sample.)  
When estimating AADT using both data obtained from a single 1-m satellite-based sensor and the same ground-
count data used to produce the ground-data-only curve, the MSREs is approximately 0.9 (worse than the 0.68 
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ground-data-only value) on the curve corresponding to a relative error standard deviation of 1.4, and it is 0.2 (better 
than the ground data only value) on the curve corresponding to a standard deviation of 0.1. 

Mean Squared Relative Error in AADT estimates

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 10% 20% 30% 40% 50%
Proportion of Moverable ATR

M
ea

n 
Sq

ua
re

d 
R

el
at

iv
e 

E
rr

or

Ground data only
Std. Dev of Relative Error = 0.1
Std. Dev of Relative Error = 0.2
Std. Dev of Relative Error = 0.4
Std. Dev of Relative Error = 0.6
Std. Dev of Relative Error = 0.8
Std. Dev of Relative Error = 1.0
Std. Dev of Relative Error = 1.2
Std. Dev of Relative Error = 1.4

 
Figure 3a. Simulated mean-squared relative error in estimated AADT vs. percentage of highway segments 

sampled annually for different standard deviations of relative error of AADTimg  (appears as Figure 2 
in McCord, et al., (2002c)) 
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Figure 3b. Simulated mean-squared relative error in estimated VDT vs. percentage of highway segments 
sampled annually for different standard deviations of relative error of AADTimg   
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The solid ground-data-only curves in Figures 3a and 3b portray the performance when not incorporating any 
satellite data, that is, when only using ground counts.  The other curves represent the performance when adding data  

In producing the simulated data that led to these curves, the standard deviations correspond to standard 
deviations assuming a zero mean error.  The standard deviation of the empirical RDs in Table 2, assuming zero 
mean, is 0.15.  (This is identical, to two decimal places, to the sample standard deviation because the sample mean is 
so close to zero.)   If we use our relative difference RD as a proxy for the relative error RE considered in Figure 3, 
the 0.15 standard deviation would lead to curves of markedly lower estimation errors than the ground-data-only 
curves for all ground count sampling percentages shown in the figures.  We also note that on a 0.15 standard 
deviation curve—and even on curves with standard deviations over four times as large in the case of AADT 
estimation, and three times as large in the case of VDT estimation—the error at 0% ground count sampling (when 
only permanent automatic traffic recorders are collecting data) would be less than that on the ground-data-only 
curve at 33% sampling.  That is, if satellite data were used in AADT and VDT estimation, the ground count 
sampling programs and corresponding expenses associated with the “coverage counts” could be eliminated and 
better estimates would be produced than when adhering to the targeted 3-year (33% per year) coverage cycle with 
ground data only.  The same conclusion is reached even when using the higher standard deviation obtained when 
errors are all standardized to the 3-minute value of tdur.  We are investigating the use of this parameter in more 
detail, but the preliminary conclusion is that even with segments corresponding to such short interval durations, 
satellite based information can be helpful.  

 
 

CONCLUSION 
 

Coverage counts would be valuable for other reasons, and other assumptions in the simulation-based analysis 
would need to be investigated.  For example, much of the error reduction in our network-based results seems to 
come from improved estimates on the segments that are not sampled in the year of analysis, that is, in the third 
group of segments identified above.   We have not yet investigated the ability to estimate the AADT on some of 
these segments from samples obtained in previous years, opting instead to use the average estimated AADTs of 
segments in the other groups.  

Our results, therefore, should not be used to advocate elimination of ground-based sampling programs.  
However, they do illustrate the potential for sizable benefits when incorporating satellite-based data in AADT and 
VDT estimation, if the monetary costs of obtaining and processing these data and the associated institutional costs 
were low enough.   Although we have not conducted an economic analysis,  we are fairly sure that the costs are 
presently too high to advocate that state DOTs, or other transportation agencies, begin purchasing satellite data from 
commercial providers for AADT and VDT estimation.  On the other hand, the large potential benefits should 
motivate further investigation into lowering these costs and refining methods that could exploit the use of satellite 
data for these purposes.   

We also note that aerial photographs would be an additional source of added data.  The use of these data could 
offer similar benefits and be confronted with similar issues.   Like satellite imagery, the air photos offer “snapshots” 
of the traffic that would need to be converted to more representative conditions.  The cost of flying special 
photography surveys for AADT and VDT estimation would likely not be cost-effective.  However, the marginal 
costs of converting air photos obtained for other purposes to traffic data that could be used in AADT and VDT 
estimation could be low, and our empirical results indicate that snapshots of traffic conditions may indeed be 
valuable in this effort. 
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